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SECOND ORDER PARALLEL TENSORS ON PARA
r-SASAKIAN MANIFOLDS WITH A COEFFICIENT «

LOVEJOY S. DAS

ABSTRACT. Levy [11] had proved that a second order symmetric parallel
non singular tensor on a space of constant curvature is a constant multiple
of the metric tensor. Sharma [6] has proved that second order parallel
tensor in a Kaehler Space of constant holomorphic sectional curvature is
a linear combination with constant coefficients of the Kaehlerian metric
and the fundamental 2-form. In this paper, we show that a second order
symmetric parallel tensor on a para r-Sasakian manifold with a coefficient
« is a constant multiple of the associated metric tensor and we have also
proved that there is no non zero skew symmetric second order parallel tensor
on a para r-Sasakian manifold.

1. INTRODUCTION

In 1923, Eisenhart [10] showed that a Riemannian manifold admitting a
second order symmetric parallel tensor other than a constant multiple of metric
tensor is reducible. In 1926 Levy [11] obtained the necessary and sufficient
conditions for the existence of such tensors. Sharma [13] has generalized Levy’s
result by showing that a second order parallel (not necessarily symmetric and
non-singular) tensor on an n-dimensional (n > 2) space of constant curvature
is a constant multiple of the metric tensor. Sharma has also proved in [13] that
on a Sasakian manifold, there is no non zero parallel 2-form. In this paper we
have defined para r-Sasakian manifolds with a coefficient « (non zero scalar
function) and have proved the following two theorems:

Theorem 1.1. On a para r-Sasakian manifold with a coefficient o, a second
order symmetric parallel tensor is a constant multiple of the associated positive
definite Riemanian metric tensor.

Theorem 1.2. On a para r-Sasakisan manifold with a coefficient o, there is
no non zero parallel 2-forms.
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2. PRELIMINARIES

Let a C*° differentiable manifold M be equipped with the ring of real valued
differentiable functions §(M) and the module of derivations §(M) and a (1, 1)
tensor field ® as a linear map such that

O: X(M) — X(M).

Let there be r (C* ) 1-forms A, As... A, and r (C*) contravariant vector
fields 7%, T?...T" satisfying the following conditions [5]

(2.1) Ap(T?) = o8 where p,q =1,2,...7
(2.2) O(TP)=0forp=1,2,...7
(2.3) A (PX)=0forp=1,2,...r

for any vector field X € X(M), and
(2.4) X =X - A,(X)TF forp=1,2,...7.

Here the summation convention is employed on repeated indices where p =
1,2,...r. If moreover M admits a positive definite Riemannian metric g such
that

(2.5) A (X) = g(X,TP), for X € X(M)
(2.6) g(®X, DY) = g(X,Y) ZA

for any vector fields X and Y. Then a manlfold satisfying conditions (2.1),
(2.2), (2.3), (2.4), (2.5), and (2.6) is called an almost r-para contact structure
((I)a Ap7 Tp, g) on M.

In M the following relations hold
(2.7) B(X,Y) = g(X,8Y) = (¥, ®X) = B(Y, X)
(2.7b) O(X,TP) =0.
Definition 1. If in the almost r-para contact manifold M, the following rela-
tions

(28) DX =~ (VT7), (X, V) = (VxAy(Y))
(2.9a) a(X) = Vxa
(2.9Db) 9(X,a) = a(X)
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hold where V denotes the Riemannian connection of the metric tensor g, then
M is called a para r-Sasakian manifold with a coefficient a.

3. PROOFS OF THEOREM 1.1 AND 1.2
In proving Theorems 1.1 and 1.2 we need the following theorems.
Theorem 3.1. On a para r-Sasakian manifold the following holds
(3.1) A(R(X,Y)Z) = ®[g(X, Z2)A, — g(Y, Z)Ap(X)]
~ [a(X)2(Y, Z) - a(Y)®(X, Z)].
Proof. In view of (2.8), (2.9)a and (2.10) the proof follows easily. O
Theorem 3.2. For a para r-Sasakian manifold we have
(3.2) R(T?, X)Y = o*[A,(Y)X — g(X,Y)T?] + a(Y)DX — ad®(X,Y),
where g(X, &) = a(X).

Proof. The proof follows immediately after making use of (3.1) and equation

(2.9)b. O
Theorem 3.3. For a para r-Sasakian manifold the following holds
(3.3) R(T?, X)TP = BOX + o’[X — ) A,(X)T7],

p=1

forp=1,2,...r where a(TP) = .

