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ON CANONICAL REPRESENTATIVES OF SMALL
INTEGERS

HORST BRUNOTTE

Abstract. Some elementary facts on canonical representations of small
rational integers are listed and a reformulation of a characterization of a
certain class of CNS polynomials is presented. Furthermore, several exam-
ples in support of a conjecture of S. Akiyama on the canonical representative
of −1 are provided.

1. Introduction

Let P ∈ Z[X] be a monic integer polynomial of positive degree d with non-
vanishing constant term and

DP = [0, |P (0)| − 1] ∩ N
where N denotes the set of nonnegative rational integers. We say that the
polynomial A ∈ Z[X] is canonically representable w.r.t. P if there exists some
polynomial B ∈ DP [X] such that

A ≡ B (mod P ) .

In this case we say that B canonically represents A. If all integer polynomials
are canonically representable w.r.t. P the pair (P,DP ) is called a canonical
numeration system. This notion can be seen as a natural generalization of the
classical decimal representation of the rational integers to algebraic integers.
It has been introduced by the Hungarian school some decades ago (I. Kátai –
J. Szabó [20], I. Kátai – B. Kovács [18], B. Kovács [23], A. Pethő [26]); a first
example was studied by D. E. Knuth [21]. For a broader framework of this
concept the reader is referred to [8, 7], and for a related notion in Galois rings
see [25] where digit systems of prime cardinality are investigated.

In this short note we list some elementary facts on canonical representations
of small rational integers and reformulate a characterization of certain CNS
polynomials (see Definition 3.1 below) given by W. J. Gilbert [15]. Finally, we
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give several examples to support a conjecture of S. Akiyama on the canonical
representative of −1 w.r.t. a CNS polynomial.

2. Canonically representable integer polynomials

Unless mentioned otherwise we always let P =
∑d

i=0 piX
i ∈ Z[X] be a monic

integer polynomial of positive degree d with p0 6= 0 and D = DP . We denote
by RP the set of all canonically representable integer polynomials1; trivially,
D[X] ⊆ RP . It is easy to see that each A ∈ RP which is not a multiple of P
has a unique representative B ∈ D[X]; in this case we call

L(A) := LP (A) := deg(B)

the length of the canonical representation of A (see [24]). It is known that
the canonical representative is effectively computable if it exists; the reader is
referred to [16, 22, 11] for more details.

In this section we collect some examples and elementary facts on canonical
representatives of integer polynomials.

Example 2.1. If p1, . . . , pd−1 ∈ D then P − p0 canonically represents −p0 be-
cause we have

(P − p0)− (−p0) = P.

We denote by lc (f) the leading coefficient and by Ωf the set of roots of the
univariate polynomial f .

Proposition 2.2. Let A ∈ RP \D[X] such that deg(A) < d.

(i) We have L(A) ≥ d. Moreover, L(A) = d if and only if A = B−lc (B)·P
where B ∈ D[X] is the canonical representative of A.

(ii) Assume that P is expanding, i.e., all roots of P lie outside the closed
unit disk. If ΩP \ ΩA 6= ∅ then we have

L(A) > max

{
log |A(α)|+ log(|α| − 1)− log(|p0| − 1)

log |α|
: α ∈ ΩP \ ΩA

}
− 1.

Proof. (i) Let B ∈ D[X] and T ∈ Z[X] with

(1) PT = A−B.

Clearly, P does not divide A, hence B, T 6= 0 and thus

d ≤ deg(PT ) = deg(A−B) ≤ max {deg(A), deg(B)}
= max {deg(A),L(A)} = L(A).

Let L(A) = d. Then T ∈ Z, and comparing coefficients yields T = −lc (B)
and then

(2) A = B − lc (B) · P.
1W. J. Gilbert [15] coined the notion P -cleared for slightly more specialized polynomials

P .
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Conversely, equation (2) implies B 6= 0, (1) gives PT = −lc (B) · P and
therefore T = −lc (B) ∈ Z and then deg(B) = d.

(ii) See [11, Proposition 11]. �

Corollary 2.3. Let p0 > 0 and m ∈ RP ∩ Z. Then we have L(m) > d if one
of the following conditions is satisfied:

(i) m ≥ p0,
(ii) −p0 ≤ m < 0 and pi /∈ D for some i ∈ {1, . . . , d− 1}.

