SOME L_{p} INEQUALITIES FOR THE FAMILY OF B-OPERATORS

IRSHAD AHMAD, A. LIMAN AND W. M. SHAH

Abstract

Let \mathcal{P}_{n} be the class of polynomials of degree at most n and \mathcal{B}_{n} be a class of operators that map \mathcal{P}_{n} into itself. For every $P \in \mathcal{P}_{n}$ and $B \in$ \mathcal{B}_{n}, we investigate on $|z|=1$, the dependence of $\|B[P(R \cdot)]-B[P(r \cdot)]\|_{q}$ on $\|P\|_{q}$, for every $R>r \geq 1$ and $q \geq 1$.

1. Introduction

Let \mathcal{P}_{n} be the class of polynomials $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ of degree at most n with complex coefficients. For $P \in \mathcal{P}_{n}$, define

$$
\|P\|_{q}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \text { and }\|P\|_{\infty}:=\max _{|z|=1}|P(z)| .
$$

Rahman [6] (see also Rahman and Schmeisser [8, p. 538]) introduced a class \mathcal{B}_{n} of operators B that map $P \in \mathcal{P}_{n}$ into itself. That is, the operator B carries $P \in \mathcal{P}_{n}$ into

$$
\begin{equation*}
B[P](z):=\lambda_{0} P(z)+\lambda_{1}\left(\frac{n z}{2}\right) \frac{P^{\prime}(z)}{1!}+\lambda_{2}\left(\frac{n z}{2}\right)^{2} \frac{P^{\prime \prime}(z)}{2!} \tag{1}
\end{equation*}
$$

where λ_{0}, λ_{1} and λ_{2} are real or complex numbers such that all the zeros of

$$
\begin{equation*}
\mathcal{U}(z):=\lambda_{0}+C(n, 1) \lambda_{1} z+C(n, 2) \lambda_{2} z^{2}, \quad C(n, r)=\frac{n!}{r!(n-r)!}, \tag{2}
\end{equation*}
$$

lie in the half plane

$$
\begin{equation*}
|z| \leq\left|z-\frac{n}{2}\right| \tag{3}
\end{equation*}
$$

and observed:

[^0]Theorem 1.1. If $P \in P_{n}$, then for $|z| \geq 1$,

$$
\begin{equation*}
\|B[P]\|_{\infty} \leq \mid B\left[E_{n}\right]\| \| P \|_{\infty}, \tag{4}
\end{equation*}
$$

where $E_{n}(z):=z^{n}$.
As an improvement of (4), Shah and Liman [9] proved the following:
Theorem 1.2. If $P \in \mathcal{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then for $|z| \geq 1$

$$
\begin{equation*}
\|B[P]\|_{\infty} \leq \frac{1}{2}\left\{\left|B\left[E_{n}\right]\right|+\left|\lambda_{0}\right|\right\}\|P\|_{\infty} \tag{5}
\end{equation*}
$$

The result is sharp and equality holds for a polynomial whose all zeros lie on the unit disk.

Recently, Shah and Liman [10] extended the above results to the L_{p} norm by proving the following more general results:

Theorem 1.3. If $P \in \mathcal{P}_{n}$, then for every $R \geq 1, q \geq 1$ and $|z|=1$,

$$
\begin{equation*}
\|B[P(R \cdot)]\|_{q} \leq\left|B\left[E_{n}(R \cdot)\right]\right|\|P\|_{q}, \tag{6}
\end{equation*}
$$

where $B \in \mathcal{B}_{n}$ and $E_{n}(z):=z^{n}$. The result is best possible and equality holds for $P(z)=\alpha z^{n}, \alpha \neq 0$.
Theorem 1.4. Let $P \in \mathcal{P}_{n}$ be such that $P(z) \neq 0$ in $|z|<1$, then for every $R \geq 1, q \geq 1$ and $|z|=1$,

$$
\begin{equation*}
\|B[P(R \cdot)]\|_{q} \leq \frac{\left|B\left[E_{n}(R \cdot)\right]\right|+\left|\lambda_{0}\right|}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q}, \tag{7}
\end{equation*}
$$

where $B \in \mathcal{B}_{n}$ and $E_{n}(z):=z^{n}$. The result is best possible and equality holds for the polynomial $P(z)=\alpha z^{n}+\beta$, where $|\alpha|=|\beta|$.

