GRÖBNER BASES OF MODULES OVER $\sigma-P B W$ EXTENSIONS

HAYDEE JIMÉNEZ AND OSWALDO LEZAMA

Abstract

For $\sigma-P W B$ extensions, we extend to modules the theory of Gröbner bases of left ideals presented in [5]. As an application, if A is a bijective quasi-commutative $\sigma-P W B$ extension, we compute the module of syzygies of a submodule of the free module A^{m}.

1. Introduction

In this paper we present the theory of Gröbner bases for submodules of A^{m}, $m \geq 1$, where $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a $\sigma-P B W$ extension of R, with R a $L G S$ ring (see Definition 12) and $\operatorname{Mon}(A)$ endowed with some monomial order (see Definition 9). A^{m} is the left free A-module of column vectors of length $m \geq 1$; if A is bijective, A is a left Noetherian ring (see [8]), then A is an $I B N$ ring (Invariant Basis Number), and hence, all bases of the free module A^{m} have m elements. Note moreover that A^{m} is a left Noetherian, and hence, any submodule of A^{m} is finitely generated. The main purpose is to define and calculate Gröbner bases for submodules of A^{m}, thus, we will define the monomials in A^{m}, orders on the monomials, the concept of reduction, we will construct a Division Algorithm, we will give equivalent conditions in order to define Gröbner bases, and finally, we will compute Gröbner bases using a procedure similar to Buchberger's Algorithm in the particular case of quasi-commutative bijective $\sigma-P B W$ extensions. The results presented here generalize those of [5] where $\sigma-P B W$ extensions were defined and the theory of Gröbner bases for the left ideals was constructed. Most of proofs are easily adapted from [5] and hence we will omit them. As an application, the final section of the paper concerns with the computation of the module of syzygies of a given submodule of A^{m} for the particular case when A is bijective quasi-commutative.

[^0]Definition 1. Let R and A be rings, we say that A is a $\sigma-P B W$ extension of R or skew $P B W$ extension, if the following conditions hold:
(i) $R \subseteq A$.
(ii) There exist finite elements $x_{1}, \ldots, x_{n} \in A-R$ such A is a left R-free module with basis

$$
\operatorname{Mon}(A):=\left\{x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}
$$

In this case we say also that A is a left polynomial ring over R with respect to $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\operatorname{Mon}(A)$ is the set of standard monomials of A. Moreover, $x_{1}^{0} \cdots x_{n}^{0}:=1 \in \operatorname{Mon}(A)$.
(iii) For every $1 \leq i \leq n$ and $r \in R-\{0\}$ there exists $c_{i, r} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{i} r-c_{i, r} x_{i} \in R . \tag{1.1}
\end{equation*}
$$

(iv) For every $1 \leq i, j \leq n$ there exists $c_{i, j} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{j} x_{i}-c_{i, j} x_{i} x_{j} \in R+R x_{1}+\cdots+R x_{n} . \tag{1.2}
\end{equation*}
$$

Under these conditions we will write $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$.
The following proposition justifies the notation that we have introduced for the skew $P B W$ extensions.

Proposition 2. Let A be a $\sigma-P B W$ extension of R. Then, for every $1 \leq i \leq$ n, there exist an injective ring endomorphism $\sigma_{i}: R \rightarrow R$ and a σ_{i}-derivation $\delta_{i}: R \rightarrow R$ such that

$$
x_{i} r=\sigma_{i}(r) x_{i}+\delta_{i}(r),
$$

for each $r \in R$.
Proof. See [5].
A particular case of $\sigma-P B W$ extension is when all derivations δ_{i} are zero. Another interesting case is when all σ_{i} are bijective. We have the following definition.

Definition 3. Let A be a $\sigma-P B W$ extension.
(a) A is quasi-commutative if the conditions (iii) and (iv) in the Definition 1 are replaced by
(iii') For every $1 \leq i \leq n$ and $r \in R-\{0\}$ there exists $c_{i, r} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{i} r=c_{i, r} x_{i} . \tag{1.3}
\end{equation*}
$$

(iv') For every $1 \leq i, j \leq n$ there exists $c_{i, j} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{j} x_{i}=c_{i, j} x_{i} x_{j} . \tag{1.4}
\end{equation*}
$$

(b) A is bijective if σ_{i} is bijective for every $1 \leq i \leq n$ and $c_{i, j}$ is invertible for any $1 \leq i<j \leq n$.

Some interesting examples of $\sigma-P B W$ extensions were given in [5]. We repeat next some of them without details.
Example 4. (i) Any $P B W$ extension (see [2]) is a bijective $\sigma-P B W$ extension.
(ii) Any skew polynomial ring $R[x ; \sigma, \delta]$, with σ injective, is a $\sigma-P B W$ extension; in this case we have $R[x ; \sigma, \delta]=\sigma(R)\langle x\rangle$. If additionally $\delta=0$, then $R[x ; \sigma]$ is quasi-commutative.
(iii) Any iterated skew polynomial ring $R\left[x_{1} ; \sigma_{1}, \delta_{1}\right] \cdots\left[x_{n} ; \sigma_{n}, \delta_{n}\right]$ is a $\sigma-$ $P B W$ extension if it satisfies the following conditions:

