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SOME Lp INEQUALITIES FOR THE FAMILY OF
B-OPERATORS

IRSHAD AHMAD, A. LIMAN AND W. M. SHAH

Abstract. Let Pn be the class of polynomials of degree at most n and Bn

be a class of operators that map Pn into itself. For every P ∈ Pn and B ∈
Bn, we investigate on |z| = 1, the dependence of ||B[P (R ·)]− B[P (r ·)]||q
on ||P ||q, for every R > r ≥ 1 and q ≥ 1.

1. Introduction

Let Pn be the class of polynomials P (z) :=
n∑

j=0

ajz
j of degree at most n with

complex coefficients. For P ∈ Pn, define

‖P‖q :=
{

1

2π

∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q

and ‖P‖∞ := max
|z|=1

|P (z)|.

Rahman [6] (see also Rahman and Schmeisser [8, p. 538]) introduced a class
Bn of operators B that map P ∈ Pn into itself. That is, the operator B carries
P ∈ Pn into

(1) B [P ] (z) := λ0P (z) + λ1

(nz
2

) P ′(z)

1!
+ λ2

(nz
2

)2 P ′′(z)

2!
,

where λ0, λ1 and λ2 are real or complex numbers such that all the zeros of

(2) U(z) := λ0 + C(n, 1)λ1z + C(n, 2)λ2z
2, C(n, r) =

n!

r!(n− r)!
,

lie in the half plane

(3) |z| ≤
∣∣∣z − n

2

∣∣∣
and observed:
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Theorem 1.1. If P ∈ Pn, then for |z| ≥ 1,

(4) ||B[P ]||∞ ≤ |B[En]|||P ||∞,

where En(z) := zn.

As an improvement of (4), Shah and Liman [9] proved the following:

Theorem 1.2. If P ∈ Pn and P (z) 6= 0 in |z| < 1, then for |z| ≥ 1

(5) ||B [P ] ||∞ ≤ 1

2

{
|B [En]|+ |λ0|

}
||P ||∞.

The result is sharp and equality holds for a polynomial whose all zeros lie on
the unit disk.

Recently, Shah and Liman [10] extended the above results to the Lp norm
by proving the following more general results:

Theorem 1.3. If P ∈ Pn, then for every R ≥ 1, q ≥ 1 and |z| = 1,

(6) ‖B[P (R ·)]‖q ≤ |B[En(R ·)]|‖P‖q,
where B ∈ Bn and En(z) := zn. The result is best possible and equality holds
for P (z) = αzn, α 6= 0.

Theorem 1.4. Let P ∈ Pn be such that P (z) 6= 0 in |z| < 1, then for every
R ≥ 1, q ≥ 1 and |z| = 1,

(7) ‖B [P (R ·)] ‖q ≤
|B[En(R ·)]|+ |λ0|

‖1 + En‖q
||P ||q,

where B ∈ Bn and En(z) := zn. The result is best possible and equality holds
for the polynomial P (z) = αzn + β, where |α| = |β|.

2. Statement and proof of results

For the proofs of these theorems, we need the following lemmas. The first
lemma is a special case of a result due to Aziz and Zargar [2].

Lemma 2.1. If P (z) is a polynomial of degree n having all zeros in |z| ≤ 1,
then for R > r ≥ 1 and |z| = 1

|P (Rz)| > |P (rz)|.

The next lemma follows from Corollary 18.3 of [5, p.86].

Lemma 2.2. If all the zeros of a polynomial P (z) of degree n lie in a circle
|z| ≤ 1, then all the zeros of the polynomial B[P ](z) also lie in the circle
|z| ≤ 1.

Lemma 2.3. If P (z) is a polynomial of degree n having all zeros in |z| ≥ 1

and Q(z) = znP
(
1
z̄

)
, then for every real or complex number α with |α| ≤ 1

and R > r ≥ 1,

(8) |B[P (R ·)]− αB[P (r ·)]| ≤ |B[Q(R ·)]− αB[Q(r ·)]| .
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The result is sharp and equality holds for P (z) = zn + 1.