Proof. In view of equation (3.2), the proof follows in an obvious manner. [J

4. PROOF OF THEOREMS

Proof of Theorem (1.1). Let h denote a (0, 2) tensor field on a para r-Sasakian
manifold M with a coefficient o such that Vh = 0, then it follows that

(4.1) h(RW,X)Y,Z)+ h(Y,R(W,X)Z) =0,

for arbitrary vector fields X, Y, Z, W on M. We can write (4.1) as
G(R(OW, X)Y, Z) + g(¥, ROW, X)Z) = 0.

Substituting W =Y = Z = TY into (4.1) we get

(4.2) g(R(T*, X)T*, T9) 4+ g(T?, R(T?, X)T") = 0.

In view of theorem (3.3) the above equation becomes

(4.3) 2Bh(®X, T9) + 2°h(X, T?) — 2% g(X, T)h(T,T?) =0

Simplifying (4.3) we get

(4.4) g(X, TOR(T, T) — h(X,T7) — %h(cbx,g) = 0.
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Replacing X by ®Y in (4.4) we get
s

(4.5) h(®Y,T9) = E[h(Tq,Tq)Ap(Y) — h(Y,T7)].

Using (4.4) and (4.5) we get

(4.6) (T, THANY) — WY, T?) =0

if 3% # a*. Differentiating (4.6) covariantly with respect to Y we get
(A7) h(T9TYg(X,BY) + 29(X, T)A(®Y, T%) — h(X,8Y) = 0.

From the above equation and (2.8a) we obtain

(4.8) h(T7, T g(X,BY) = h(X,0Y).
Replacing @Y by Y in (4.8) we get
(49) W(T9, Tg(XY) = h(X,Y).

In view of the fact that h(7'?,7) is constant along any vector on M, we have
proved the theorem unless 32 # o*. 0

Proof of Theorem (1.2). Let us consider h to be a parallel 2-form on a para
r-Sasakian manifold M with a coefficient «. Then putting W =Y = T in
(4.1) and using Theorem 3.3 and equations (2.1)—(2.6) we get

(4.10) BWZ,®X) + a*[WZ,X) — h(Z, T A,(X) + h(X, T A,(Z)]
= e, TY®(Z,X) — h(®X, T (Z).

Let us define a H to be (2,0) tensor field metrically equivalent to h then
contracting (4.1) with H and using (2.3)—(2.6) we obtain

(4.11) h(B,T7) = 0.
Substituting (4.11) in (4.10) we get
(4.12) BWZ,®,X) = o*[h(Z,X) — WMZ, TY)A,(X) + h(X, T A, (Z))]
+ h(®X, T (Z) = 0.

On simplifying the above equation we get
(4.13) h(®a, T7) = 0.
Interchanging X and Z in (4.12) we get
(4.14)  BIA(Z, ®X) + h(X,Z)] + h(®X, T)a(Z) + h(®Z, T?)a(X) = 0.
Replacing X by ®Y in (4.14) and making use of (2.4) and (2.6) we get
(4.15) BMZ,Y)—h(Z, THA,(Y) + h(PY,PZ)]

+ (Y, T a(Z) + h(®Z, Ta (DY) = 0.
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Using the fact that h is anti symmetric in (4.15) we obtain

(4.16) A(Y,T9a(Z)+ h(Z, TYa(Y) = B[MZ,TT)A(Y) + h(Y, T A,(Z)]
+ h(®Z, T (DY) + h(BY, T?)a(DZ) = 0.

Substituting Y = & in (4.16) and making use of (4.13) and (4.11) we get

(4.17) (& — BHMZ,T9) + Bh(®Z,T) = 0,

where & = a@ and § = a(®a). Replacing Z by ®Z in (4.17) and in view of
(1.4) and (1.6) we get

(4.18) (8% — &)W(®Z,T) = Bh(Z,T9),
where 3% # &, which in view of (4.17) becomes

(4.19) WZ,T9) = 0 unless (5)? # (& — %)%
Using (4.19) in (4.12) we get

(4.20) Bh(Z,®X) + a*h(Z, X) = 0.

Differentiating (4.19) covariantly along Y and using the fact that Vh = 0 we
get

(4.21) hMZ,®Y) = 0.
In view of (4.21) and (4.20), we see that h(Y, Z) = 0. O
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