2. Statement and proof of results

For the proofs of these theorems, we need the following lemmas. The first lemma is a special case of a result due to Aziz and Zargar [2].
Lemma 2.1. If $P(z)$ is a polynomial of degree n having all zeros in $|z| \leq 1$, then for $R>r \geq 1$ and $|z|=1$

$$
|P(R z)|>|P(r z)| .
$$

The next lemma follows from Corollary 18.3 of [5, p.86].
Lemma 2.2. If all the zeros of a polynomial $P(z)$ of degree n lie in a circle $|z| \leq 1$, then all the zeros of the polynomial $B[P](z)$ also lie in the circle $|z| \leq 1$.
Lemma 2.3. If $P(z)$ is a polynomial of degree n having all zeros in $|z| \geq 1$ and $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$, then for every real or complex number α with $|\alpha| \leq 1$ and $R>r \geq 1$,

$$
\begin{equation*}
|B[P(R \cdot)]-\alpha B[P(r \cdot)]| \leq|B[Q(R \cdot)]-\alpha B[Q(r \cdot)]| . \tag{8}
\end{equation*}
$$

The result is sharp and equality holds for $P(z)=z^{n}+1$.
Proof. The result is trivial if $R=r$. So we assume that $R>r$. Since $P(z)$ has all zero in $|z| \geq 1$, therefore all the zeros of $Q(z)=z^{n} \overline{P(1 / \bar{z})}$ lie in $|z| \leq 1$. By maximum modulus principle, $|Q(z)| \leq|P(z)|$ for $|z| \leq 1$, and in particular, $|P(z)| \leq|Q(z)|$ for $|z| \geq 1$. By Rouches theorem, it follows that for α with $|\alpha| \leq 1$ all the zeros of $F(z)=P(z)-\beta Q(z)$ lie in $|z| \leq 1$, for every β with $|\beta|>1$. Applying Lemma 2.1 to $F(z)$, we get for $|z|=1, R>r \geq 1$

$$
|F(r z)|<|F(R z)| .
$$

Since all the zeros of $F(R z)$ lie in $|z| \leq \frac{1}{R}<1$, by Rouches theorem it follows that all the zeros of

$$
F(R z)-\alpha F(r z)
$$

lie in $|z|<1$. Since B is a linear operator (see [6, sec. 5]), it follows by Lemma 2.2, that all zeros of

$$
\begin{aligned}
H(z) & :=B[F(R z)-\alpha F(r z)] \\
& =\{B[P(R z)]-\alpha B[P(r z)]\}-\beta\{B[Q(R z)]-\alpha B[Q(r z)]\}
\end{aligned}
$$

lie in $|z|<1$. This gives, for $|z| \geq 1$,

$$
|B[P(R z)]-\alpha B[P(r z)]| \leq|B[Q(R z)]-\alpha B[Q(r z)]|
$$

For, if this is not true, then there exists a point $z=z_{0}$ with $\left|z_{0}\right| \geq 1$, such that

$$
|B[P(R z)]-\alpha B[P(r z)]|_{z=z_{0}}>|B[Q(R z)]-\alpha B[Q(r z)]|_{z=z_{0}} .
$$

We take

$$
\beta=\frac{\{B[P(R z)]-\alpha B[P(r z)]\}_{z=z_{0}},}{\{B[Q(R z)]-\alpha B[Q(r z)]\}_{z=z_{0}}},
$$

so that $|\beta|>1$. With this value of $z, H(z)=0$, for $|z| \geq 1$. This is a contradiction to the fact that all the zeros of $H(z)$ lie in $|z|<1$. Hence the proof of lemma is complete.
Lemma 2.4. If $P \in \mathcal{P}_{n}$, then for every α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$, (9) $\quad|B[P(R \cdot)]-\alpha B[P(r \cdot)]| \leq \mid B\left[E_{n}(R \cdot)-\alpha B\left[E_{n}(r \cdot)\right] \mid\|P\|_{\infty}\right.$.

