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CHAOTIC BEHAVIOR BASED ON DISCONTINUOUS MAPS
MOLAEI, M. R. AND KARAMI, M.

ABSTRACT. In this paper a class of chaotic vector fields in R? is considered.
We prove its chaotic behavior by using of the topological entropy of a class
of interval maps with finite number of discontinuities. Semi-Lorenz maps
from the viewpoint of topological entropy are studied and it is proved that
they have positive topological entropies. A kind of bifurcation by presenting
a class of one parameter families of interval maps is studied.

1. INTRODUCTION

One of the numerical objects which can determine the complexity of a sys-
tem is “topological entropy”. It is also an essential numerical invariant in
application [7, 10]. The positive topological entropy of a continuous map im-
plies to its chaotic behavior. This numerical invariant has been considered for
continuous maps by Bowen and Dinaburg [1, 4, 11]. The notion of topological
entropy for discontinuous maps has been studied by Ciklova [3]. One must
pay attention to this point that vector fields with discontinuous components
appear in nature and engineering [6]. Lorenz maps are examples of discon-
tinuous maps which create chaotic vector fields in the nature. In fact Lorenz
system [6] is one of the most important systems in R, and its chaotic behavior
can deduce from one dimensional Lorenz maps. Chua system [2] is the other
system in R?® which is considered recently in many articles [8].

In the next section we define semi-Lorenz maps and we prove that the semi-
Lorenz maps have positive topological entropy in the sense of Ciklova defini-
tion. We also present a new kind of bifurcation by using of topological entropy
of a class of discontinuous maps.

By using of a class of maps with infinite topological entropies we construct
a class of chaotic vector fields in R3.

2010 Mathematics Subject Classification. 37B40, 37D45.
Key words and phrases. Topological entropy; Interval maps; Semi-Lorenz map; Chaotic
vector fields.
43



44 MOLAEI, M. R. AND KARAMI, M.

2. EXAMPLES OF DISCONTINUOUS MAPS WITH POSITIVE TOPOLOGICAL
ENTROPIES

In this section we assume that T": [a,b] — [a,b] (a < b), is an interval map
which may be discontinuous. As usual for a natural number n we define

dn(z,y) = max{d(T"(z), T (y)) : =,y € [a,b] and i € {0,1,2,...,n}},

where T is the composition of T', n times, with itself. If F' C [a,b], and € > 0,
then F' is called an (n,e) spanning set for [a, b] with respect to T if for given
x € |a,b] there is y € F such that d,(x,y) <e.

A subset E of [a, b] is called an (n, ) separated if d,,(z,y) > € when z and y
are different points in E. r,(g,T) denotes the number of elements of an (n, ¢)
spanning set with the smallest cardinality, and s, (¢, T") denotes the number of
elements of an (n,e) separated set with the largest cardinality.

If r(e,7) = lim supw then lim.,o7(e,T) is called the topological
entropy of T" and denoted by h(T'). If h(T') > 0, then T has positive topological
entropy.

If s(e,T) = limsup w then h(T) = lim.,o s(e, T).

Example 2.1. Let T': [0,1] — [0, 1] be defined by

21 ifo<z<l!
T(x): e 1 2
2r—1 if5 <z <1

Then for &k > 1

. 1 if o =1
Te) = {2% 2k ifr#£1
where
[k] = max{n € Z : n < k}.

Let a be an irrational number in [0, %], 0<e< }L, n € N, and let x; = “*21'[1
for 1 <i<2". If E={x; : 1 <i<2"}then F is an (n,¢) separated set. So
sp(e,T) > 2". Thus w > log 2. Hence h(T') > log2.

If

. ey 2TL 5 277, 9 2’]’L g o ey 2’]’L P 2_n
then I is an (n,e) spanning set. Since the cardinality of F' is less than or
equal to (1 + [£])2" then h(T) < log2. Thus h(T) = log2.

