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A NOTE ON UNITS IN FpmD2pn

NEHA MAKHIJANI, R. K. SHARMA, AND J. B. SRIVASTAVA

Abstract. Let p be a prime and FpmD2pn be the group algebra of the
dihedral group D2pn of order 2pn over Fpm = GF (pm). In this note, the
structure of the unitary subgroup of the group of units of FpmD2pn with
respect to canonical involution ∗ is established when p > 2. The unit group
of the group algebra FpmD2pn is discussed. It is shown that any unit in
F2mD2n is expressible as a product of a unitary unit and a symmetric unit.
Additionally the structure of the center of the maximal p-subgroup of the
unit group U(FpmD2pn) is given when p > 2.

1. Introduction

Let FG be the group algebra of the finite group G over the field F and
U(FG) be its unit group. Study of units and their properties is one of the main
research problems in group ring theory. Results obtained in this direction are
also useful for the investigation of Lie properties of group rings, isomorphism
problem and other open questions in this area(see, for example, [1]).

The map g 7→ g−1 of G can be extended linearly to an anti-automorphism
a 7→ a∗ of FG, called the classical involution of FG. This extension leaves
U(FG) setwise invariant. An element u ∈ U(FG) is called a symmetric unit if
u∗ = u and a unitary unit if u∗ = u−1. Let U∗(FG) be the subgroup of U(FG)
formed by the unitary units in FG and S∗(FG) be the set of symmetric units
of FG. Classical involution and symmetric units were studied by V. Bovdi
et al. in [3, 4, 5]. In [11], K. Kaur and M. Khan described the structure of
U(F2D2p) and U∗(F2D2p) for an odd prime p. The structure of U∗(F2mD8)
and in general, that of U∗(F2mD2n) was determined in [8] and [13] respectively.
In this note, we study the units in FpmD2pn . The structure of the unitary
subgroup U∗(FpmD2pn) is established when p is an odd prime. It is shown
that any unit in F2mD2n is expressible as a product of a unitary unit and a
symmetric unit. The structure of the center of the maximal p-subgroup of
U(FpmD2pn) is also given.
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The following presentation of D2pn shall be used:

〈 a, b | apn , b2, b−1ab = a−1〉

2. Preliminaries

For a normal subgroup N of G, the natural homomorphism

G→ G/N, g 7→ gN

can be extended to an F -algebra homomorphism

εN : FG→ F (G/N)

defined by
∑
g∈G

agg 7→
∑
g∈G

aggN , ag ∈ F . The kernel of εN , denoted by

∆(G,N), is the ideal of FG generated by {x − 1 | x ∈ N} in FG and
FG/∆(G,N) ∼= F (G/N). It can be seen that ∆(G,N) = ∆(N) FG =
FG ∆(N), where ∆(N) = ∆(N,N).

Let J(FG) denote the Jacobson radical of the group algebra FG. From [12,
Chap. 8, Lem. 1.17], it follows that if G is a locally finite p-group and F is a
field of characteristic p > 0, then J(FG) = ∆(G). Hence

U(FG) = (1 + J(FG))× F ∗.
That is, U(FG) = { x ∈ FG | εG(x) 6= 0 }.

The following is a more general result.

Lemma 2.1. Let k be a perfect field and G be a finite group. Then

U(kG) ∼= (1 + J(kG)) o U
(

kG

J(kG)

)
.

Proof. Observe that

1 1 + J(kG) U(kG)
inc U

(
kG

J(kG)

)
ψ

1

is a short exact sequence of groups, where ψ(x) = x+ J(kG) ∀ x ∈ U(kG).
By Wedderburn-Malcev theorem [6, Thm. 6.2.1], it follows that there exists

a semisimple subalgebra B of kG such that

kG = B ⊕ J(kG)

and thus for each x+J(kG) ∈ kG

J(kG)
, there exists a unique xB ∈ B such that

x+ J(kG) = xB + J(kG).