Proof. Let $M=\max _{|z|=1}|P(z)|$, then $|P(z)| \leq M$ for $|z|=1$. By Rouches theorem, it follows that all the zeros of polynomial $F(z)=P(z)-\zeta z^{n} M$ lie in $|z|<1$ for every real or complex number ζ with $|\zeta|>1$. Therefore, it follows from Lemma 2.1, that for $R>r \geq 1$, and $|z|=1$,

$$
|F(r z)|<|F(R z)| .
$$

Since all the zeros of polynomial $F(R z)$ lie in $|z| \leq \frac{1}{R}<1$, again making use of Rouches theorem, we conclude that all the zeros of the polynomial $F(R z)-\alpha F(r z)$ lie in $|z|<1$, for every real or complex number α with $|\alpha| \leq 1$. By Lemma 2.2, the polynomial

$$
\begin{equation*}
B[F(R z)-\alpha F(r z)]=(B[P(R z)]-\alpha B[P(r z)])-\zeta\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right] M \tag{10}
\end{equation*}
$$

has all the zeros in open unit disc for every real or complex number ζ with $|\zeta|>1$. This implies similarly, as in the case of Lemma 2.3, for $|z| \geq 1$ and $R>r \geq 1$,

$$
\begin{equation*}
|B[P(R z)]-\alpha B[P(r z)]| \leq\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| M . \tag{11}
\end{equation*}
$$

This gives the desired result.
Lemma 2.5. Let \mathcal{P}_{n} denote the linear space of polynomials

$$
P(z)=a_{0}+\cdots+a_{n} z^{n}
$$

of degree n with complex coefficients, normed by $\|P\|=\max \left|P\left(e^{i \theta}\right)\right|, 0<\theta \leq$ 2π. Define the linear functional \mathcal{L} on \mathcal{P}_{n} as

$$
\mathcal{L}: P \rightarrow l_{0} a_{0}+l_{1} a_{1}+\cdots+l_{n} a_{n}
$$

where l_{j} 's are complex numbers. If the norm of the functional is \mathcal{N}, then

$$
\begin{equation*}
\int_{0}^{2 \pi} \Theta\left(\frac{\left|\sum_{k=0}^{n} l_{k} a_{k} e^{i k \theta}\right|}{\mathcal{N}}\right) d \theta \leq \int_{0}^{2 \pi} \Theta\left(\left|\sum_{k=0}^{n} a_{k} e^{i k \theta}\right|\right) d \theta \tag{12}
\end{equation*}
$$

where $\Theta(t)$ is a non-decreasing convex function of t.
The above lemma is due to Rahman [6].
In this paper, we prove some results which generalize the above theorems and there by obtain compact generalizations of many polynomial inequalities as well. In fact, we prove:

Theorem 2.6. If $P \in \mathcal{P}_{n}$, then for every α, with $|\alpha| \leq 1, R>r \geq 1, q \geq 1$ and $|z|=1$,

$$
\begin{equation*}
\|B[P(R \cdot)]-\alpha B[P(r \cdot)]\|_{q} \leq \mid B\left[E_{n}(R \cdot)-\alpha B\left[E_{n}(r \cdot)\right] \mid\|P\|_{q}\right. \tag{13}
\end{equation*}
$$

The result is best possible and equality holds for $P(z)=a z^{n}, a \neq 0$.
Proof. Let $M=\max _{|z|=1}|P(z)|$, then by Lemma 2.4 , we have, for $|z| \geq 1$ and $R>r \geq 1$,

$$
\begin{equation*}
|B[P(R z)]-\alpha B[P(r z)]| \leq\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| M \tag{14}
\end{equation*}
$$

