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ON ALMOST EVERYWHERE CONVERGENCE OF SOME
SUB-SEQUENCES OF FEJER MEANS FOR INTEGRABLE
FUNCTIONS ON UNBOUNDED VILENKIN GROUPS

NACIMA MEMIC

ABSTRACT. By means of Gat’s methods in [2] our aim is to prove the
almost everywhere convergence of some sub-sequences of (o, f), to f, for
every integrable function f on unbounded Vilenkin groups. These are in fact
sub-sequences of the form (o, a1, f)n, where the numbers a,, are bounded.
This result can be considered as a generalization of Gat’s result concerning
the almost everywhere convergence of the sequence (o, f)n on unbounded
Vilenkin groups for every integrable function f.

1. INTRODUCTION

Many results concerning the a.e. convergence of the Fejér means (o, f),, have
been obtained for Vilenkin groups. On bounded groups, mean convergence
holds almost everywhere for integrable functions [4]. However, using different
methods on unbounded groups, G. Gét [1] proved this result for L? functions
when p > 1, and obtained in [2] that oy, f — f, a.e. for every integrable
function f. The same author [3] established the mean convergence almost
everywhere of the full sequence for integrable functions on rarely unbounded
groups. In the present paper we establish the almost everywhere convergence
of sub-sequences of the form (o,, s, f)n, where the numbers a,, are bounded,
to the integrable function f.

Let (mg,mq,...,My,,...) be an unbounded sequence of integers not less
than 2. We denote by P the set of positive integers and let N = P U {0}.
Let G :=[[,_y Zm,, where Z,,, denotes the discrete group of order m,, with
addition mod m,,. Each element from G can be represented as a sequence
(Zn)n, where z,, € {0,1,...,m, — 1}, for every integer n > 0. Addition in G
is obtained coordinatewise.
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The topology on G is generated by the subgroups I,, := {z = (2;); € G, x; =
0 for i < n}, and their translations I,,(y) := {z = (2;); € G,x; = y; for i < n}.
Sometimes we write I,(y) in the form I,(y) = I,(yo, - - -, Yn—1)-

Define the sequence (M,,),, as follows: My =1 and M, 1 = m, M,.

If u(1,) denotes the normalized product measure of I,, then it can be easily
seen that u(I,) = M, .

The generalized Rademacher functions are defined by

ro(x) :=e m neNuzxzeQG,
For every non-negative integer n, there exists a unique sequence (n;); so that
o
i=0

and the system of Vilenkin functions by
VYn(z) 1= Hr?i(:ﬂ), neN,ze€G.
=0

The Fourier coefficients, the partial sums of the Fourier series, the mean
values, the Dirichlet kernels, the Fejér means, and the Fejér kernels with respect
to the Vilenkin system are respectively defined as follows

Fo) = [ @)in@)e, 5.8 =3 f00 Balf) = S,

n—1 1 n 1 n
Dnzzwka Unfzgzskfa Kn:ﬁZDka
k=0 k=1 k=1

for every f € L(G).
It can be easily seen that

5.0w) = [ Daly = ) @)z, Das, (o) = My, (),
and
E.fly) = M, f(z)dz.
In(y)
Let A,s,j be fixed positive integers such that j < A and s < my, then

following G.G4t in the definition of the operators H; 4 and H; in [2], we define
the operators

i (y) = Mo /

U TA(Y0se s YA—j— 1T A=Y A—jt1sesYA—1)
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and for fixed s, j
Hif(y) = sup H;f(y).

A:s<my

The notation C' will be used for an absolute positive constant that may vary
in different contexts.

2. MAIN RESULTS

Lemma 2.1. For every fixed s the operator I:If is bounded on L*.

Proof. Let f € L?. Using the proof of [2, Lemma 2.3.] we can write
Hi \f = Hya(f73),

from which we get

13 A f 113 = 1 Hua(Fr20)I5 < ClfmlE < CUEFIE.

Since
Hls,Af = [:If,A(EA-i-lf)a
and
H; 4(Eaf) =0,
it follows

I sup Hyaflz =11 sup H;s(Basif — Eaf)ll3

A:is<my A:is<my
< Z ||ﬁf,A(EA+1f — Eaf)l3
Ais<mpy
<CY (Bamf — Eap)3 < ClLI3 O
A

Lemma 2.2. For every fized s the operator flf is of weak type (L', L').

