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INEQUALITIES OF POMPEIU’S TYPE FOR ABSOLUTELY
CONTINUOUS FUNCTIONS WITH APPLICATIONS TO
OSTROWSKI’'S INEQUALITY

S. S. DRAGOMIR

ABSTRACT. In this paper, some new Pompeiu’s type inequalities for complex-
valued absolutely continuous functions are provided. They are applied to
obtain some new Ostrowski type inequalities.

1. INTRODUCTION

In 1946, Pompeiu [6] derived a variant of Lagrange’s mean value theorem,
now known as Pompeiu’s mean value theorem (see also [8, p. 83]).

Theorem 1 (Pompeiu, 1946 [6]). For every real valued function f differen-
tiable on an interval [a,b] not containing 0 and for all pairs x, # x2 in [a,b],
there exists a point & between x1 and xo such that

(11) oD Zwl @) _ g erie).

1 — T2
In 1938, A. Ostrowski [4] proved the following result in the estimating the
integral mean:

Theorem 2 (Ostrowski, 1938 [4]). Let f: [a,b] — R be continuous on [a,b]
and differentiable on (a,b) with |f' (t)] < M < oo for allt € (a,b). Then for
any © € [a,b], we have the inequality

1 b 1 x — “TH’ ’
. - < |z —a).
W) -t [ rwals |1 (G2 [M0-a
The constant % 18 best possible in the sense that it cannot be replaced by a
smaller quantity.
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In order to provide another approximation of the integral mean, by making
use of the Pompeiu’s mean value theorem, the author proved the following
result:

Theorem 3 (Dragomir, 2005 [3]). Let f: [a,b] — R be continuous on [a, b

and differentiable on (a,b) with [a,b] not containing 0. Then for any x € [a,b],
we have the inequality

(13 |t f /f dt‘

2
2
b—a |1 r — atb
< 1+<b_;) I = F e

|z]

where £ (t) =t, t € [a,b].
The constant i 15 sharp in the sense that it cannot be replaced by a smaller
constant.

In [7], E. C. Popa using a mean value theorem obtained a generalization of
(1.3) as follows:

Theorem 4 (Popa, 2007 [7]). Let f: [a,b] — R be continuous on [a,b] and
differentiable on (a,b). Assume that o ¢ [a,b]. Then for any = € |a,b], we
have the inequality

(1.4) ’(a;b—a)f(x)+z:§/abf(t)dt’

1 :E—GTH’ ’
< |1+ (5= | e-alf — s

where {, (t) =t —a, t € [a,b].

In [5], J. Pecari¢ and S. Ungar have proved a general estimate with the
p-norm, 1 < p < oo which for p = co give Dragomir’s result.

Theorem 5 (Pecari¢ and Ungar, 2006 [5]). Let f: [a,b] — R be continuous
on [a,b] and differentiable on (a,b) with 0 < a < b. Then for 1 < p,q < oo
with 11) + é = 1 we have the inequality

a+b f(

(1.5) .

/f d4<PUupr N
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for x € [a,b], where

_ _ _ _ 1
a2—9 _ y2-a 2-q _ glt+agl 2q) /a

1—202-q  (1-20(1+9q)
p2-a _ 42-a 2274 _ pltapl-2 1/q
+((1—2q><2—q>+<1—2q><1+q>> ]

In the cases (p,q) = (1,00), (00,1) and (2,2) the quantity PU (x,p) has to be
taken as the limit as p — 1,00 and 2, respectively.

PU (z,p) = (b—a)7 ™" [(

For other inequalities in terms of the p-norm of the quantity f — /¢, f’, where
ly(t)=t—a,t € [a,b] and a ¢ [a,b] see [2] and [1].

In this paper, some new Pompeiu’s type inequalities for complex-valued
absolutely continuous functions are provided. They are applied to obtain some
new Ostrowski type inequalities.

2. PoMPEIU’S TYPE INEQUALITIES

The following inequality is useful to derive some Ostrowski type inequalities.

Corollary 1 (Pompeiu’s Inequality). With the assumptions of Theorem 1 and
if I1f = Lf'llo = $uPteap) |f () = £f ()] < 00 where £(t) =1, t € [a,b], then

(2.1) tf (@) =z f (O] < |f = €f 'l |z — 1|
for any t,x € |a,b].

The inequality (2.1) was stated by the author in [3].
We can generalize the above inequality (2.1) for the larger class of functions

that are absolutely continuous and complex-valued as well as for other norms
of the difference f — ¢f’.