This in particular gives for every $\theta, 0 \leq \theta<2 \pi$ and $R>r \geq 1$,

$$
\begin{equation*}
\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right| \leq\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right| M \tag{15}
\end{equation*}
$$

Since B is a linear operator (see [6, sec. 5]), therefore

$$
\Lambda=B[P(R z)]-\alpha B[P(r z)]
$$

is a bounded linear operator on \mathcal{P}_{n}. Thus in view of (15), the norm of the bounded linear functional

$$
\mathcal{L}: P \rightarrow\{B[P(R z)]-\alpha B[P(r z)]\}_{\theta=0}
$$

is

$$
\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right| .
$$

Hence by Lemma 2.5, for every $q \geq 1$, we have,

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right|^{q} d \theta \\
& \qquad \leq\left|\left(R^{n}-\alpha r^{n}\right)\left(\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right)\right|^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta .
\end{aligned}
$$

From this inequality, (13) follows immediately and this completes the proof of Theorem 2.6.

Remark 2.7. For $\alpha=0$, Theorem 2.6 reduces to Theorem 1.3.
The following corollary immediately follows from Theorem 2.6, when we let $q \rightarrow \infty$.

Corollary 2.8. If $P \in \mathcal{P}_{n}$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z|=1$,

$$
\|B[P(R \cdot)]-\alpha B[P(r \cdot)]\|_{\infty} \leq \mid B\left[E_{n}(R \cdot)-\alpha B\left[E_{n}(r \cdot)\right] \mid\|P\|_{\infty} .\right.
$$

Or, equivalently,

$$
\begin{align*}
& \|B[P(R \cdot)]-\alpha B[P(r \cdot)]\|_{\infty} \tag{16}\\
& \quad \leq\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}\right|\|P\|_{\infty} .
\end{align*}
$$

The result is best possible and equality holds for $P(z)=a z^{n}, a \neq 0$.
Remark 2.9. Theorem 1.1 is a special case of Corollary 2.8, when we take $\alpha=0$.

Also, If we choose $\alpha=0$ and $\lambda_{0}=0=\lambda_{2}$ in (16), which is possible, as it can be easily verified that in this case all the zeros of $\mathcal{U}(z)$ defined by (2) lie in (3), we get,

Corollary 2.10. If $P \in \mathcal{P}_{n}$, then for every $R \geq 1, q \geq 1$ and $|z|=1$,

$$
\left\|P^{\prime}\right\|_{q} \leq n R^{n-1}\|P\|_{q}
$$

This in particular for $R=1$, gives,

$$
\left\|P^{\prime}\right\|_{q} \leq n\|P\|_{q}, \text { for } q \geq 1
$$

which is an inequality due to Zygmund [11].

Lemma 2.11. If $P \in \mathcal{P}_{n}$, then for every α with $|\alpha| \leq 1, R>r \geq 1, q \geq 1$ and $0 \leq \theta, \beta<2 \pi$,

$$
\begin{align*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mid(& \left.B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right) \tag{17}\\
& \quad+\left.e^{i n \beta}\left(B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right)\right|^{q} d \theta d \beta \\
\quad \leq & 2 \pi\left[\left.\left|B\left[E_{n}(R \cdot)-\alpha B\left[E_{n}(r \cdot)\right]|+|1-\alpha|| \lambda_{0} \mid\right]^{q} \int_{0}^{2 \pi}\right| P\left(e^{i \theta}\right)\right|^{q} d \theta\right.
\end{align*}
$$