Proof. Assume that the degree of the canonical representative B of m equals
d. Then Proposition 2.2 yields

(3) B = bP +m

with b := lc (B) > 0. The inequality

bp0 +m = B(0) < p0

leads to

(4) m < p0(1− b) ≤ 0

and this settles (i).
(ii) By (4) we have b = 1 and then (3) shows pi ∈ D for all i = 1, . . . , d −

1. �

Remark 2.4. The lower bound given by Corollary 2.3 may be rather weak as
the following example shows. The canonical representative of 8 w.r.t. (X+2)3

is the polynomial

4X + 2X2 + 3X3 + 6X4 + 6X5 +X7 + 7X8 + 5X9 +X10,

thus L(8) = 10, whereas we only find L(8) ≥ 4 by Corollary 2.3. However, in
general this bound cannot be strengthened as Example 2.6 (ii) below shows.

Lemma 2.5. Let E ∈ D[X] canonically represent m ∈ Z\D. Then L(m) ≥ d,
and for every k ∈ Z such that P (k) 6= 0 we have

E(k) ≡ m (mod P (k)).

In particular, we have

E(0) ≡ m (mod P (0)).

Proof. The lower bound for the length of m is clear by Proposition 2.2. Let
T ∈ Z[X] with PT = E −m. Then P (k)T (k) = E(k)−m. �

Example 2.6. In this example we write x for the image ofX under the canonical
epimorphism Z[X] → Z[X]/P . Here we always assume p0 > 0.

(i) For P = X + p0 we find the following canonical representations:

p0 = x2 + (p0 − 1)x, −p0 = x.
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(ii) To find the canonical representative of a polynomial A it is often con-
venient to construct a polynomial M such that

A+MP ∈ D[X].

We illustrate some simple cases with a quadratic polynomial P .
– For 1 ≤ p1 ≤ p0 we observe

(X − 1) · P = X3 + (p1 − 1)X2 + (p0 − p1)X − p0

which yields the canonical representation

p0 = x(x2 + (p1 − 1)x+ (p0 − p1)).

– For p1 = 0 we consider

(X2 − 1) · P = X4 + (p0 − 1)X2 − p0

and find

p0 = x2(x2 + (p0 − 1)).

– For p1 = −1 we exploit

(X3 +X2 − 1) · P = X5 + (p0 − 1)X3 + (p0 − 1)X2 +X − p0

and receive (cf. [11, Remark 10])

p0 = x(x4 + (p0 − 1)x2 + (p0 − 1)x+ 1).

A particular instance of the following lemma is needed below.

Lemma 2.7. Let k ∈ N>0. If m ∈ Z is canonically represented by the polyno-
mial

∑`
i=0 eiX

i w.r.t. P , then
∑`

i=0 eiX
ki canonically represents m w.r.t. the

polynomial P (Xk).

Proof. Set F (X) := P (Xk) and note that F (0) = P (0), hence DF = DP . Let

T ∈ Z[X] with PT =
∑`

i=0 eiX
i −m, hence

F (X)T (Xk) = P (Xk)T (Xk) =
∑̀
i=0

eiX
ki −m,

which implies the assertion. �

3. Canonical representation of P (0)

Now we turn our attention to certain expanding integer polynomials which
have found some interest in the past few decades (see [7, 10], for instance).
To keep this note self-contained we recall the necessary definitions in a form
which is slightly adapted to our purposes here (cf. [11]).

Definition 3.1. (i) [26] P is called a CNS polynomial2 if Z[X] ⊆ RP .
(ii) [13] P is called a semi-CNS polynomial if RP is an additive semigroup.

2CNS polynomials are named complete base polynomials in [14].
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For the sake of completeness we reformulate a well-known relation between
these two concepts.

Proposition 3.2. The polynomial P is a CNS polynomial if and only if it
satisfies the following three conditions:

(i) P (0) > 1,
(ii) −1 ∈ RP ,
(iii) RP is additively closed.