Theorem 6. Let f: [a,b] — C be an absolutely continuous function on the
interval [a,b] with b > a > 0. Then for any t,x € [a,b] we have

(2.2) [tf (z) —xf (1)l

If =€ Nl 12 — 1] if f —Lf € Locla,b],
24 q |1 .
< 2q+1||f_€f/||p‘tq—1_x§—1’/q fo—ff’ELp[a,b],p>1,
- l_|_l:1
P q ’

If = ef), it

min{t,xz} "’
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or, equivalently

f@) 1
z t
_as = = = i e Lylab, > 1,

1 1
o 1’
_é , 1 p q
||f f ||1 min{t2,;p2}'

Proof. 1f f is absolutely continuous, then f/¢ is absolutely continuous on the
interval [a, b] that does not containing 0 and

[ ()are s

for any ¢,z € [a,b] with x # t.

Since /x (f(s))/dgz/m f (S)S;f(s)ds

then we get the following identity
z g _
(2.4) tf(x)—xf(t):xt/ / (8)82 f(s)ds
‘ s

for any ¢,z € [a, b].

We notice that the equality (2.4) was proved for the smaller class of differ-
entiable real valued functions and in a different manner in [5].

Taking the modulus in (2.4) we have

(2.5) [tf (x) —xf(t)

/ _ T| £ _
:xt/f i ) Sxt/ f(s)32 /(5) ds| =1
' s
and utilizing Holder’s mtegral mequahty we deduce
Supse[t a:] [a: ) |f s)| U;x sds
(2.6) I < xt " pdsl/p ’ dsl/q,p>1,l+l:1,
t t s? p q
|1 (S) |d3|sups€[t,x ey 152}
||f—€f’||oo\x—t\, /
24 g |1
< Qg llf =l i —a=" >+ =1
max{t,x
||f - EfIHl minft,m%’
and the inequality (2.3) is proved. O

Remark 1. The first inequality in (2.2) also holds in the same form for 0 >
b> a.
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Remark 2. If we take in (2.2) v = A = A(a,b) := %t (the arithmetic mean)

and t = G = G (a,b) := Vab (the geometric mean) then we get the simple
inequality for functions of means:

(2.7) [Gf(A) - Af(G)]

Nf—=2fl (A=GQG) if f—{f" € Lo la,b],
1 1 (A2q71702q71)1/q : /
< 2¢—1 Hf - Ef Hp Al/pG1l/p if f - ff € Lp [CL7 b} D> 1’
- 1 + 1
P q !
If=ef'1, 4

3. EVALUATING THE INTEGRAL MEAN

The following new result holds.

Theorem 7. Let f: [a,b] — C be an absolutely continuous function on the
interval [a,b] with b > a > 0. Then for any = € [a,b] we have

b
(3.1) “+ G / Ft dt‘
x
%a|izl1 < ):| ‘f ff,” iff_gfleLoo[aab]a
< ) G 1 =40, (B (a b)Y if f = €f" € Lyla,b],p > 1,
B 1,1 _
2 2 5+6_17
51— el (2 + 5,
where
s (20977 — a7 =077 q#2
(3.2) B, (a,b;x) = +m(bq+l+a4+l_2xq+1)’
LE2 3 (13— x3
x21nE+HTQ, qg=2.

Proof. The first inequality can be proved in an identical way to the case of
differentiable functions from [3] by utilizing the first inequality in (2.2).
Utilising the second inequality in (2.2) we have

a+b
2

<t /|tf )= af (1) de

1 !
Sy e I ||p/a

(3.3)

t) dt‘

1/q

dt.

ta—1 ga-1
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Utilising Holder’s integral inequality we have

(3.4) / ’ v

x4 td

a1 gpa-l

1 td

ta—1 gpa-l

1/q q 1/q
1/q
dt) |

b
= (b—a)"? (/
For ¢ # 2 we have
/b
s 14 b/ x4
[ as [ ()

T dt 1 x 1 b b
=27 [ — — / t9dt + / tidt — 29 | ——dt
a xqil x x tqil

ottt pard
ot (11 1 (941 1)
2—q \z?79 a* xi (g +1)
1 xd 1 1
= (prtl _petl) —
e (g ) ( ) gz g \b>9 2

ot (1 11
T 2—g\a2d qxa  p2a + x2~1

il
v~ (g +1)

= sz_qq (230‘1_2 — i — bq_z)

= B, (a,b;x).

x 2 t2 b t2 2
dt:/ (x———)dtqt/ (——x—>dt
a t x + \ T t
rdt 1 [*" 1 [ b1
=z ———/ t2dt+—/t2dt—x2/ —dt
a t ‘r a x T Q?t

1 t?

el gpa-l

dt

bQ+1 _ xQ+1 _ a:qul + anrl)