Proof. Let $M=\max _{|z|=1}|P(z)|$, then $|P(z)| \leq M$ for $|z|=1$. By Rouches theorem, it follows that all the zeros of polynomial $F(z)=P(z)-\zeta M$ lie in $|z| \geq 1$, for every real or complex number ζ with $|\zeta|>1$. Applying Lemma 2.3 to the polynomial $F(z)$ and using the fact that B is a linear operator, it follows that for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$,

$$
\begin{equation*}
|B[F(R z)]-\alpha B[F(r z)]| \leq|B[G(R z)]-\alpha B[G(r z)]| \tag{18}
\end{equation*}
$$

for $|z| \geq 1$, where

$$
G(z)=z^{n} \overline{F(1 / \bar{z})}=Q(z)-z^{n} \bar{\zeta} M .
$$

Using the fact that $B[1]=\lambda_{0}$, we get from (18),

$$
\begin{align*}
& \left|B[P(R z)]-\alpha B[P(r z)]-\zeta(1-\alpha) \lambda_{0} M\right| \tag{19}\\
& \quad \leq\left|B[Q(R z)]-\alpha B[Q(r z)]-\bar{\zeta}\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right] M\right|
\end{align*}
$$

Now choosing argument of ζ such that

$$
\begin{aligned}
& \left|B[Q(R z)]-\alpha B[Q(r z)]-\bar{\zeta}\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right] M\right| \\
& \quad=|\zeta|\left|\left(R^{n}-\alpha r^{n}\right)\right|\left|B\left[z^{n}\right]\right| M-|B[Q(R z)]-\alpha B[Q(r z)]|
\end{aligned}
$$

which is possible by (9), we get from (19), for $|\zeta|>1$ and $|z| \geq 1$,

$$
\begin{aligned}
|B[P(R z)]-\alpha B[P(r z)]| & +|B[Q(R z)]-\alpha B[Q(r z)]| \\
& \leq|\zeta|\left(\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|+|1-\alpha|\left|\lambda_{0}\right|\right) \max _{|z|=1}|P(z)|
\end{aligned}
$$

Letting $|\zeta| \rightarrow 1$, we obtain

$$
\begin{aligned}
|B[P(R z)]-\alpha B[P(r z)]|+ & |B[Q(R z)]-\alpha B[Q(r z)]| \\
& \leq\left(\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|+|1-\alpha|\left|\lambda_{0}\right|\right) \max _{|z|=1}|P(z)| .
\end{aligned}
$$

This in particular gives for every $\theta, 0 \leq \theta<2 \pi$ and $R>r \geq 1$,

$$
\begin{aligned}
\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right| & +\left|B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right| \\
& \leq\left(\left|R^{n}-\alpha r^{n}\right|\left|B\left[e^{i n \theta}\right]\right|+|1-\alpha|\left|\lambda_{0}\right|\right) \max _{|z|=1}|P(z)| .
\end{aligned}
$$

Thus for every β with $0 \leq \beta<2 \pi$, we have

$$
\begin{aligned}
& \left|\left(B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right)+e^{i \beta}\left(B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right)\right| \\
& \quad \leq\left(\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right|+|1-\alpha|\left|\lambda_{0}\right|\right) \max _{|z|=1}|P(z)| .
\end{aligned}
$$

This shows that

$$
\Lambda:=\left(B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right)+e^{i \beta}\left(B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right)
$$

is a bounded linear operator on \mathcal{P}_{n}. Thus in view of (10), the norm of the bounded linear functional
$\mathcal{L}: P \rightarrow\left\{\left(B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right)+e^{i \beta}\left(B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right)\right\}_{\theta=0}$ is

$$
\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right|+|1-\alpha|\left|\lambda_{0}\right| .
$$

Therefore, by Lemma 2.5, it follows that

$$
\begin{align*}
& \text { 20) } \int_{0}^{2 \pi}\left|\left(B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right)+e^{i \beta}\left(B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right)\right|^{q} d \theta \tag{20}\\
& \leq \\
& \leq\left[\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right|+|1-\alpha|\left|\lambda_{0}\right|\right]^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta
\end{align*}
$$