Proof. We proceed as in the proof of [2, Lemma 2.4.]. Namely, let f € L' be
such that

8
supp(f) C U Ii(z,7) =1,

where Ij(z,7) = Ix+1(20, 21, - - -, 2k—1, J ), for some fixed z € G and j € {a,a +
1,...,8yc{0,1,...,my —1}.

If s < min(mg, my41), then suppose that [, fdu = 0, [, fridy = 0 and
J; f75dp = 0. We construct the set 61 as done in [2, Lemma 2.4.].

Take any y € I(z) \ 61. Clearly,

Hif(y) = H} o1 f () = Higrr (Ton ) ()
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From the proof of [2, Lemma 2.4.] it follows that

[ = [
Iu(2)\61 Iu(2)\61
[ HinGia Dy < €I
I (2)\61
Now if y € I_1(2) \ Ix(2), we get

Hif(y) = H o f(y) = Hig(f73)(y) = 0,

because [, fridp = 0.
Fory € [;_1(2) \ I;(2) for any | < k — 1, we get

Hy f(y) = H;, f(y) = 0,
because [, fdu = 0.
It follows that
H; [(y)dy < C| £l
G\61
If mpyy < s < my, then we only suppose that f satisfies f[ fdp = 0 and
fI fridp = 0. )
Then it is easily seen that Hf f(y) = 0 for every y € G \ 61.
If mp < s < My, then for [, fdp = 0 and [, fr;,;du = 0, we get in a
similar way that

/ o)y < CJLf L.
I (2)\61

moreover, H; f(y) = 0 for every y € G\ Ii(2).

Finally, if s > max(my, myy1), then we only suppose that f[ fdu = 0. In
this case we also obtain that H; f(y) = 0 for every y € G'\ 61

We follow the steps in the proof of [2, Lemma 2.4.] and introduce a decom-
position lemma but this latter will be the same as the decomposition made in
[5, Lemma 2]. For an arbitrary function f € L', if A > 0 is such that ||f]; < A

and (o) is a sequence of integers defined by oy = —s if s < my and a =0
otherwise, there exist mutually disjoint intervals J; = lﬁ i o ij(zj, l), j €P,
and integrable functions b and g such that

) llgllee < O,
) llll < Clfl
) supp(b) € U;Z, Jj,
5) [, bdp = ij br::j du = 0, for every j € P,
6) [, |bldu < C’ij | fldpu, for every j € P,

)
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In [5, Lemma 2] it was proved that for every j € P there exist constants a,
and by, such that

b(z) = f(x) — ar, — by, 7y (x), Va € J;.
We introduce the functions

hy(e) = Ba) = () [ 7 i @10, S P,

if s < mg,41 and h;(z) = b(x)1; (), otherwise.
Notice that for s < my, 41

[ had= [ = o) [ et [ i di=o,
Jj Jj Jj Jj

J J

S — 3 S »S R
because ij ry,+1dp = 0. But also , since ij ri, 417, dp = 0, we have

[ wridn = [ vidn = ) [ srdi [ g e =o

Besides
[ itk = [ bt [ g
s J 5

J J

=/ ST dp — ay, / Tr1dp
Jj Jj
Yk _g —s
- bk’j / rkj]rk;j—f—ldﬂ’ - / frk,‘j-i-ld/“j“ = 0.
Jj Jj

For s > my, 1, we obviously have

/ hidp :/ hiry 3 dp = 0.
Jj Jj !

J J

In this way we have proved that

i)y < Ol <€ [ 1fldn, ¥ e®.
G\6J; Jj

Following the steps used in [2, Lemma 2.4.], we obtain that
I C C
p(HP Y hy> ) < XZ 1Rl < S f 1l
=1 j=1

From

Febrg=3 hi+ > () / F73 adi)r, (@)1, + g
=1 j=1 i

=Y hj+G.
j=1
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The mutually disjoint intervals (J;),ep were constructed such that

D / 173, adt] < (s / Fldp < 3.