Proof. The result is trivial if R = r. So we assume that R > r. Since P (z) has

all zero in |z| ≥ 1, therefore all the zeros of Q(z) = znP (1/z̄) lie in |z| ≤ 1. By
maximum modulus principle, |Q(z)| ≤ |P (z)| for |z| ≤ 1, and in particular,
|P (z)| ≤ |Q(z)| for |z| ≥ 1. By Rouches theorem, it follows that for α with
|α| ≤ 1 all the zeros of F (z) = P (z) − βQ(z) lie in |z| ≤ 1, for every β with
|β| > 1. Applying Lemma 2.1 to F (z), we get for |z| = 1, R > r ≥ 1

|F (rz)| < |F (Rz)|.
Since all the zeros of F (Rz) lie in |z| ≤ 1

R
< 1, by Rouches theorem it follows

that all the zeros of

F (Rz)− αF (rz)

lie in |z| < 1. Since B is a linear operator (see [6, sec. 5]), it follows by Lemma
2.2, that all zeros of

H(z) := B[F (Rz)− αF (rz)]

= {B[P (Rz)]− αB[P (rz)]} − β{B[Q(Rz)]− αB[Q(rz)]}
lie in |z| < 1. This gives, for |z| ≥ 1,

|B[P (Rz)]− αB[P (rz)]| ≤ |B[Q(Rz)]− αB[Q(rz)]| .
For, if this is not true, then there exists a point z = z0 with |z0| ≥ 1, such that

|B[P (Rz)]− αB[P (rz)]|z=z0
> |B[Q(Rz)]− αB[Q(rz)]|z=z0

.

We take

β =
{B[P (Rz)]− αB[P (rz)]}z=z0

{B[Q(Rz)]− αB[Q(rz)]}z=z0

,

so that |β| > 1. With this value of z, H(z) = 0, for |z| ≥ 1. This is a
contradiction to the fact that all the zeros of H(z) lie in |z| < 1. Hence the
proof of lemma is complete. �
Lemma 2.4. If P ∈ Pn, then for every α with |α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

(9) |B[P (R ·)]− αB[P (r ·)]| ≤ |B[En(R ·)− αB[En(r ·)]| ||P ||∞.

Proof. Let M = max|z|=1 |P (z)|, then |P (z)| ≤ M for |z| = 1. By Rouches
theorem, it follows that all the zeros of polynomial F (z) = P (z)− ζznM lie in
|z| < 1 for every real or complex number ζ with |ζ| > 1. Therefore, it follows
from Lemma 2.1, that for R > r ≥ 1, and |z| = 1,

|F (rz)| < |F (Rz)|.
Since all the zeros of polynomial F (Rz) lie in |z| ≤ 1

R
< 1, again making

use of Rouches theorem, we conclude that all the zeros of the polynomial
F (Rz) − αF (rz) lie in |z| < 1, for every real or complex number α with
|α| ≤ 1. By Lemma 2.2, the polynomial

(10) B[F (Rz)− αF (rz)] = (B[P (Rz)]− αB[P (rz)])− ζ(Rn − αrn)B[zn]M,
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has all the zeros in open unit disc for every real or complex number ζ with
|ζ| > 1. This implies similarly, as in the case of Lemma 2.3, for |z| ≥ 1 and
R > r ≥ 1,

(11) |B[P (Rz)]− αB[P (rz)]| ≤ |Rn − αrn||B[zn]|M.

This gives the desired result. �
Lemma 2.5. Let Pn denote the linear space of polynomials

P (z) = a0 + · · ·+ anz
n

of degree n with complex coefficients, normed by ‖P‖ = max |P (eiθ)|, 0 < θ ≤
2π. Define the linear functional L on Pn as

L : P → l0a0 + l1a1 + · · ·+ lnan,

where lj’s are complex numbers. If the norm of the functional is N , then

(12)

∫ 2π

0

Θ

(∣∣∑n
k=0 lkake

ikθ
∣∣

N

)
dθ ≤

∫ 2π

0

Θ

(∣∣∣∣∣
n∑

k=0

ake
ikθ

∣∣∣∣∣
)
dθ,

where Θ(t) is a non-decreasing convex function of t.

The above lemma is due to Rahman [6].
In this paper, we prove some results which generalize the above theorems

and there by obtain compact generalizations of many polynomial inequalities
as well. In fact, we prove:

Theorem 2.6. If P ∈ Pn, then for every α, with |α| ≤ 1, R > r ≥ 1, q ≥ 1
and |z| = 1,

(13) ||B[P (R ·)]− αB[P (r ·)]||q ≤ |B[En(R ·)− αB[En(r ·)]| ||P ||q
The result is best possible and equality holds for P (z) = azn, a 6= 0.