Integrating the two sides of (20) with respect to β, we get,

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\left(B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right)+e^{i \beta}\left(B\left[Q\left(R^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right)\right|^{q} d \beta d \theta \\
& \leq \int_{0}^{2 \pi}\left[\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right|+|1-\alpha|\left|\lambda_{0}\right|\right]^{q} d \beta \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \\
& =2 \pi\left[\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right|+|1-\alpha|\left|\lambda_{0}\right|\right]^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta
\end{aligned}
$$

From this the desired result follows.
Next we prove:
Theorem 2.12. If $P \in \mathcal{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then for every real or complex number α with $|\alpha| \leq 1, q \geq 1, R>r \geq 1$ and $|z|=1$,

$$
\|B[P(R \cdot)]-\alpha B[P(r \cdot)]\|_{q} \leq \frac{\mid B\left[E_{n}(R \cdot)-\alpha B\left[E_{n}(r \cdot)\right]\left|+\left|1-\alpha \| \lambda_{0}\right|\right.\right.}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q} .
$$

Or, equivalently,

$$
\begin{align*}
\| B[P(R \cdot)]- & \alpha B[P(r \cdot)] \|_{q} \tag{21}\\
& \leq \frac{\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}\right|+|1-\alpha|\left|\lambda_{0}\right|}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q},
\end{align*}
$$

where $B \in \mathcal{B}_{n}$. The result is sharp and equality holds for a polynomial $P(z)=$ $a z^{n}+b,|a|=|b|$.

Proof. Since $P(z) \neq 0$ in $|z|<1$, by Lemma 2.3, we have for each $\theta, 0 \leq \theta<2 \pi$ and $R>r \geq 1$,

$$
\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right| \leq\left|B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right| .
$$

Also for every real θ and $t \geq 1$, it can be easily verified that $\left|1+t e^{i \theta}\right| \geq\left|1+e^{i \theta}\right|$ and therefore for every $q \geq 1$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+t e^{i \theta \mid}\right|^{q} d \theta \geq \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta \tag{22}
\end{equation*}
$$

Now, taking $t=\frac{\left|B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right|}{\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right|} \geq 1$ and using inequality (22), we have
(23) $\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mid\left(B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right)$

$$
\begin{aligned}
& +\left.e^{i n \beta}\left(B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right)\right|^{q} d \beta d \theta \\
= & \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right|^{q} \times \\
& \times\left|1+e^{i n \beta} \frac{B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]}{B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]}\right|^{q} d \beta d \theta \\
= & \int_{0}^{2 \pi}\left\{\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right|^{q} \times\right. \\
& \left.\times\left.\int_{0}^{2 \pi}\left|1+e^{i n \beta}\right| \frac{B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]}{B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]}\right|^{q} d \beta\right\} d \theta \\
\geq & \int_{0}^{2 \pi}\left\{\left|B\left[P\left(R^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right|^{q} \int_{0}^{2 \pi}\left|1+e^{i n \beta}\right|^{q} d \beta\right\} d \theta \\
= & \int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right|^{q} d \theta \int_{0}^{2 \pi}\left|1+e^{i n \beta}\right|^{q} d \beta .
\end{aligned}
$$

Inequality (23) in conjunction with Lemma 2.11, gives

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right|^{q} d \theta \\
& \leq \frac{2 \pi\left[\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right|+|1-\alpha|\left|\lambda_{0}\right|\right]^{q}}{\int_{0}^{2 \pi}\left|1+e^{i n \beta}\right|^{q} d \beta} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta .
\end{aligned}
$$

Or, equivalently,

$$
\|B[P(R \cdot)]-\alpha B[P(r \cdot)]\|_{q} \leq \frac{\mid B\left[E_{n}(R \cdot)-\alpha B\left[E_{n}(r \cdot)\right]\left|+\left|1-\alpha \| \lambda_{0}\right|\right.\right.}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q}
$$

This completes the proof of Theorem 2.12.
Remark 2.13. If we choose $\alpha=0$ in (21), we obtain Theorem 1.4. Also Theorem 1.2 easily follows from Theorem 2.12, if we make $\alpha=0$ and $q \rightarrow \infty$.

