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CHARACTERIZATION OF SEMI-CNS POLYNOMIALS

HORST BRUNOTTE

Abstract. Semi-CNS polynomials are monic polynomials with integer co-
efficients which are related to natural generalizations of the classical decimal
representation of the rational integers to algebraic integers. We characterize
semi-CNS polynomials of arbitrary degrees thereby extending known results
on cubic and irreducible semi-CNS polynomials.

1. Introduction

Canonical number systems (abbreviated by CNS) can be seem as natural
generalizations of the classical decimal representation of the rational integers
to algebraic integers. The main ingredient of a canonical number system is a
so-called CNS polynomial (see Definition 1 below) which was introduced by A.
Pethő [11]1. The characterization of this class of polynomials has remained
an open problem until now, however, there is an algorithm to decide the CNS
property of a given polynomial [17, 8]. The work [4] provides a detailed account
on the historical development and the connections of the concept of canonical
number systems to other theories, e.g. shift radix systems, finite automata or
fractal tilings.

During the recent decades various generalizations of the concept of a CNS
polynomial have been studied (see for instance [9], [14], [2], [16], [13]). Here
we are concerned with one of them, namely with semi-CNS polynomials which
were defined by P. Burcsi and A. Kovács [7]. W. Steiner [15] pointed out
that this notion is intimately connected with positive finiteness as introduced
by S. Akiyama and that an easy adaption of [1] to reducible polynomials
shows that [7, Theorem 3.4] in fact describes all semi-CNS polynomials with
negative constant terms; in particular, there are exactly

(
d+k−3
k−2

)
semi-CNS

polynomials of degree d and constant term −k (k ≥ 2).
In this short note we give the details of the aforementioned adaption of

the proof of S. Akiyama [1]. Thereby we extend the characterization of
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cubic semi-CNS polynomials given by A. Pethő and P. Varga [12] and the
characterization of irreducible semi-CNS polynomials [5, Theorem 11].

2. Characterizations of semi-CNS polynomials

Throughout this section we let P ∈ Z[X] be a monic integer polynomial of
positive degree with P (0) 6= 0 and DP = [0, |P (0)| − 1] ∩ N where we denote
by N the set of nonnegative rational integers. We say that the polynomial
A ∈ Z[X] is canonically representable (w.r.t. P ) if

A ≡ B (mod P )

with some polynomial B ∈ DP [X]. In this case we say that B canonically
represents A. We denote by RP the set of all canonically representable integer
polynomials. It is easy to see that each A ∈ RP which is not a multiple of P
has a unique representative B ∈ DP [X].

We now give the definitions of (semi-) CNS polynomials in a slightly modified
form.

Definition 1. (1) P is called a CNS polynomial if Z[X] ⊆ RP ([10]).
(2) P is called a semi-CNS polynomial if RP is an additive semigroup ([7,

Definition 3.2]).

Our main result is the characterization of semi-CNS polynomials thereby
extending results of A. Pethő and P. Varga [12] for cubic polynomials and
[5, Theorem 11] for irreducible polynomials. The ingredients of our proof are
the works of P. Burcsi and A. Kovács [7] and in particular of S. Akiyama
[1] where the essence of our Theorem 5 is shown, but formulated in a different
terminology. The reader is referred to [5, Theorem 11 (ii)] and to [1, Section
3] for details.

We start with some preparations.

Lemma 2. If E ∈ DP [X] canonically represents m ∈ Z then

E(0) ≡ m (mod P (0)) .

Proof. Let T ∈ Z[X] with PT = E −m. Then P (0)T (0) = E(0)−m. �
Only one implication of the second statement of the following lemma is

needed for our main result, however, the other statements are mentioned here
for the sake of completeness.

Lemma 3. Let |P (0)| ≥ 2. Then the following statements hold.

(1) If P is a semi-CNS polynomial and f a nonconstant factor of P with
|P (0)| ≥ 2 then f is expanding, i.e., all roots of f lie outside the closed
unit disc.

(2) P is a semi-CNS polynomial if and only if N[X] ⊆ RP .
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(3) P is a CNS polynomial if and only if P is a semi-CNS polynomial and
−1 ∈ RP .

Proof. (i), (ii) Clear by [5, Theorem 11 (i)].
(iii) See [5, Theorem 11 (iii)]. Note that −1 ∈ RP implies that P does not
have a real nonnegative root, hence P (0) > 1. �

Further we recall the following well-known (and easy to prove (see e.g., [3,
Lemma 1])) fact.

Lemma 4. Let f =
∑n

i=0 aiX
i ∈ C[X] be a nonconstant polynomial with

|a0| >
∑n

i=1 |ai|. Then f is expanding.

Let us now state our main result.

Theorem 5. Let P ∈ Z[X] be a monic integer polynomial with |P (0)| ≥ 2.
Then P is a semi-CNS polynomial if and only if one of the following two
conditions holds.

(1) P is a CNS polynomial.
(2) P (1) < 0, and apart from the constant term all coefficients of P are

nonnegative.

Proof. We first show that semi-CNS polynomials can be characterized by either
of the two conditions stated above. Trivially, every CNS polynomial is a semi-
CNS polynomial. Now, let P =

∑d
i=0 piX

i with P (1) < 0 and p1, . . . , pd−1 ≥ 0.
Then p0 < 0, and P is expanding by Lemma 4. Now we infer from [7, Theorem
3.4] that P is a semi-CNS polynomial.

Conversely, let P be a semi-CNS polynomial. If P (0) > 0 then P is a CNS
polynomial by [6, Section 3.4.2]. Let P (0) < 0, hence P has a real positive
root r. In view of Lemma 3 (ii) we find E ∈ DP [X] with

E ≡ −p0 (mod P ),

and we can write

E =
n∑

i=1

eiX
i

by Lemma 2. Pick T ∈ Z[X] with PT = E + p0 =: Q, thus Q(r) = 0. As the
sequence of coefficients of Q admits exactly one variation in sign Q has exactly
one positive root by Descartes’ rule of signs, and this root is r. We know from
[5, Theorem 11 (i)] that r > 1, therefore

(1) Q(1) < 0 .

Trivially T (0) = 1. If T were nonconstant then Q would have a root inside the
closed unit disk which in view of (1) contradicts Lemma 4. Hence, T = 1 and
therefore P = Q. The proof is complete. �
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