Proof. Let M = max|z|=1 |P (z)|, then by Lemma 2.4, we have, for |z| ≥ 1 and
R > r ≥ 1,

(14) |B[P (Rz)]− αB[P (rz)]| ≤ |Rn − αrn||B[zn]|M.

This in particular gives for every θ, 0 ≤ θ < 2π and R > r ≥ 1,

(15) |B[P (Reiθ)]− αB[P (reiθ)]| ≤ |Rn − αrn|
∣∣∣∣λ0 +

n2

2
λ1 +

n3(n− 1)

8
λ2

∣∣∣∣M.

Since B is a linear operator (see [6, sec. 5]), therefore

Λ = B[P (Rz)]− αB[P (rz)]

is a bounded linear operator on Pn. Thus in view of (15), the norm of the
bounded linear functional

L : P → {B[P (Rz)]− αB[P (rz)]}θ=0
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is

|Rn − αrn|
∣∣∣∣λ0 +

n2

2
λ1 +

n3(n− 1)

8
λ2

∣∣∣∣ .
Hence by Lemma 2.5, for every q ≥ 1, we have,∫ 2π

0

|B[P (Reiθ)]− αB[P (reiθ)]|qdθ

≤
∣∣∣∣(Rn − αrn)

(
λ0 +

n2

2
λ1 +

n3(n− 1)

8
λ2

)∣∣∣∣q ∫ 2π

0

∣∣P (eiθ)
∣∣q dθ.

From this inequality, (13) follows immediately and this completes the proof of
Theorem 2.6. �

Remark 2.7. For α = 0, Theorem 2.6 reduces to Theorem 1.3.

The following corollary immediately follows from Theorem 2.6, when we let
q → ∞.

Corollary 2.8. If P ∈ Pn, then for every real or complex number α with
|α| ≤ 1, R > r ≥ 1 and |z| = 1,

||B[P (R ·)]− αB[P (r ·)]||∞ ≤ |B[En(R ·)− αB[En(r ·)]| ||P ||∞.

Or, equivalently,

(16) ||B[P (R ·)]− αB[P (r ·)]||∞

≤ |Rn − αrn|
∣∣∣∣λ0 + λ1

n2

2
+ λ2

n3(n− 1)

8

∣∣∣∣ ||P ||∞.

The result is best possible and equality holds for P (z) = azn, a 6= 0.

Remark 2.9. Theorem 1.1 is a special case of Corollary 2.8, when we take
α = 0.

Also, If we choose α = 0 and λ0 = 0 = λ2 in (16), which is possible, as it
can be easily verified that in this case all the zeros of U(z) defined by (2) lie
in (3), we get,

Corollary 2.10. If P ∈ Pn, then for every R ≥ 1, q ≥ 1 and |z| = 1,

||P ′||q ≤ nRn−1||P ||q.

This in particular for R = 1, gives,

‖P ′‖q ≤ n‖P‖q, for q ≥ 1.

which is an inequality due to Zygmund [11].



84 IRSHAD AHMAD, A. LIMAN AND W. M. SHAH

Lemma 2.11. If P ∈ Pn, then for every α with |α| ≤ 1, R > r ≥ 1, q ≥ 1
and 0 ≤ θ, β < 2π,

(17)

∫ 2π

0

∫ 2π

0

∣∣(B[P (Reiθ)]− αB[P (reiθ)]
)

+ einβ
(
B[Q(Reiθ)]− αB[Q(reiθ)]

)∣∣q dθdβ
≤ 2π [|B[En(R ·)− αB[En(r ·)]|+ |1− α||λ0|]q

∫ 2π

0

∣∣P (eiθ)
∣∣q dθ.

Proof. Let M = max|z|=1 |P (z)|, then |P (z)| ≤ M for |z| = 1. By Rouches
theorem, it follows that all the zeros of polynomial F (z) = P (z) − ζM lie in
|z| ≥ 1, for every real or complex number ζ with |ζ| > 1. Applying Lemma
2.3 to the polynomial F (z) and using the fact that B is a linear operator, it
follows that for every real or complex number α with |α| ≤ 1, R > r ≥ 1,

(18) |B[F (Rz)]− αB[F (rz)]| ≤ |B[G(Rz)]− αB[G(rz)]|
for |z| ≥ 1, where

G(z) = znF (1/z̄) = Q(z)− znζ̄M.