F_{E 2 [2le e4+1 26 +1 [Lle+1 2"}
- 2_n’2_n’

In the rest of this section we restrict ourself to a one parameter family of
semi-Lorenz maps. For a parameter u, a semi-Lorenz map is a map

T,: [~1,1] = [~1,1]
with the following properties (see figure 1):

(i) T,,: [-1,0] = [—=1+ p, 1] is an onto, two times differentiable map with
T}, > 1 and T)] > 1, where T}, is derivative of 7},;
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FIGURE 1. Semi-Lorenz map (the vertical axes is the dependent axes)

(ii) T,(z) = =T,(—x) for all z € (0, 1].

In the above definition g > 0. Because, if ¢ < 0, then —1 + p < —1. So
T,: [—1,0] = [—=1+ p, 1] is not available.

A semi-Lorenz map is called a Lorenz map [5] if: lim, o~ T},(z) = +oo.
Lorenz map has been deduced from Lorenz system [5, 6, 12], and it determines
the complexity of Lorenz system. In fact a Lorenz map has positive topological
entropy, and this is the reason of the complexity of Lorenz system for special
values of parameters.

Theorem 2.1 (Positive topological entropy for semi-Lorenz maps). If
T,: [-1,1] = [-1,1]
15 a semi-Lorenz map, then T has positive topological entropy.

Proof. Let a € [-1,0] and b € [0,1] be two points such that 7),(a) = % and
T,(b) = 0. If 0 < & < min{|al,b, 3}, & = lim,, 1+ T)(x) and z,y € [-1,1]
then dy(z,y) > ¢ or [T, (z) — Tu(y)| > alz —y|. Forn € N and 1 <i < [%]
let 2; = 2 — 1. Then d,(z;,2;) > e when i # j, 1 <i < [*] and 1 < j <
[%] So sp(e,T,) = [23"]. Hence s(e,T),) = limsup% > log . Thus
h(T,) = lim._, s(¢,T,,) > loga > 0. 0

3. A KIND OF BIFURCATION

In this section we present an example of a one parameter family of discon-
tinuous maps with a bifurcation point in the sense of topological entropy. For
0 < p <1 we define T),: [0,1] — [0, 1] by:

2l -pz+p  if0<z<i
T”(x)_{Z(l—u)a:—l—u—lif%<x§1'
We show that p = % is a bifurcation point for the one parameter family
{T,, : 0 <p<1}. We consider the following two cases.
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Case 1. 0 < p < 3. Ifa=2(1—p), z,y € [0,1], and = < y, then we have
the following choices:

(i) Tt 2,y € [0, 2] then [T,(2) — To(y)| = aly — 2);

(i)If z € [0, 3], and y € (3, 1], then

Tu(x) = Tu()| = la(z —y) +1[ 21— aly — 2).

(iii) If z,y € (3, 1] then |T),(z) — Tu(y)| = a(y — z).

Soifne N,0<e< %1, 1<i< [%] and z; = ;—i, then d,(z;,z;) > ¢,
when 1 < j < [%] and i # j. Hence s,(e,7,) > [<]. Thus s(e,T,) >
limy, o +log[%] =loga. So h(T},) > log o > 0.

Case 2. 3 <p <1 Ifa=2(1—p), then

(i) 2,y € [0, 3] implies |T};(y) — Tyi(2)| = a™(y — ) < (y — @);

(i) =,y € (3, 1] implies |7} (y) — Tjp(2)| < a"(y —2) < (y — @)

Let € > 0 be given. Let 1 < i < [g], T, = % and T(2j4y = 1. Then (4)
and (4¢) imply that: for all € [0, 1] there is j such that d,(z,z;) < e. Thus
ro(e,T,) < [2]+ 1 for all n € N. So h(T},) = 0.

The above two cases imply that u = % is a bifurcation point for the one
parameter family {7),}.

4. CONSTRUCTING VECTOR FIELDS WITH CHAOTIC BEHAVIOR

In this section by using of topological entropy of discontinuous interval maps
we present a method for constructing chaotic vector fields in R3.
Let X be a C? vector field in R? invariant under involution

(961,372,1'3) — (—351, —372,33'3)

with the hyperbolic fixed points (—4, 0,0), (0,0,0), and (4,0, 0) with real eigen-
values (—A1, A1, A1), (A1, —=A1, A3), and (—Aq1, A\, A1) respectively with the fol-
lowing two conditions.