Further, if we choose $\alpha=0$ and $\lambda_{0}=0=\lambda_{2}, R=1$ in (21) which is possible, we get the following inequality:

$$
\left\|P^{\prime}\right\|_{q} \leq \frac{n}{\left\|1+z^{n}\right\|_{q}}\|P\|_{q}
$$

for every $q \geq 1$, which is a result due to de Brujin [3]. On the other hand, for $\alpha=0$ and $\lambda_{1}=\lambda_{2}=0$, we have the following:

If $P \in \mathcal{P}_{n}$ be such that $P(z) \neq 0$ in $|z|<1$, then for every $R>1, q \geq 1$ and $|z|=1$,

$$
\|P(R \cdot)\|_{q} \leq \frac{R^{n}+1}{\left\|1+z^{n}\right\|_{q}}\|P\|_{q} .
$$

An inequality proved by Ankeny and Rivlin [1] is a special case of this inequality when we let $q \rightarrow \infty$.

Also for $q \rightarrow \infty$, Theorem 2.12 yields the following:
Corollary 2.14. If $P \in \mathcal{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z|=1$
$\|B[P(R \cdot)]-\alpha B[P(r \cdot)]\|_{\infty} \leq\left[\frac{\mid B\left[E_{n}(R \cdot)-\alpha B\left[E_{n}(r \cdot)\right]|+|1-\alpha|| \lambda_{0} \mid\right.}{2}\right]\|P\|_{\infty}$, where $B \in \mathcal{B}_{n}$. The result is sharp and equality holds for a polynomial $P(z)=$ $a z^{n}+b,|a|=|b|$.

If we choose $r=1, \lambda_{1}=0=\lambda_{2}$ in (21), we get the following:
Corollary 2.15. If $P \in \mathcal{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then for every real or complex number α with $|\alpha| \leq 1, R>1$ and $|z|=1$,

$$
\begin{equation*}
\|P(R \cdot)-\alpha P\|_{q} \leq \frac{\left|R^{n}-\alpha\right|+|1-\alpha|}{\left\|1+z^{n}\right\|_{q}} \quad\|P\|_{q} . \tag{24}
\end{equation*}
$$

This is a compact generalization of a result of Shah and Liman [10, Corollary 1].

A polynomial $P(z)$ is said to be self-inversive if $P(z)=u Q(z),|u|=1$, where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$. It is known [4] that, if $P \in \mathcal{P}_{n}$ is a self inversive polynomial, then for every $q \geq 1$,

$$
\left\|P^{\prime}\right\|_{q} \leq \frac{n}{\left\|1+z^{n}\right\|_{q}}\|P\|_{q}
$$

We next present the following result for the class of self inversive polynomials:

Theorem 2.16. If $P \in \mathcal{P}_{n}$ is self inversive, then for every $q \geq 1, R>r \geq 1$ and $|z|=1$,

$$
\begin{align*}
&\|B[P(R \cdot)]-\alpha B[P(r \cdot)]\|_{q} \tag{25}\\
& \leq \frac{\mid B\left[E_{n}(R \cdot)-\alpha B\left[E_{n}(r \cdot)\right]\left|+\left|1-\alpha \| \lambda_{0}\right|\right.\right.}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q}
\end{align*}
$$

The result is sharp and equality holds for $P(z)=z^{n}+1$.
Proof. Since $P(z)$ is a self inversive polynomial, therefore for all $z \in C,|z| \geq 1$, we have

$$
|B[P(R z)]-\alpha B[P(r z)]|=|B[Q(R z)]-\alpha B[Q(r z)]| .
$$

This in particular gives, for $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right|=\left|B\left[Q\left(R e^{i \theta}\right)\right]-\alpha B\left[Q\left(r e^{i \theta}\right)\right]\right| . \tag{26}
\end{equation*}
$$

