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SECOND ORDER PARALLEL TENSORS ON PARA
r-SASAKIAN MANIFOLDS WITH A COEFFICIENT α

LOVEJOY S. DAS

Abstract. Levy [11] had proved that a second order symmetric parallel
non singular tensor on a space of constant curvature is a constant multiple
of the metric tensor. Sharma [6] has proved that second order parallel
tensor in a Kaehler Space of constant holomorphic sectional curvature is
a linear combination with constant coefficients of the Kaehlerian metric
and the fundamental 2-form. In this paper, we show that a second order
symmetric parallel tensor on a para r-Sasakian manifold with a coefficient
α is a constant multiple of the associated metric tensor and we have also
proved that there is no non zero skew symmetric second order parallel tensor
on a para r-Sasakian manifold.

1. Introduction

In 1923, Eisenhart [10] showed that a Riemannian manifold admitting a
second order symmetric parallel tensor other than a constant multiple of metric
tensor is reducible. In 1926 Levy [11] obtained the necessary and sufficient
conditions for the existence of such tensors. Sharma [13] has generalized Levy’s
result by showing that a second order parallel (not necessarily symmetric and
non-singular) tensor on an n-dimensional (n > 2) space of constant curvature
is a constant multiple of the metric tensor. Sharma has also proved in [13] that
on a Sasakian manifold, there is no non zero parallel 2-form. In this paper we
have defined para r-Sasakian manifolds with a coefficient α (non zero scalar
function) and have proved the following two theorems:

Theorem 1.1. On a para r-Sasakian manifold with a coefficient α, a second
order symmetric parallel tensor is a constant multiple of the associated positive
definite Riemanian metric tensor.

Theorem 1.2. On a para r-Sasakisan manifold with a coefficient α, there is
no non zero parallel 2-forms.
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2. Preliminaries

Let a C∞ differentiable manifold M be equipped with the ring of real valued
differentiable functions F(M) and the module of derivations F(M) and a (1, 1)
tensor field Φ as a linear map such that

Φ: X(M) → X(M).

Let there be r (C∞ ) 1-forms A1, A2 . . . Ar and r (C∞) contravariant vector
fields T 1, T 2 . . . T r satisfying the following conditions [5]

Ap(T
p) = δpq where p, q = 1, 2, . . . r(2.1)

Φ(T p) = 0 for p = 1, 2, . . . r(2.2)

Ap(ΦX) = 0 for p = 1, 2, . . . r(2.3)

for any vector field X ∈ X(M), and

Φ2X = X − Ap(X)T P for p = 1, 2, . . . r.(2.4)

Here the summation convention is employed on repeated indices where p =
1, 2, . . . r. If moreover M admits a positive definite Riemannian metric g such
that

Ap(X) = g(X,T p), for X ∈ X(M)(2.5)

g(ΦX,ΦY ) = g(X, Y )−
r∑

p=1

Ap(X)Ap(Y ),(2.6)

for any vector fields X and Y . Then a manifold satisfying conditions (2.1),
(2.2), (2.3), (2.4), (2.5), and (2.6) is called an almost r-para contact structure
(Φ, Ap, T

p, g) on M .
In M the following relations hold

Φ(X,Y ) = g(X,ΦY ) = g(Y,ΦX) = Φ(Y,X)(2.7a)

Φ(X,T p) = 0.(2.7b)

Definition 1. If in the almost r-para contact manifold M , the following rela-
tions

ΦX =
1

α
(∇XT

p) , Φ(X, Y ) =
1

α
(∇XAp(Y ))(2.8)

α(X) = ∇Xα(2.9a)

g(X, ᾱ) = α(X)(2.9b)

(2.10) ∇XΦ(Y, Z) = α

[{
−g(X, Y ) +

r∑
p=1

Ap(X)Ap(Y )

}
Ap(Z)

+

{
−g(X,Z) +

r∑
p=1

Ap(X)Ap(Z)

}
Ap(Y )

]
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hold where ∇ denotes the Riemannian connection of the metric tensor g, then
M is called a para r-Sasakian manifold with a coefficient α.

3. Proofs of Theorem 1.1 and 1.2

In proving Theorems 1.1 and 1.2 we need the following theorems.

Theorem 3.1. On a para r-Sasakian manifold the following holds

(3.1) Ap(R(X, Y )Z) = α2[g(X,Z)Ap − g(Y, Z)Ap(X)]

− [α(X)Φ(Y, Z)− α(Y )Φ(X,Z)].

Proof. In view of (2.8), (2.9)a and (2.10) the proof follows easily. �
Theorem 3.2. For a para r-Sasakian manifold we have

(3.2) R(T p, X)Y = α2[Ap(Y )X − g(X, Y )T p] + α(Y )ΦX − ᾱΦ(X, Y ),

where g(X, ᾱ) = α(X).