(l) 0< —)\3 < )\1, and

Y
(ii) (—I)T3 is a real number.
Moreover let X be linear in the cubes

3
U:{(xl,azg,:cg) : \xi]<§fori:1,2,3}

and
3 3 3
V= {(1’1,$2,I3) : |LU1 — 4’ < 5, |ZL’2| < 5, ’$3| < —} .

2
— 3
D:Uﬂ{($1,$2,§> . xl,xQER},

then the transition map

Theorem 4.1. If
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T : D+:{($1,$2,2> eD : $1>O}%
- 3
E:Uﬂ{(—,xz,x3> . T9,13 € R}

18

3
Tl (:El: X2, §>

and the transition map

Tgi F:Vﬂ{(xl,xg,g) : ZIZ'Q,iL'gGR}—)

18
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3 4 —4)2%2 39 f 9 >0
T3 <ZE1,3§'2,§) - {( +(x1 ) T2 xg) foQ ;

where s = j\—A"*
1

Proof. In U the system

T1 = M1
T = —\iZ2 ,
T3 = A\3T3

has the integral curves
(21(0)eM?, 25(0)e™ ™, 25(0)es).

So the direct calculation implies the point (x1,2,23) will go to the point
(3,212 (3)1=2%) in the set U N {(3,22,23) : 2,23 € R} by its integral
curve..
In V the system
jfl = —)\1<l’1 — 4)
Ty = A T2 )
T3 = A1T3

has the integral curves

(4 + (21(0) — 4)e ™M, 25(0)eM!, 25(0)eM?).

If we put z3(0) = 2 and 25(0)e™’ = 2, then t = (A\]") log (ﬁ) So in this

2 2(
case 2(0) > 0 and by substituting ¢ in the integral curve we deduce

3 229 3 9
T: — | =14 —4H—= - — .
3<$1,I2,2) < + (2 ) 3 ,274902)



48 MOLAEI M. R. AND KARAMI, M.

If we put 23(0) = 2 and z5(0)e™’ = =2, then ¢ = ()\fl) log(%;?o)). So in this

case 2(0) < 0 and by substituting ¢ in the integral curve we deduce

3 229 3 9
T: —|=1(4- —4)— - —— . O
3(%;952,2) ( ($1 ) 3 o 4@)

We can take the vector field X in such manner which its transition map

3
TQ:E+:{(§,LU2,J:3) ekl LE3>O}—>F

3 3
T (5,1’2,3:3) = <$3+4, —X9 +4,§> .

Then the transition map T = T30T50T1] is

3
Ty <£U1,5152,§)

be the mapping

3\1=8 s (4 8) 3 27 .
_ 4+ (2) 1 ( g%1%2 + 3) 9 7811x2+48> if 2172 <6
a 3YL7 s (4 8\ =3 _ o1 -

4+ (2) T ( gT1T2 + 3) 1 —8z1x2+48) if 2122 > 6.

Now we can define the Poincare map of the vector field [9].

Now let the Poincare map P on DT be the combination of T, with a dif-
feomorphism from G to D' which carries the segment x; = ¢; in G to the
segment T, = ¢y in D7,

Since the vector field X is symmetric then we can find the Poincare map on
D.

When x5 is constant then the third component of the Poincare map as a
function of x; is a discontinuous map with infinite entropy, because it is a kind
of maps which we consider them in the next example. So the vector field is a
chaotic vector field.

FExample 4.1. Let T: R — R be defined by:

b$idifbx+d>0

T(x)=1{ piifbr+d <0

cifbr+d=0

a, b, ¢, and d are constants, so that a is nonzero and the case b = d = 0 will

not happen.
1 1
If K = [—%l,—%l + E] and z; = —% + for i € N, then T"(z;) = ai. So
i
di(z;,x;) > |a|. Therefore r, (e, K,T') is infinite. Hence h(T) = oo.
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5. CONLUSION

In this paper we introduce semi-Lorenz maps and prove that they are chaotic
maps. We present examples of discontinuous maps with positive topological
entropies and we find a bifurcation point in the sense of chaotic behavior.
We also construct a class of geometric chaotic vector fields in R® based on
discontinuous maps with infinite entropies.
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