Proof. This is clear by [10, Lemma 3]. �
Corollary 3.3. Let |P (0)| ≥ 2. Then P is a CNS polynomial if and only if
RP is a group.

Proof. Since 1 ∈ D ⊂ RP we have −1 ∈ RP if RP is a group. Thus the
assertion is clear by Proposition 3.2. �

The characterization of the class of CNS polynomials has still remained an
open problem, however, there is an algorithm for the decision of the CNS
property of a given polynomial (see [12, 27]). Many attempts to describe CNS
polynomials aim at providing a list of properties of the coefficients (e.g., see [15,
6]). Clearly, if it exists the coefficient description is by far the most transparent
and easily applicable way to check whether or not a given polynomial is a CNS
polynomial. Here we restrict our attention to canonical representability of
certain integers, namely p0 and −p0. While the canonical representative of p0
and −p0 do not seem to be related, the respective canonical representatives of
−p0 and −1 are intimately connected.

Lemma 3.4. Let E ∈ D[X]. Then E canonically represents −p0 if and only
if E + p0 − 1 canonically represents −1.

Proof. If E ∈ D[X] canonically represents −p0 then we have E(0) = 0 by
Lemma 2.5. Therefore, we have

−1 = −p0 + (p0 − 1) ≡ E + p0 − 1 (mod P ),

i.e., E + p0 − 1 canonically represents −1.
Similarly, if E+p0−1 canonically represents −1 then we have E(0) = p0−1

and thus

−p0 = −1− (p0 − 1) ≡ E (mod P ),

i.e., E canonically represents −p0. �
This easy observation allows us to reformulate a well-known sufficient CNS

condition.

Proposition 3.5. [10, Lemma 3 (3)] Let P be expanding. If −p0 ∈ RP and
RP is additively closed then P is a CNS polynomial.

Proof. This is clear by Lemma 3.4 and [10, Lemma 3] since |p0| > 1. �
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We now describe a seemingly rare type of the canonical representative of the
constant term of P for which we introduce the following name.

Definition 3.6. The polynomial P ∈ Z[X] is called super-special if it enjoys
the following properties.

(i) P is monic of positive degree and |P (0)| > 1.
(ii) There exists a polynomial E ∈ D[X] which canonically represents

|P (0)|, and we have E(1) = |P (0)|.

Example 3.7. Linear CNS polynomials (see [17], [4, Remark 4.5]) and quadratic
CNS polynomials (see [18, 19, 15, 9, 28, 6]) with non-negative linear coefficient
are super-special, but X2 −X + p0 is not super-special (see Example 2.6 (ii)).

In view of this example the next result shows that there are super-special
CNS polynomials of arbitrary degree.

Proposition 3.8. Let P be super-special and k ∈ N>0. Then P (Xk) is super-
special. Furthermore, if E ∈ D[X] is the canonical representative of P (0)
w.r.t. P , then E(Xk) is the canonical representative of P (0) w.r.t. P (Xk).

Proof. This is an immediate consequence of Lemma 2.7. �
Super-special semi-CNS polynomials must have positive constant terms as

we shall see now.

Proposition 3.9. If P is a super-special semi-CNS polynomial then we have
p0 ≥ 2.

Proof. Let us assume p0 < 2. Then our prerequisites imply p0 ≤ −2, and [10,
Theorem 5] yields p1, . . . , pd−1 ≥ 0 and P (1) < 0. Thus

d∑
i=1

pi < −p0 = |p0|,

hence p1, . . . , pd−1 ∈ D. From Example 2.1 we infer that E := P − p0 canoni-
cally represents −p0, and the fact

E(1) = |P (0)| = −p0

leads to P (1) = 0: Contradiction. �
The canonical representative of the modulus of the constant term of the given

polynomial P seems to be interesting because of its connection to canonical
numeration systems: W. J. Gilbert [15] who was among the first authors who
systematically studied CNS polynomials established a sufficient condition for
a polynomial to be a CNS polynomial which directly involved the canonical
representation of the constant term. Here we exploit a slightly different aspect
of this characterization result (see Theorem 3.12 below).

Lemma 3.10. (i) The following statements are equivalent:
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(a) There exists some C ∈ Z[X] with C(0) = −1 and C(1) = 0 such
that all coefficients of the polynomial PC + P (0) are nonnegative.