Therefore, the function G' remains bounded. Moreover,

Gl < ||g||1+2 I Ry e N e

Proceeding as in [2, Lemma 2.4.], we get

- HSG G
(e > 3y < M < I9 < Cyay < Sy
Finally,
r7s r7s = r7s ¢
U] > 20) < p(H7 Y by > A) + p(HG > A) < <[ £ O
j=1

Lemma 2.3. There exists an absolute constant C' > 0 such that for all j € P,
fe Ll and A > 0, we have

NS j
p(H T > 23) < 2S£
Proof. Since

Hif = sup MH,f< sup  Hi,f

J<A,s<mg

<
I
_
<.
|
—_

< sup ﬁ]ﬁAf+Z sup fI]ﬁAf.

0 J<A,s<my =0 J<A,s5<ma
A=k mod 2j ~7 A=k mod j,A#k mod 2j

B
Il

using the properties of the operators H ]]\2, introduced in [2, Lemma 2.5.], it is
easily seen that we only need to prove that for every k € {0,1,...,7 — 1} the
operators . R

2 sup  Hif,

J<A<Nj+k
A=k mod 2j

and ' B
27 sup H: L f
JSALSNj+k
A=k mod j,A#k mod 2j
are of weak type (L', L') uniformly on N.
We use a similar function as the permutation « introduced in [2, Lemma
2.5.]. Put

e o/(n)=mn,ifn>Nj+korn#k+2ljk—1+(20+1)j, forany [ € N,
o o/(k+2jl) =k + (20 +1)j —1,if 2 < N,
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o o/(k+(20+1)j —1) =k +21j, if 2l < N.
Let G’ be the Vilenkin group generated by the sequence (mqs(;));- Then, for
A< Nj+k, A=k mod j with A # k mod 2j, we have /(A — j) = A — 1,
o/(A—1)=A—7, but o/(A) = A.

- 1
5000) = May | f@)7 (@) da
g g TA(Y0, - YA—j—1,TA— 5 YA—jt1rYA 1)1'_ TA—j(y'_ x)
TA—;7YA—j
| [ L
T AU A Ty =)
TA—17YA-1
MA—' [7s —J IS
= M JHl,Af/(y/) < 2! ]Hl,Af/<y/)>
A1

where (2}); = (zas))i € G, for every x € G, (r),), is the convenient set of
Rademacher functions for G’ and f’ is defined on G’ by f'(2') = f(x).
Following the steps of [2, Lemma 2.5.] we get that
2 sup H Saf
JSASNj+k 7
A=k mod j
A#k  mod 2j
is of weak type (L', L') uniformly on N.
In a similar way if we introduce the permutation o:

e o/'(n)=mn,ifn>Nj+korn+#k+(2l+1)j,k—1+2lj, forany [ € N,
o o (k+ (20+1)j) =k+ (20 +2)j —1,if 20+ 1< N,
o a/(k+(20+2)j—1)=k+ (2 +1)j,if 2 +1< N,
let G" be the Vilenkin group generated by the sequence (mqr(;));.
fA=k+2j,l P wehave o' (A—j)=A—-1,a"(A—-1)=A—j, but
a(A) = A, then we have

- 1
A f(y) = Ma / f(@)7 () dz
g U TA(Y0,YA—j—1,TA—55YA—j4 10 yA—1)1 _'TA—J<y _'x)
TA—jFYA—j
—_ MA . / f”(.ﬁlﬁ”)(fﬁ (:U”))S 1 dl,/l
- —=J A
U TAWheth st gy asets )b — Taa (Y = 2)
@) 1 #VA
My i ~ .
= S W) < 2L 1Y),
A-1

where (2); = (Tar@))i € G”, for every x € G, (1), is the convenient set of

Rademacher functions for G” and f” is defined on G” by f"(z") = f(x).
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Consequently,
2 sup H iaf
j<ASNj+k 7
A=k mod 2j
is of weak type (L', L') uniformly on N, and the lemma is proved. 0]

Lemma 2.4. Let s € P be fixed. Then the operator

sup |ry Dy * f]
N:s<mpy

is of weak type (L', L').