Define φ : U
(

kG

J(kG)

)
→ U(kG) as

φ (x+ J(kG)) = xB, x+ J(kG) ∈ U
(

kG

J(kG)

)
.
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Then φ is a group homomorphism such that ψ o φ = id | U(kG/J(kG)) and
hence

U(kG) ∼= (1 + J(kG)) o U
(

kG

J(kG)

)
. �

3. The unitary subgroup U∗ (FpmD2pn)

The unitary subgroup U∗(F2mD2n) was discussed in [13]. As a consequence
of the following theorem, we shall obtain the structure of U∗ (FpmD2pn) when
p > 2.

Theorem 3.1. Let F be a field of characteristic p > 2, G be a finite group
having an abelian p-subgroup A of index 2 and an element b that inverts every
element of A. Then

U∗ (FG) = U∗ (FA) o 〈b〉.

Proof. Observe that z = b2 ∈ A. Thus zb = z−1 which implies z = z−1 and
hence b4 = 1. But since |G| = 2|A|, we find that o(b) = 2.

If X ∈ U∗(FG), then X = Y +Zb for some Y, Z ∈ FA such that εG(Y ) 6= 0
or εG(Z) 6= 0.

If εG(Y ) 6= 0, then Y ∈ U (FA) and hence it is possible to write

X = Y (1 +Wb)

where W = Y −1Z =
∑
a∈A

αaa ∈ FA.

Now XX∗ = 1. This implies

Y (1 +Wb) (Y (1 +Wb))∗ = 1,

⇒ Y (1 +Wb)(1 +Wb)∗Y ∗ = 1,

⇒ Y ∗Y
(
1 + 2Wb+ (Wb)2

)
= 1,

⇒ Y ∗Y = 1 and W = 0,

⇒ X = Y ∈ U∗ (FA) .

However if εG(Y ) = 0, then εG(Z) 6= 0. Since Xb = Z + Y b ∈ U∗(FG),
therefore via similar arguments as above, we find Xb = Z ∈ U∗ (FA).

Also b−1Cb = C∗ = C−1 ∈ U∗ (FA) for all C ∈ U∗ (FA). Thus in either
case, X ∈ U∗ (FA) o 〈b〉 and U∗ (FG) = U∗ (FA) o 〈b〉. �

Remark 1. The basis of V∗(FpmA) = {u ∈ U∗(FpmA) | εA(u) = 1} is known
from [2, Theorem 3] which simplifies the structure of U∗ (FpmG) as

U∗ (FpmA) = V∗ (FpmA)× 〈−1〉.

Corollary 3.2. Let F be a field of characteristic p > 2. Then

U∗ (FD2pn) = U∗ (F 〈a〉) o 〈b〉.
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Moreover, if F = Fpm, then

U∗ (FD2pn) ∼=

(
n∏
i=1

Cmi

pi
× C2

)
o C2,

where mn =
m(p− 1)

2
and mi =

mpn−i−1(p− 1)2

2
∀ i, 1 ≤ i ≤ n− 1.

Proof. Using [2, Theorem 1], we find

V∗(FpmCpn) =
n∏
i=1

Cmi

pi
. �

4. Units in FpmD2pn

Lemma 4.1. Let H be the subset of F2mD2n+1 consisting of the elements of
the form

1 +
c∑
i=1

αi
(
ai + a−i

)
+

c∑
i=0

βib
(
ai + a−i−1

)
where αi, βi ∈ F2m and c = 2n−1 − 1. Then H is an abelian subgroup of
1 + J(F2mD2n+1) and H ⊆ S∗(F2mD2n+1).

Proof. It is apparent that H ⊆ 1 + J(F2mD2n+1).
Let

u1 = 1 +
c∑
i=1

αi
(
ai + a−i

)
+

c∑
i=0

βib
(
ai + a−i−1

)
,

u2 = 1 +
c∑
i=1

α′i
(
ai + a−i

)
+

c∑
i=0

β′ib
(
ai + a−i−1

)
be any two elements of H.