(b) There exists some M ∈ Z[X] such that the coefficients of the poly-
nomial

(5)
n∑

k=0

qkX
k := MP

satisfy

(6) 1 ≤ qn ≤ qn−1 ≤ · · · ≤ q0 = P (0),

where we set n = d+ deg(M).
(ii) Suppose that P has a root outside the closed unit disk and that statement

(b) in (i) is satisfied. Then P is super-special.

Proof. (i) If some C ∈ Z[X] with the required properties exists then C is
nonconstant with positive leading coefficient, and C is divisible by X − 1. Let
M ∈ Z[X] with (X − 1)M = C. Clearly, qn > 0, C(0) = −1 yields M(0) = 1,
and by (5) we have

qnX
n+1 +

n∑
k=1

(qk−1 − qk)X
k = qnX

n+1 +
n∑

k=1

(qk−1 − qk)X
k − q0 +M(0)P (0)

= XMP −MP + P (0)

= (X − 1)MP + P (0) = CP + P (0) ∈ N[X],

hence (6).

Conversely, let us assume that M ∈ Z[X] exists such that (5) and (6) are
satisfied. In view of

p0 = q0 = (MP )(0) = M(0)p0

we haveM(0) = 1, and the polynomial C := (X−1)M fulfills our requirements.
(ii) Using the notation introduced above we know

qnX
n+1 +

n∑
k=1

(qk−1 − qk)X
k ≡ P (0) (mod P ).

Observe that qn < p0: The assumption of the contrary leads to

qk = p0 (k = 0, . . . , n),

hence p0X
n+1 = CP + p0, and therefore

p0(X
n+1 − 1) = CP.

This implies that every root of the polynomial PC is an (n+1)st root of unity
which contradicts our assumptions. The proof can now easily be completed.

�
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In view of this result we consider the following set

K :=

{
n∑

i=0

aiX
i ∈ Z[X] : n ∈ N>0, 0 < an < a0, an ≤ an−1 ≤ · · · ≤ a1 ≤ a0

}
of integer polynomials. Polynomials of this structure were introduced by
B. Kovács [23] in the course of his investigations of canonical numeration
systems.

Remark 3.11. Let p0 > 1. We exhibit canonical representatives of p0 w.r.t.
two different polynomials thereby showing that these polynomials are in fact
super-special.

(i) The polynomialX2d+(p0−1)Xd canonically represents p0 w.r.t.X
d+p0

because we have

(Xd + p0)(X
d − 1) = X2d + (p0 − 1)Xd − p0.

(ii) If
∑d

k=0 pkX
k ∈ K then pdX

d+1 +
∑d

k=1(pk−1 − pk)X
k canonically rep-

resents p0 because we have

(X − 1) ·
d∑

k=0

pkX
k = pdX

d+1 +
d∑

k=1

(pk−1 − pk)X
k − p0.

We can now characterize super-special polynomials which do not vanish at
roots of unity.

Theorem 3.12. Let P ∈ Z[X] be a monic polynomial of positive degree such
that no root of P is a root of unity. Then P is super-special if and only if there
exists some M ∈ Z[X] such that

(7) MP ∈ K.

Proof. Let us first assume that P is super-special. We infer from Proposi-
tion 3.9 that p0 > 1. Let E ∈ D[X] canonically represent p0, thus E(1) = p0,
and there is T ∈ Z[X] such that

PT = E − p0.

Therefore P (1)T (1) = 0, hence T (1) = 0 since P (1) 6= 0. Let M ∈ Z[X] such
that T = (X − 1)M and set

Q :=
n∑

k=0

qkX
k := (E − p0)/(X − 1),

thus MP = Q, qn 6= 0, and using Lemma 2.5 we find

q0 = (E(0)− p0)/(−1) = p0.

Multiplying by X − 1 yields

qnX
n+1 +

n∑
k=1

(qk−1 − qk)X
k − q0 = E − p0,
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hence

qk−1 − qk ∈ D (k = 1, . . . , n)

and thus

1 ≤ qn ≤ qn−1 ≤ · · · ≤ q0,

i.e., (7) holds.
Conversely, let M ∈ Z[X] such that (7) holds. Then P is super-special by

Lemma 3.10. �

Now we are in a position to slightly sharpen [11, Theorem 4].