Using the fact thatB[1] = λ0, we get from (18),

(19) |B[P (Rz)]− αB[P (rz)]− ζ(1− α)λ0M |
≤ |B[Q(Rz)]− αB[Q(rz)]− ζ̄(Rn − αrn)B[zn]M |.

Now choosing argument of ζ such that

|B[Q(Rz)]− αB[Q(rz)]− ζ̄(Rn − αrn)B[zn]M |
= |ζ||(Rn − αrn)||B[zn]|M − |B[Q(Rz)]− αB[Q(rz)]|,

which is possible by (9), we get from (19), for |ζ| > 1 and |z| ≥ 1,

|B[P (Rz)]− αB[P (rz)]|+ |B[Q(Rz)]− αB[Q(rz)]|
≤ |ζ|(|Rn − αrn||B[zn]|+ |1− α||λ0|)max

|z|=1
|P (z)|.

Letting |ζ| → 1, we obtain

|B[P (Rz)]− αB[P (rz)]|+ |B[Q(Rz)]− αB[Q(rz)]|
≤ (|Rn − αrn||B[zn]|+ |1− α||λ0|)max

|z|=1
|P (z)|.

This in particular gives for every θ, 0 ≤ θ < 2π and R > r ≥ 1,

|B[P (Reiθ)]− αB[P (reiθ)]|+ |B[Q(Reiθ)]− αB[Q(reiθ)]|
≤ (|Rn − αrn||B[einθ]|+ |1− α||λ0|)max

|z|=1
|P (z)|.

Thus for every β with 0 ≤ β < 2π, we have
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|(B[P (Reiθ)]− αB[P (reiθ)]) + eiβ(B[Q(Reiθ)]− αB[Q(reiθ)])|

≤
(
|Rn − αrn|

∣∣∣∣λ0 +
n2

2
λ1 +

n3(n− 1)

8
λ2

∣∣∣∣+ |1− α||λ0|
)
max
|z|=1

|P (z)|.

This shows that

Λ :=
(
B[P (Reiθ)]− αB[P (reiθ)]

)
+ eiβ

(
B[Q(Reiθ)]− αB[Q(reiθ)]

)
is a bounded linear operator on Pn. Thus in view of (10), the norm of the
bounded linear functional

L : P →
{(

B[P (Reiθ)]− αB[P (reiθ)]
)
+ eiβ

(
B[Q(Reiθ)]− αB[Q(reiθ)]

)}
θ=0

is

|Rn − αrn|
∣∣∣∣λ0 +

n2

2
λ1 +

n3(n− 1)

8
λ2

∣∣∣∣+ |1− α||λ0|.

Therefore, by Lemma 2.5, it follows that

(20)

∫ 2π

0

∣∣(B[P (Reiθ)]− αB[P (reiθ)]
)
+ eiβ

(
B[Q(Reiθ)]− αB[Q(reiθ)]

)∣∣q dθ
≤
[
|Rn − αrn|

∣∣∣∣λ0 +
n2

2
λ1 +

n3(n− 1)

8
λ2

∣∣∣∣+ |1− α||λ0|
]q ∫ 2π

0

∣∣P (eiθ)
∣∣q dθ.

Integrating the two sides of (20) with respect to β, we get,∫ 2π

0

∫ 2π

0

∣∣(B[P (Reiθ)]− αB[P (reiθ)]) + eiβ(B[Q(Reiθ)]− αB[Q(reiθ)])
∣∣q dβdθ

≤
∫ 2π

0

[
|Rn − αrn|

∣∣∣∣λ0 +
n2

2
λ1 +

n3(n− 1)

8
λ2

∣∣∣∣+ |1− α||λ0|
]q
dβ

∫ 2π

0

∣∣P (eiθ)
∣∣qdθ

= 2π

[
|Rn − αrn|

∣∣∣∣λ0 +
n2

2
λ1 +

n3(n− 1)

8
λ2

∣∣∣∣+ |1− α||λ0|
]q ∫ 2π

0

∣∣P (eiθ)
∣∣q dθ.