1
91 (qg+1)

(bq—H + adtl — 2$q+1)

For ¢ = 2 we have
/b 113'2 t2

t x

:xQIHE—le_GS lbg—xS_meQ
a x* 3 r 3 T

210 +a® — 228
=221 T - =P cx).
x nab+x 5 5 (a,b; )

Utilizing (3.3) and (3.4) we get the second inequality in (3.1).
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Utilising the third inequality in (2.2) we have

a+b x b b
5 |5 rw -2 [ roal < g i - ol
1 , ® max {t, x}
< o I =471k (g o
Since

b T b 2 2
t t 167 —
Mdt:/ de/ LIPS il
min {t, z} Wt s T a x 2

a

then by (3.5) we have

a+b x b 1 b
. — < - _
@ - [ < 2 [ - el
1 r 10— 2?
< — —(f — 4 —
e
and the last part of (3.1) is thus proved. O
Remark 3. If we take in (3.1) 2 = A = A(a,b) := “t2, then we get
1 b
3.6 A)— —— t)dt
6 |re- 2, [ rwa
S =0l if f—(f € Log [a,b],
1 .
= e 1 = 61, By (as by AT i f—tf' € Lyfa,0],p > 1,
B Srea=1
e IF =L [ g+ 5 (b —a) (+5) 4]
where
Bq ((I,b; A)
_ 35 (AT - A V) + e (AT e — AT g £ 2
2A42In4 + 1 (b—a)’, q=2.

4. A RELATED RESULT

The following new result also holds.
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Theorem 8. Let f: [a,b] — C be an absolutely continuous function on the
interval [a,b] with b > a > 0. Then for any x € [a,b] we have

mi)lff)—bialﬁ“wﬁ‘

( 2 / T aTJ'_b—m . ’
P lf =l (mg+ ), e e Lo,
< m||f—ff’||p(0q(a,b;fc))1/q, if f=Lf" € Lypla,b], p>1,
1,1
Lyl
1 1 z2+ab—2ax P !
L5ma I = LIl ==,
where
a2—2q + b2—2q _ 21,2—2q
(4.2)  Cyla,bzx) = g (b+a—2x)+ 2q=1) , ¢>1
Proof. From the first inequality in (3.2) we have
ARG I t
SR VAC By Sy g E R
x b—a ), t b—al), | x t
1 P11
< ||f—4f'||oo—/ - = |t
-aJ, |t =«

Since

[l-da= [ G-2ar [ (-1

for any = € [a,b], then we deduce from (4.3) the first inequality in (4.1).
From the second inequality in (3.2) we have

(4.4) ‘f;x) _bia/abfit)dt’ < bia/ab

1 [0
e ] ||p/a

T t

/() f(t)‘dt

1/q

1
— dt.

1
t2q71 x2q71
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1/q q 1/‘]
1/q
dt) |

Utilising Holder’s integral inequality we have

o et~ = () ([
— (b= a) P </b

1 1
12¢-1 201

1 1
120-1 201

1 1

t2q—1 x2q—1

Since

1 1
120-1  p2¢-1

dt

/b
VA 1 b 1
- /a (th—l - qu—l) dt +/x ($2q—1 - t2q—1> dt

$2—2q _ a2—2q 1 1 b2—2q _ x2—2q

2-2¢ g1 2—2g
1 21.27211 _ CL272q . b272q
:%(b—ka—Zx)—i— 52
1 a’"%0 4 b7 — 2977
= g bta—2z)+ =D = Cy(a,b; )

then by (4.4) and (4.5) we get

oL 10
1

S2-D0-a

and the second inequality in (4.1) is proved.
From the third inequality in (3.2) we have

(4.6) ‘ff)—bia/:fiﬂdt'gbia/ab
1

1 b
<——|f—e¢f S —
<y =t ||1/a dt

min {2, 22}

If =7, (b= )7 (Cy (a, b)) e

110,

X t

Since

/b 1 dt_/’”dt+ bdt_x—a+b—ac
. min{t2 22} J, 2 ). 22 za x?
2’ +ab—2ax

22q

then by (4.6) we deduce the last part of (4.1). O

)
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Remark 4. If we take in (4.1) x = A = A (a,b) := “t2, then we get

F(4 10
e [

(75 I =l (3) if f— (f' € Looa, 1],
< (2g— l)b a)l/d Hf Ef’H ( (a b; A))l/q iff—ff’ELp[a,b},p>1,
1 1 _
. B > + pi 1,
s I =Lf1 552,
where At e g2
Cy(a,b;A) = (™, )= , q>1
qg—1
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