Theorem 3.13. Every super-special polynomial which does not vanish at a
root of unity is a CNS polynomial.

Proof. From [11, Theorem 4] we infer that P is a semi-CNS polynomial with
|P (0)| ≥ 2. By [10, Lemma 3] we know that P is expanding, and Proposi-
tion 3.9 yields P (0) ≥ 2. Thus P (1) > 0, and an application of [10, Theorem
5] concludes the proof. �

We mention that super-special polynomials with positive constant terms
need not be CNS polynomials; more precisely, super-special polynomials may
vanish at a root of unity.

Example 3.14. Let p ∈ Z, p ≥ 2 and P = X3 +X2 + pX + p, thus P ∈ K. In
view of

(X − 1) · P = X4 + (p− 1)X2 − p

the canonical representative of p is X4 + (p− 1)X2, hence P is super-special.
However, P is not a CNS polynomial since it vanishes at −1 (see [15, 26]).

4. Canonical representation of −1

The main interest of the algorithm described in [11] is the computation of
the coefficients of the canonical representative of a given integer polynomial
if such a representative exists. In this section we shed some more light on
auxiliary quantities which are used in the course of this algorithm.

As is sometimes convenient we set the degree of the zero polynomial equal
to −1. We always assume |p0| > 1. For A =

∑d−1
i=0 aiX

i ∈ Z[X] we set

TP (A) =
d−1∑
i=1

(ai − sign(p0) ba0/|p0|cpi)X i−1 − sign(p0) ba0/|p0|cXd−1 .

Thus TP is a mapping from the set of integer polynomials of degree less than
d into itself (see [11, Section 3] for more details).

Lemma 4.1. Let A ∈ Z[X] with deg(A) < d. Further, we set Ak = T k
P (A)

and δk = −bAk(0)/|p0|c for k ∈ N.
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(i) The following recurrence relation holds:

XAk+1 = Ak − Ak(0) + δk

d∑
i=1

piX
i (k ∈ N).

In particular, we have deg(Ak) < d for all k ∈ N.
(ii) If A ∈ RP then the coefficients of the canonical representative of A are

given by

ek = Ak(0) + δk|p0| (k ∈ N).
(iii) Let k ∈ N. If δk 6= 0 then deg(Ak+1) = d− 1 and lc (Ak+1) = δk.

Proof. (i), (ii) This is a reformulation of the algorithm described in [11].
(iii) Clear by (i). �

In the following we tacitly use the notation introduced in Lemma 4.1.

Lemma 4.2. Let A ∈ Z[X] with deg(A) < d. Then A ∈ RP if and only if
there is some m ∈ N such that

δm = δm+1 = · · · = δm+d−1 = 0.

Moreover, if d ≥ 2, A ∈ RP \D[X] and m is chosen minimal with this property
then the leading coefficient of the canonical representative of A equals δm−1.

Proof. Let A ∈ RP . If A ∈ D[X] our assertion is trivial. Therefore let A /∈
D[X], thus L(A) ≥ d by Proposition 2.2, and there is some minimal K ∈ N
such that Ak = 0 for all k ≥ K. In particular, we see

(8) ek = 0 (k ≥ K)

by Lemma 4.1 and therefore K ≥ d. Observe that

(9) δk = 0 (k ≥ K − 1)

by Lemma 4.1 (iii). Therefore we can choose m := K − 1.
Conversely, let δm = · · · = δm+d−1 = 0. Then Lemma 4.1 immediately yields

Am+j+1 = 0 or deg(Am+j+1) = deg(Am+j)− 1 (j = 0, . . . , d− 1).