Proceeding similarly as in the case of Theorem 2.12, we get

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]-\alpha B\left[P\left(r e^{i \theta}\right)\right]\right|^{q} d \theta \\
& \leq \frac{2 \pi\left[\left|R^{n}-\alpha r^{n}\right|\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right|+|1-\alpha|\left|\lambda_{0}\right|\right]^{q}}{\int_{0}^{2 \pi}\left|1+e^{i n \beta}\right|^{q} d \beta} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta .
\end{aligned}
$$

Or, equivalently,

$$
\|B[P(R \cdot)]-\alpha B[P(r \cdot)]\|_{q} \leq \frac{\mid B\left[E_{n}(R \cdot)-\alpha B\left[E_{n}(r \cdot)\right]\left|+\left|1-\alpha \| \lambda_{0}\right|\right.\right.}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q} .
$$

Hence the result is proved.
The above inequality of Dewan and Govil [4] and many such results follow as special cases from Theorem 2.16.

Further, if we make $q \rightarrow \infty$ in inequality (25), we get the following:
Corollary 2.17. If $P \in \mathcal{P}_{n}$ is self inversive, then for every $R>r \geq 1$, and $|z|=1$,
$\|B[P(R \cdot)]-\alpha B[P(r \cdot)]\|_{\infty} \leq\left[\frac{\mid B\left[E_{n}(R \cdot)-\alpha B\left[E_{n}(r \cdot)\right]\left|+\left|1-\alpha \| \lambda_{0}\right|\right.\right.}{2}\right]\|P\|_{\infty}$, where $B \in \mathcal{B}_{n}$. The result is sharp and equality holds for a polynomial $P(z)=$ $z^{n}+1$.

3. Acknowledgement

We are very thankful to the reviewer(s) for the careful reading and valuable suggestions that improved the presentation of the paper.

References

[1] N. C. Ankeny and T. J. Rivlin. On a theorem of S. Bernstein. Pacific J. Math., 5:849852, 1955.
[2] A. Aziz and B. A. Zargar. Inequalities for a polynomial and its derivative. Math. Inequal. Appl., 1(4):543-550, 1998.
[3] N. G. de Bruijn. Inequalities concerning polynomials in the complex domain. Nederl. Akad. Wetensch., Proc., 50:1265-1272 = Indagationes Math. 9, 591-598 (1947), 1947.
[4] K. K. Dewan and N. K. Govil. An inequality for self-inversive polynomials. J. Math. Anal. Appl., 95(2):490, 1983.
[5] M. Marden. Geometry of polynomials. Second edition. Mathematical Surveys, No. 3. American Mathematical Society, Providence, R.I., 1966.
[6] Q. I. Rahman. Functions of exponential type. Trans. Amer. Math. Soc., 135:295-309, 1969.
[7] Q. I. Rahman and G. Schmeisser. L^{p} inequalities for polynomials. J. Approx. Theory, 53(1):26-32, 1988.
[8] Q. I. Rahman and G. Schmeisser. Analytic theory of polynomials, volume 26 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, Oxford, 2002.
[9] W. M. Shah and A. Liman. An operator preserving inequalities between polynomials. JIPAM. J. Inequal. Pure Appl. Math., 9(1):Article 25, 8, 2008.
[10] W. M. Shah and A. Liman. Integral estimates for the family of B-operators. Oper. Matrices, 5(1):79-87, 2011.
[11] A. Zygmund. A Remark on Conjugate Series. Proc. London Math. Soc., S2-34(1):392.
Received December 9, 2012.

Department of Mathematics,
National Institute of Technology, 190006 Kashmir, India
E-mail address: irshadmaths84@rediffmail.com
Department of Mathematics, National Institute of Technology, 190006 KASHMIR,
India
E-mail address: abliman@rediffmail.com
Department of Mathematics,
Jammu and Kashmir Institute of Mathematical Sciences, 190008 SRinAGAR,
India
E-mail address: wmshah@rediffmail.com

[^0]: 2010 Mathematics Subject Classification. 30A06, 30A64.
 Key words and phrases. B-operator, Integral inequalities in the complex domain.