Then

u1u2 = 1 +
c∑
i=1

(αi + α′i)
(
ai + a−i

)
+

c∑
i=0

(βi + β′i) b
(
ai + a−i−1

)
+

c∑
i=1

c∑
j=1

αiα
′
j

(
ai+j + a−i−j + ai−j + a−i+j

)
+

c∑
i=1

c∑
j=0

(
αiβ

′
j + α′iβj

)
b
(
ai+j + a−i−j−1 + a−i+j + ai−j−1

)
+

c∑
i=0

c∑
j=0

βiβ
′
j

(
ai−j + a−i+j + ai+j+1 + a−i−j−1

)
∈ H

and u1u2 = u2u1.
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Since [b(ai + a−i−1)]
2

= (a2i+1 + a−2i−1), it is apparent that u2
n

= 1 and u∗ =
u, u ∈ H. �

Theorem 4.2. 1 + J(F2mD2n+1) = U∗(F2mD2n+1)H, where H is the group
defined in Lemma 4.1.

Proof. Observe that U∗(F2mD2n+1) ⊆ 1 + J(F2mD2n+1).
Let

u = 1 +
2n−1−1∑
i=1

αi
(
ai + a−i

)
+

2n−1−1∑
i=0

βib
(
ai + a−i−1

)
∈ U∗(F2mD2n+1) ∩H.

As a consequence u2 = 1 and

2n−1−1∑
i=1

α2
i

(
a2i + a−2i

)
+

2n−1−1∑
i=0

β2
i

(
a2i+1 + a−2i−1

)
= 0,

moreover

2n−2−1∑
i=1

(αi + α2n−1−i)
2 (a2i + a−2i

)
+

2n−2−1∑
i=0

(βi + β2n−1−i−1)
2 (a2i+1 + a−2i−1

)
= 0,

and

u =

(
2n−2−1∑
i=1

αi
(
ai + a−i

)
+

2n−2−1∑
i=0

βi
(
ai + a−i−1

))(
1 + a2

n−1
)

+ α2n−2(a2
n−2

+ a−2
n−2

).

Thus | U∗(F2mD2n+1) ∩H | = 22n−1m. Also from [5], it is known that

| U∗(F2mD2n+1) | = 23.2n−1m,

showing that

| U∗(F2mD2n+1)H | = 2m(3.2n−1+(2n−1)−2n−1) = | 1 + J(F2mD2n+1) |
and hence

1 + J(F2mD2n+1) = U∗(F2mD2n+1)H. �

Corollary 4.3. Every unit in F2mD2n is expressible as a product of a unitary
unit and a symmetric unit.

Proof. Since U(F2mD2n) = (1 + J(F2mD2n))× F∗2m , the proof follows. �

It follows from Lemma 2.1 that in order to study the structure of U(FG),
it is important to study its subgroup 1 + J(FG). In [14], M. Khan et al.
showed that Z(1 + J(F3mD6)) is an elementary abelian 3-group. The result
was improved by J. Gildea in [7] and for any odd prime p, the center of maximal
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p-subgroup of U(FpnD2p) was described as an elementary abelian p-group using
an established isomorphism between FpnD2p and M2p(Fpn) [9]. In this context,
we now prove a generalized result.

Theorem 4.4. Let p be any odd prime. Then

(a) U(FpmD2pn) ∼= Vm,n o
(
F∗pm × F∗pm

)
, where Vm,n = 1 + J(FpmD2pn), the

maximal p-subgroup of U(FpmD2pn).
(b) If n ≥ 2, then Z(Vm,n) is a group of exponent pn and

Z(Vm,n) ∼=
n∏
i=1

C ki
pi

where

k1 = m

(
pn−2(p− 1)2

2
+ 1

)
, kn = m

(
p− 1

2

)
,

and

kt = m

(
pn−t−1(p− 1)2

2

)
for all t, 1 < t < n.

Proof. Let G = D2pn and H = 〈a|apn〉. Since H E G, we have

∆(G,H) = ∆(H) FpmG = J(FpmH) FpmG = J(FpmG)

by [12, Ch. 7, Theorem 2.7], as p - [G : H]. Thus

FpmG
J (FpmG)

∼= Fpm(G/H) ∼= Fpm ⊕ Fpm

and

U(FpmG) ∼= (1 + J(FpmG)) o
(
F∗pm × F∗pm

)
.