Therefore, in particular we find

deg(Am+d−1) ≤ deg(Am)− (d− 1) ≤ 0

which together with δm+d−1 = 0 implies Am+d = 0 and then

Ak = 0 (k ≥ m+ d)

by Lemma 4.1. But this means A ∈ RP .
Finally, we turn to the last statement of our lemma. Here m > 0, and by

the minimality of m we have δm−1 6= 0. We claim

(10) δK−j = 0, AK−j ∈ D[X], deg(AK−j) = j − 1 (j = 1, . . . , d)
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whereK is defined as above. Indeed, observe δK−1 = 0 by (9), hence AK−1(0) ∈
D, and set AK−1 =

∑n
i=0 aiX

i with an 6= 0. Then Lemma 4.1 yields

0 = XAK =
n∑

i=1

aiX
i,

hence n = 0, i.e., deg(AK−1) = 0, and (9) implies a0 = AK−1(0) ∈ D.

Now assume 1 ≤ j < d, AK−j =
∑j−1

i=0 aiX
i ∈ D[X] and AK−(j+1) =∑n

i=0 biX
i with n < d. Using Lemma 4.1 (i) and comparing degrees yields

δK−j−1 = 0, b1 = a0, . . . , bj = aj−1 ∈ D and bi = 0 for i > j, thus in particular
deg(AK−(j+1)) = j. The assumption b0 /∈ D would lead to δK−(j+1) 6= 0 and
imply the contradiction deg(AK−j) = d−1. Thus AK−(j+1) ∈ D[X]. The proof
of (10) is complete.

From the above we deduce

Am = AK−d ∈ D[X],

and

eK−1 = AK−1(0) = lc (AK−2) = · · · = lc (AK−d) = lc (Am) = δm−1.

In view of (8) the proof is terminated. �

We now describe the first few steps of the iteration TP applied to a small
negative integer. Certainly, these considerations can be carried over to find the
canonical representatives of arbitrary integer polynomials, however, we give it
in this special form for reasons of simplicity.

Lemma 4.3. Let d ≥ 3, p0 ≥ 2 and A0 ∈ {−p0, . . . ,−1}.
(i) We have

A1 =
d−1∑
i=0

pi+1X
i, δ1 = −bp1/p0c

and

Ak =
d−k∑
i=0

ak,iX
i +

d−2∑
i=d−k+1

bk,iX
i + δk−1X

d−1

for k = 2, . . . , d, where we put

ak,i =
k−1∑
j=0

δjpi+k−j, bk,i =
k−1∑
j=1

δk−jpi+j (k, i ∈ N)

with

δ0 = 1, δk = −

⌊
1

p0

k−1∑
j=0

δjpk−j

⌋
(k = 2, . . . , d)

and the conventions pj := 0 for j ∈ Z \ {0, . . . , d}.
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(ii) For k ≥ 1 we have

Ad+k =
d−2∑
i=0

bd+k,iX
i + δd+k−1X

d−1

with

δd+k = −

⌊
1

p0

d−1∑
j=0

δd+k−j−1pj+1

⌋
.

(iii) A0 ∈ RP if and only if ek = 0 for k sufficiently large where we have

ek =


A0 + p0 (k = 0),∑k

j=0 δjpk−j (1 ≤ k ≤ d),∑k
j=1 δjpk−j (k > d).

In this case,
∑∞

k=0 ekX
k canonically represents A0.

Proof. (i), (ii) Using the algorithm described in [11] this can easily be checked
by induction.

(iii) Clear by an application of (i), (ii) and Lemma 4.1. �
Proposition 4.4. Let P = X3 + p2X

2 + p1X + p0 be a super-special cubic
polynomial which satisfies Gilbert’s conditions (see [5, Section 3]), i.e.,

(i) p0 ≥ 2,
(ii) p1 + p2 ≥ −1,
(iii) p1 − p2 ≤ p0 − 2

(iv) 0 ≤ p2 ≤


p0 − 2, if p1 ≤ 0,

p0 − 1, if 1 ≤ p1 ≤ p0 − 1,

p0, if p1 ≥ p0.

Then we have P ∈ K or p1 = p2 = 0. Furthermore, the canonical representa-
tive of p0 (−p0, respectively) is monic.

Proof. Using Lemmas 4.1 and 4.3 this can straightforwardly be checked. We
leave the details to the reader. �

S. Akiyama predicted the leading coefficient of the canonical representative
of −1 w.r.t. CNS polynomials.

Conjecture 4.5. [1] If P is a CNS polynomial then the canonical representative
of −1 w.r.t. P is monic.