Proof. We first prove that the mentioned operator is bounded on L2 For
g € L?, we have

2

dy

7% Dary * gll2 = M2, / / Py (@)g(a)de
In(y)

<oy [ ( B o) ( [ B 9(o)Pde) dy
e [ ( [ 9(o) e ) dy = 91}

Since 73, Dary * (Enf) = 0 and 3Dy * (f) = 73 Dary * (Eny1f), the same

argument used in Lemma 2.1 gives that sup |ry D, * f| is bounded on L.
N:s<mp
Now we use the decomposition mentioned in Lemma 2.2 with the same

notations for some fixed function f € L' and A > ||f|l;. Put b; =b- 1, for

o0

every j € P. We can write f = > b, +g.

Jj=1

Let y € G\ (U J;), then for every j € P, N € N with s < my,
j=1
/ n(2)bj(z)dx = 0.
In(y)
From which we get
/ v (x)b(z)dx = 0,
In(y)
consequently,

sup |(ry Dy * 0)(y)| = 0.

N:s<mpy
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Using the boundedness of the operator on L? and the argument used in
Lemma 2.2, we obtain

p({ sup |ryDay * f| > 203N G\UJ

N:s<mpy =1

p({ sup |ryDary * bl > AN G\UJ

N:s<mpy j=1

+p( sup  |ryDary * gl > A)

N:s<mpy
N:s<mpy A
Theorem 2.5. Let f € L', 1 € P fized. Then S,y f — [ almost everywhere
uniformly on ay € {1,2,...,min(l,my — 1)}.

Proof. Let ay < min(l,my —1). We write D, in the following form

MN 1 QMN—l QNMN 1 aN—l
S
(ZNMN - E wl E wl—i_ + E wl DMN + E TNDMN‘
i=Mpn i=(an—1)My s=1

Since sup \erDMN * f| is of weak type (L', L'), and from r$, Dy, * g — 0,
N:s<mp

for every polynomial g, repeating the method of [2, Theorem 2.1.], we get that
rvDuy * f — 0, almost everywhere. The result follows from the fact that

Dy, x [ — f, almost everywhere. OJ
Theorem 2.6. Let f € L', | € P fired. Then oaynryf — [ almost everywhere
uniformly on ay € {1,2,...,min(l,my — 1)}.
Proof. Let ay < min(l,my — 1).
1 aNMN
K, = D
=i 50
1 MN 2MN aNMN
= D Dy + ... D
I T SN S
k=1 k=Mpn+1 k=(any—1)Myn+1
1 M My Mp
- any My (Z Dy, + Z Darysr +-o Z D(“Nl)MNJFk)
k=1 k=1 k=1
anN— 1 MN
o S D
s=0 k=1

k=1 s=1 k=1

any—1 My
- CLNMN (ZDk+ Z Z sMn +TND’“))
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an—1 1 My 1 an—1 My

Z—Z bty + > Di+ > v D
s—1 anMy k=1 anMy s—1 k=1
an—1 any—1

1 1 1
= — N Doy + — Koy +— S 15 K.
aN ; My aN My an ; NAYMpy

Using [2, Theorem 2.1.] and Theorem 2.5, in order to prove that o,y f =
Koymy * [ — f almost everywhere uniformly on ay € {1,2,...,min(l, my —
1)}, it suffices to prove that r3 Ky, * f — 0, almost everywhere uniformly on
se{1,2,...,min(l,my — 1)}.

We use the method of [2, Theorem 2.1.]. Namely, we prove that the operator

sup |5 K, * f| is of weak type (L', L'), then noticing that Ky, * g

A:s<mp
vanishes whenever the polynomial g is constant on Iy-cosets, the result will
follow.

M,

In fact, since Ky, (z) = T 2 —zer € 1, K, (z) = Matlif 2 € 1,
and Ky, (z) = 0 otherwise, it follows

|(ra Ko, * F)(y)] = I/KMA(?J — x)r () f(z)dx]

< K, (y — )7y (2) f(2)dx
Ta(y)
A1
> Koy (y — )7 (o) f(2)dd
i—0 |1V It(y)\It+1(v)

< Sulf|(y +ZMt/ F@)F (@) da

Uz sy, TA®WO0s 9t —1,% 6 Y1415 A—1) 1=y —x)

<SMA|f| ZHA tAf

_SMA|f| Z

Hence,

Ais<mpy A:s<ma

sup |3 K, * fl(y) < sup Sar,|fl(y Z

Following the steps in the proof of [2, Theorem 2.1.] and replacing H; by
H?, the result follows by applying Lemma 2.3. U
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