Proof. The proof follows immediately after making use of (3.1) and equation
(2.9)b. �
Theorem 3.3. For a para r-Sasakian manifold the following holds

(3.3) R(T p, X)T p = βΦX + α2[X −
r∑

p=1

Ap(X)T p],

for p = 1, 2, . . . r where α(T p) = β.

Proof. In view of equation (3.2), the proof follows in an obvious manner. �

4. Proof of Theorems

Proof of Theorem (1.1). Let h denote a (0, 2) tensor field on a para r-Sasakian
manifold M with a coefficient α such that ∇h = 0, then it follows that

(4.1) h(R(W,X)Y, Z) + h(Y,R(W,X)Z) = 0,

for arbitrary vector fields X, Y, Z,W on M . We can write (4.1) as

g(R(W,X)Y, Z) + g(Y,R(W,X)Z) = 0.

Substituting W = Y = Z = T q into (4.1) we get

(4.2) g(R(T q, X)T q, T q) + g(T q, R(T q, X)T q) = 0.

In view of theorem (3.3) the above equation becomes

(4.3) 2βh(ΦX,T q) + 2α2h(X,T q)− 2α2g(X,T q)h(T q, T q) = 0

Simplifying (4.3) we get

(4.4) g(X,T q)h(T q, T q)− h(X,T q)− β

α2
h(ΦX,ξ) = 0.
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Replacing X by ΦY in (4.4) we get

(4.5) h(ΦY, T q) =
β

α2
[h(T q, T q)Ap(Y )− h(Y, T q)].

Using (4.4) and (4.5) we get

(4.6) h(T q, T q)Ap(Y )− h(Y, T q) = 0

if β2 6= α4. Differentiating (4.6) covariantly with respect to Y we get

(4.7) h(T q, T q)g(X,ΦY ) + 2g(X,T q)h(ΦY, T q)− h(X,ΦY ) = 0.

From the above equation and (2.8a) we obtain

(4.8) h(T q, T q)g(X,ΦY ) = h(X,ΦY ).

Replacing ΦY by Y in (4.8) we get

(4.9) h(T q, T q)g(X,Y ) = h(X, Y ).

In view of the fact that h(T q, T q) is constant along any vector on M , we have
proved the theorem unless β2 6= α4. �

Proof of Theorem (1.2). Let us consider h to be a parallel 2-form on a para
r-Sasakian manifold M with a coefficient α. Then putting W = Y = T q in
(4.1) and using Theorem 3.3 and equations (2.1)–(2.6) we get

(4.10) βh(Z,ΦX) + α2[h(Z,X)− h(Z, T q)Ap(X) + h(X,T q)Ap(Z)]

= h(ᾱ, T q)Φ(Z,X)− h(ΦX,T q)α(Z).

Let us define a H to be (2, 0) tensor field metrically equivalent to h then
contracting (4.1) with H and using (2.3)–(2.6) we obtain

(4.11) h(β, T q) = 0.

Substituting (4.11) in (4.10) we get

(4.12) βh(Z,Φ, X) = α2[h(Z,X)− h(Z, T q)Ap(X) + h(X,T q)Ap(Z)]

+ h(ΦX,T q)α(Z) = 0.

On simplifying the above equation we get

(4.13) h(Φᾱ, T q) = 0.

Interchanging X and Z in (4.12) we get

(4.14) β[h(Z,ΦX) + h(X,ΦZ)] + h(ΦX,T q)α(Z) + h(ΦZ, T q)α(X) = 0.

Replacing X by ΦY in (4.14) and making use of (2.4) and (2.6) we get

(4.15) β [h(Z, Y )− h(Z, T q)Ap(Y ) + h(ΦY,ΦZ)]

+ h(Y, T q)α(Z) + h(ΦZ, T q)α(ΦY ) = 0.
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Using the fact that h is anti symmetric in (4.15) we obtain

(4.16) h(Y, T q)α(Z) + h(Z, T q)α(Y )− β [h(Z, T q)Ap(Y ) + h(Y, T q)Ap(Z)]

+ h(ΦZ, T q)α(ΦY ) + h(ΦY, T q)α(ΦZ) = 0.

Substituting Y = ᾱ in (4.16) and making use of (4.13) and (4.11) we get

(4.17) (α̂− β2)h(Z, T q) + β̂h(ΦZ, T q) = 0,

where α̂ = αᾱ and β̂ = α(Φᾱ). Replacing Z by ΦZ in (4.17) and in view of
(1.4) and (1.6) we get

(4.18) (β2 − α̂)h(ΦZ, T q) = β̂h(Z, T q),

where β2 6= α̂, which in view of (4.17) becomes

(4.19) h(Z, T q) = 0 unless (β̂)2 6= (α̂− β2)2.

Using (4.19) in (4.12) we get

(4.20) βh(Z,ΦX) + α2h(Z,X) = 0.

Differentiating (4.19) covariantly along Y and using the fact that ∇h = 0 we
get

(4.21) h(Z,ΦY ) = 0.

In view of (4.21) and (4.20), we see that h(Y, Z) = 0. �
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