Using [10, Proposition 1.9, p. 110], J(FpmG)p
n

= (0) and 1 + J(FpmG) is a
p-group. This proves part (a) of the Theorem.

Now B = {bi(aj − 1) | 0 ≤ i ≤ 1, 1 ≤ j ≤ pn − 1} is a basis of J (FpmG) =
∆(G,H). Consequently,

X =

pn−1∑
i=1

αi(a
i − 1) +

pn−1∑
i=1

βib(a
i − 1) ∈ Z(J(FpmG)) ⇐⇒ XY = Y X

for all Y ∈ B. In particular, X ∈ Z(J(Fpn [G])), and X(a − 1) = (a − 1)X,
which implies

β1 = βpn−1, β2 = −

(
pn−1∑
i=1

βi

)
= βpn−2

and βt−1 = βt+1, for all 1 < t < pn − 1. It means

β2 = −
(
pn − 1

2

)
(β1 + β2)
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and β2 = β1 consequently

βt = β (say), 1 ≤ t ≤ pn − 1.

Therefore

X =

pn−1∑
i=1

αi(a
i − 1) + βb

(
pn−1∑
i=1

(ai − 1)

)
=

pn−1∑
i=1

αi(a
i − 1) + βbâ,

where â = 1 + a+ · · ·+ ap
n−1.

Also X ∈ Z(J(Fpn [G])) which implies

Xb(a− 1) = b(a− 1)X

⇒ αi = αpn−i ∀ i, 1 ≤ i ≤ pn − 1

2

⇒ X =

pn−1
2∑
i=1

αi(a
i + a−i − 2) + βbâ.

Since pn−1
2∑
i=1

αi(a
i + a−i − 2) + βbâ

Y = Y

 pn−1
2∑
i=1

αi(a
i + a−i − 2) + βbâ


for all Y ∈ B, αi, β ∈ Fpn , we conclude that{

ai + a−i − 2

∣∣∣∣ 1 ≤ i ≤ pn − 1

2

}
∪ {bâ}

forms a basis of Z(J(FpmG)).
Observe that Z(Vm,n) = 1 + Z(J(FpmG)) and o(1 + (a + a−1 − 2)) = pn.

Thus Z(Vm,n) is a group of exponent pn and by fundamental theorem of abelian
groups, we have

Z(Vm,n) ∼=
n∏
i=1

C ki
pi

where ki ≥ 0.
Let X ∈ Z (J(FpmG)). Then

X = βbâ+

p−1
2∑
i=1

n−1∑
j=0

pn−j−1−1∑
r=0

βi,j,r(a
pj(rp+i) + a−p

j(rp+i) − 2).

For any t, 1 ≤ t ≤ n− 1, (1 +X)p
t

= 1

⇒ Xpt = 0

⇒

p−1
2∑
i=1

n−t−1∑
j=0

pn−j−t−1−1∑
r=0

B pt

i,j,r,t(a
(rp+i)pt+j

+ a−(rp+i)p
t+j − 2) = 0
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where Bi,j,r,t =
∑pt−1

s=0 βi,j,r+spn−j−t−1 .
From above we conclude that the number of elements of order ≤ pt in
Z(Vm,n) is pmNn,t , where

Nn,t =

(
p− 1

2

)(
pt − 1

) n−t−1∑
j=0

pn−j−t−1 +

(
p− 1

2

) n−1∑
j=n−t

pn−j−1 + 1

=
(pt − 1) (pn−t − 1)

2
+

(pt − 1)

2
+ 1

=
pn−t (pt − 1)

2
+ 1

Thus
t∑
i=1

iki + t
n∑

i=t+1

ki = mNn,t∀t, 1 ≤ t ≤ n− 1

and
n∑
i=1

iki = m

(
pn + 1

2

)
.

The rest follows by solving the above system of equations over Fpm . �
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