From this the desired result follows. �
Next we prove:

Theorem 2.12. If P ∈ Pn and P (z) 6= 0 in |z| < 1, then for every real or
complex number α with |α| ≤ 1, q ≥ 1, R > r ≥ 1 and |z| = 1,

‖B[P (R ·)]− αB[P (r ·)]‖q ≤
|B[En(R ·)− αB[En(r ·)]|+ |1− α||λ0|

‖1 + En‖q
‖P‖q.

Or, equivalently,

(21) ‖B[P (R ·)]− αB[P (r ·)]‖q

≤
|Rn − αrn|

∣∣∣λ0 + λ1
n2

2
+ λ2

n3(n−1)
8

∣∣∣+ |1− α||λ0|

‖1 + En‖q
‖P‖q,

where B ∈ Bn . The result is sharp and equality holds for a polynomial P (z) =
azn + b, |a| = |b|.
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Proof. Since P (z) 6= 0 in |z| < 1, by Lemma 2.3, we have for each θ, 0 ≤ θ < 2π
and R > r ≥ 1,∣∣B[P (Reiθ)]− αB[P (reiθ)]

∣∣ ≤ ∣∣B[Q(Reiθ)]− αB[Q(reiθ)]
∣∣ .

Also for every real θ and t ≥ 1, it can be easily verified that |1+teiθ| ≥ |1+eiθ|
and therefore for every q ≥ 1,

(22)

∫ 2π

0

|1 + teiθ|qdθ ≥
∫ 2π

0

|1 + eiθ|qdθ.

Now, taking t =
|B[Q(Reiθ)]−αB[Q(reiθ)]|
|B[P (Reiθ)]−αB[P (reiθ)]| ≥ 1 and using inequality (22), we have∫ 2π

0

∫ 2π

0

|(B[P (Reiθ)]− αB[P (reiθ)])(23)

+einβ(B[Q(Reiθ)]− αB[Q(reiθ)])|qdβdθ

=

∫ 2π

0

∫ 2π

0

|B[P (Reiθ)]− αB[P (reiθ)]|q ×

×
∣∣∣∣1 + einβ

B[Q(Reiθ)]− αB[Q(reiθ)]

B[P (Reiθ)]− αB[P (reiθ)]

∣∣∣∣q dβdθ
=

∫ 2π

0

{∣∣B[P (Reiθ)]− αB[P (reiθ)]
∣∣q ×

×
∫ 2π

0

∣∣∣∣1 + einβ
∣∣∣∣B[Q(Reiθ)]− αB[Q(reiθ)]

B[P (Reiθ)]− αB[P (reiθ)]

∣∣∣∣∣∣∣∣q dβ} dθ

≥
∫ 2π

0

{
|B[P (Reiθ)]− αB[P (reiθ)]|q

∫ 2π

0

∣∣1 + einβ
∣∣q dβ} dθ

=

∫ 2π

0

|B[P (Reiθ)]− αB[P (reiθ)]|qdθ
∫ 2π

0

∣∣1 + einβ
∣∣q dβ.

Inequality (23) in conjunction with Lemma 2.11, gives∫ 2π

0

∣∣B[P (Reiθ)]− αB[P (reiθ)]
∣∣q dθ

≤
2π
[
|Rn − αrn|

∣∣∣λ0 +
n2

2
λ1 +

n3(n−1)
8

λ2

∣∣∣+ |1− α||λ0|
]q

∫ 2π

0
|1 + einβ|q dβ

∫ 2π

0

∣∣P (eiθ)
∣∣q dθ.

Or, equivalently,

‖B[P (R ·)]− αB[P (r ·)]‖q ≤
|B[En(R ·)− αB[En(r ·)]|+ |1− α||λ0|

‖1 + En‖q
‖P‖q.

This completes the proof of Theorem 2.12. �
Remark 2.13. If we choose α = 0 in (21), we obtain Theorem 1.4. Also
Theorem 1.2 easily follows from Theorem 2.12, if we make α = 0 and q → ∞.