By [2] the truth of this conjecture is equivalent to the connectedness of
the SRS tile (see [3] for details). Here we can only list some examples where
Conjecture 4.5 turns out to be true. To this purpose we exploit the following
straightforward reformulation of the conjecture.

Lemma 4.6. Let P be a CNS polynomial. Then P satisfies Conjecture 4.5 if
and only if there exists a monic polynomial M ∈ Z[X] with M(0) = 1 such
that apart from the constant term all coefficients of MP belong to D.
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Proof. Let E ∈ D[X] be monic such that E(0) ≡ −1 (mod P ). Then there
exists M ∈ Z[X] such that MP = E+1. Clearly, M is monic, and Lemma 2.5
yields M(0) = 1.

Conversely, E := MP is monic, E(0) = p0 and E − 1 ∈ D[X]. Thus E − 1
is the canonical representative of −1. �
Proposition 4.7. If P be a CNS polynomial then the canonical representative
of −1 is monic provided that one the following conditions hold:

(i) P (0) = 2.
(ii) P fulfills the dominant condition (see [6]), i.e.,

(11)
d−1∑
i=1

|pi| < p0.

(iii) P (X) = Q(Xr) where r ∈ N>0 and the polynomial Q admits a monic
canonical representative of −1.

(iv) 0 ≤ pi ≤ p0 − 1 for i = 1, . . . , d− 1.
(v) d ≤ 3.
(vi) The coefficients of P enjoy the following properties:

p0 ≤ p1 < 2p0, 1 ≤ pd−1 < p0, 0 ≤ pi − pi−1 + pi−2 < p0 (i = 2, . . . , d).

Proof. (i) In view of D = {0, 1} this is trivial.
(ii) By Example 2.6 the assertion is clear for d = 1. Therefore let d ≥

2. Using Lemma 4.3 and the notation introduced there we easily find δk ∈
{−1, 0, 1} for every k ∈ N, and an application of Lemma 4.2 concludes the
proof.

(iii) Clear by Lemma 2.7.
(iv) Clear by Lemma 4.6 with M := 1.
(v) As just mentioned above the case d = 1 is clear. For d = 2 we have

−1 ≤ p1 ≤ p0 (see the references in Example 3.7). If 0 ≤ p1 < p0 our assertion
is clear by (iv). For p1 = −1 Lemma 4.3 yields δ1 = 1 and δ2 = δ3 = 0 and we
are done by Lemma 4.2. Similarly, for p1 = p0 we find δ1 = δ2 = −1, δ3 = 1,
and δ4 = δ5 = 0, and we conclude as before.

Let now d = 3. By [5, Theorem 3.1] the coefficients p1 and p2 satisfy Gilbert’s
conditions. An application of Lemma 4.3 yields the following results (in this
table only additional conditions on the coefficients p1 and p2 are listed):

p1 p2 canonical representative of − 1

0 ≤ p1 < p0 X3 + p2X2 + p1X + p0 − 1

p1 = p0 p2 = p0 X9 + (p0 − 1)X8 +X6 + (p0 − 1)X4 +X3 + p0 − 1

p1 ≥ p0 p2 < p1 X5 + (p2 − 1)X4 + (p1 − p2 + 1)X3 + (p0 − p1 + p2)X2 + (p1 − p0)X + p0 − 1

p1 < 0 p2 = −p1 − 1 X5 + (p2 + 1)X4 + (p0 − 1)X2 + (p0 + p1)X + p0 − 1

p1 < 0 p2 ≥ −p1 X4 + (p2 + 1)X3 + (p1 + p2)X2 + (p0 + p1)X + p0 − 1

(vi) Clear by Lemma 4.6 with M := X2 −X + 1. �
Certainly, one can easily construct similar examples as the final condition of

the Proposition above. Here we only give a simple illustration of this condition.
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Example 4.8. The canonical representative of −1 of the CNS polynomial X4+
X3 + 3X2 + 5X + 4 is monic by Proposition 4.7 (vi).

Our numerical calculations suggest that Conjecture 4.5 might be extended.

Conjecture 4.9. Let P be a CNS polynomial. For every m ∈ Z \ DP the
canonical representative of m is monic.
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