SOME Lp INEQUALITIES FOR THE FAMILY OF B-OPERATORS 87

Further, if we choose α = 0 and λ0 = 0 = λ2, R = 1 in (21) which is possible,
we get the following inequality:

‖P ′‖q ≤
n

‖1 + zn‖q
‖P‖q,

for every q ≥ 1, which is a result due to de Brujin [3]. On the other hand, for
α = 0 and λ1 = λ2 = 0, we have the following:

If P ∈ Pn be such that P (z) 6= 0 in |z| < 1, then for every R > 1, q ≥ 1 and
|z| = 1,

‖P (R ·)‖q ≤
Rn + 1

‖1 + zn‖q
‖P‖q.

An inequality proved by Ankeny and Rivlin [1] is a special case of this
inequality when we let q → ∞.

Also for q → ∞, Theorem 2.12 yields the following:

Corollary 2.14. If P ∈ Pn and P (z) 6= 0 in |z| < 1, then for every real or
complex number α with |α| ≤ 1, R > r ≥ 1 and |z| = 1

||B[P (R ·)]−αB[P (r ·)]||∞ ≤ [
|B[En(R ·)− αB[En(r ·)]|+ |1− α||λ0|

2
]||P ||∞,

where B ∈ Bn. The result is sharp and equality holds for a polynomial P (z) =
azn + b, |a| = |b|.

If we choose r = 1, λ1 = 0 = λ2 in (21), we get the following:

Corollary 2.15. If P ∈ Pn and P (z) 6= 0 in |z| < 1, then for every real or
complex number α with |α| ≤ 1, R > 1 and |z| = 1,

(24) ||P (R ·)− αP ||q ≤
|Rn − α|+ |1− α|

‖1 + zn‖q
‖P‖q.

This is a compact generalization of a result of Shah and Liman [10, Corol-
lary 1].

A polynomial P (z) is said to be self-inversive if P (z) = uQ(z), |u| = 1,

where Q(z) = znP (1/z̄). It is known [4] that, if P ∈ Pn is a self inversive
polynomial, then for every q ≥ 1,

‖P ′‖q ≤
n

‖1 + zn‖q
‖P‖q.

We next present the following result for the class of self inversive polynomi-
als:

Theorem 2.16. If P ∈ Pn is self inversive, then for every q ≥ 1, R > r ≥ 1
and |z| = 1,

(25) ‖B[P (R ·)]− αB[P (r ·)]‖q

≤ |B[En(R ·)− αB[En(r ·)]|+ |1− α||λ0|
‖1 + En‖q

‖P‖q.
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The result is sharp and equality holds for P (z) = zn + 1.

Proof. Since P (z) is a self inversive polynomial, therefore for all z ∈ C, |z| ≥ 1,
we have

|B[P (Rz)]− αB[P (rz)]| = |B[Q(Rz)]− αB[Q(rz)]| .
This in particular gives, for 0 ≤ θ < 2π,

(26)
∣∣B[P (Reiθ)]− αB[P (reiθ)]

∣∣ = ∣∣B[Q(Reiθ)]− αB[Q(reiθ)]
∣∣ .

Proceeding similarly as in the case of Theorem 2.12, we get∫ 2π

0

∣∣B[P (Reiθ)]− αB[P (reiθ)]
∣∣q dθ

≤
2π
[
|Rn − αrn|

∣∣∣λ0 +
n2

2
λ1 +

n3(n−1)
8

λ2

∣∣∣+ |1− α||λ0|
]q

∫ 2π

0
|1 + einβ|q dβ

∫ 2π

0

∣∣P (eiθ)
∣∣q dθ.

Or, equivalently,

‖B[P (R ·)]− αB[P (r ·)]‖q ≤
|B[En(R ·)− αB[En(r ·)]|+ |1− α||λ0|

‖1 + En‖q
‖P‖q.

Hence the result is proved. �
The above inequality of Dewan and Govil [4] and many such results follow

as special cases from Theorem 2.16.
Further, if we make q → ∞ in inequality (25), we get the following:

Corollary 2.17. If P ∈ Pn is self inversive, then for every R > r ≥ 1, and
|z| = 1,

||B[P (R ·)]−αB[P (r ·)]||∞ ≤ [
|B[En(R ·)− αB[En(r ·)]|+ |1− α||λ0|

2
]||P ||∞,

where B ∈ Bn. The result is sharp and equality holds for a polynomial P (z) =
zn + 1.
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