For $1 \leq i \leq n, \sigma_{i}$ is injective.
For every $r \in R$ and $1 \leq i \leq n$, $\sigma_{i}(r), \delta_{i}(r) \in R$.
For $i<j, \sigma_{j}\left(x_{i}\right)=c x_{i}+d$, with $c, d \in R$, and c has a left inverse.
For $i<j, \delta_{j}\left(x_{i}\right) \in R+R x_{1}+\cdots+R x_{i}$.
Under these conditions we have

$$
R\left[x_{1} ; \sigma_{1}, \delta_{1}\right] \cdots\left[x_{n} ; \sigma_{n}, \delta_{n}\right]=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle
$$

In particular, any Ore algebra $K\left[t_{1}, \ldots, t_{m}\right]\left[x_{1} ; \sigma_{1}, \delta_{1}\right] \cdots\left[x_{n} ; \sigma_{n}, \delta_{n}\right]$ (K a field) is a $\sigma-P B W$ extension if it satisfies the following condition:

For $1 \leq i \leq n, \sigma_{i}$ is injective.
Some concrete examples of Ore algebras of injective type are the following.
The algebra of shift operators: let $h \in K$, then the algebra of shift operators is defined by $S_{h}:=K[t]\left[x_{h} ; \sigma_{h}, \delta_{h}\right]$, where $\sigma_{h}(p(t)):=p(t-h)$, and $\delta_{h}:=0$ (observe that S_{h} can be considered also as a skew polynomial ring of injective type). Thus, S_{h} is a quasi-commutative bijective $\sigma-P B W$ extension.

The mixed algebra D_{h} : let again $h \in K$, then the mixed algebra D_{h} is defined by $D_{h}:=K[t]\left[x ; i_{K[t]}, \frac{d}{d t}\right]\left[x_{h} ; \sigma_{h}, \delta_{h}\right]$, where $\sigma_{h}(x):=x$. Then, D_{h} is a quasi-commutative bijective $\sigma-P B W$ extension.

The algebra for multidimensional discrete linear systems is defined by $D:=$ $K\left[t_{1}, \ldots, t_{n}\right]\left[x_{1}, \sigma_{1}, 0\right] \cdots\left[x_{n} ; \sigma_{n}, 0\right]$, where
$\sigma_{i}\left(p\left(t_{1}, \ldots, t_{n}\right)\right):=p\left(t_{1}, \ldots, t_{i-1}, t_{i}+1, t_{i+1}, \ldots, t_{n}\right), \quad \sigma_{i}\left(x_{i}\right)=x_{i}, \quad 1 \leq i \leq n$.
D is a quasi-commutative bijective $\sigma-P B W$ extension.
(iv) Additive analogue of the Weyl algebra: let K be a field, the K-algebra $A_{n}\left(q_{1}, \ldots, q_{n}\right)$ is generated by $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ and subject to the relations:

$$
\begin{gathered}
x_{j} x_{i}=x_{i} x_{j}, y_{j} y_{i}=y_{i} y_{j}, \quad 1 \leq i, j \leq n, \\
y_{i} x_{j}=x_{j} y_{i}, \quad i \neq j, \\
y_{i} x_{i}=q_{i} x_{i} y_{i}+1, \quad 1 \leq i \leq n,
\end{gathered}
$$

where $q_{i} \in K-\{0\} . \quad A_{n}\left(q_{1}, \ldots, q_{n}\right)$ satisfies the conditions of (iii) and is bijective; we have

$$
A_{n}\left(q_{1}, \ldots, q_{n}\right)=\sigma\left(K\left[x_{1}, \ldots, x_{n}\right]\right)\left\langle y_{1}, \ldots, y_{n}\right\rangle .
$$

(v) Multiplicative analogue of the Weyl algebra: let K be a field, the K algebra $\mathcal{O}_{n}\left(\lambda_{j i}\right)$ is generated by x_{1}, \ldots, x_{n} and subject to the relations:

$$
x_{j} x_{i}=\lambda_{j i} x_{i} x_{j}, 1 \leq i<j \leq n,
$$

where $\lambda_{j i} \in K-\{0\} . \mathcal{O}_{n}\left(\lambda_{j i}\right)$ satisfies the conditions of (iii), and hence

$$
\mathcal{O}_{n}\left(\lambda_{j i}\right)=\sigma\left(K\left[x_{1}\right]\right)\left\langle x_{2}, \ldots, x_{n}\right\rangle .
$$

Note that $\mathcal{O}_{n}\left(\lambda_{j i}\right)$ is quasi-commutative and bijective.
(vi) q-Heisenberg algebra: let K be a field, the K-algebra $h_{n}(q)$ is generated by $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}$ and subject to the relations:

$$
\begin{gathered}
x_{j} x_{i}=x_{i} x_{j}, z_{j} z_{i}=z_{i} z_{j}, y_{j} y_{i}=y_{i} y_{j}, \quad 1 \leq i, j \leq n, \\
z_{j} y_{i}=y_{i} z_{j}, z_{j} x_{i}=x_{i} z_{j}, y_{j} x_{i}=x_{i} y_{j}, \quad i \neq j, \\
z_{i} y_{i}=q y_{i} z_{i}, z_{i} x_{i}=q^{-1} x_{i} z_{i}+y_{i}, y_{i} x_{i}=q x_{i} y_{i}, \quad 1 \leq i \leq n,
\end{gathered}
$$

with $q \in K-\{0\} . h_{n}(q)$ is a bijective $\sigma-P B W$ extension of K :

$$
h_{n}(q)=\sigma(K)\left\langle x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n} ; z_{1}, \ldots, z_{n}\right\rangle
$$

(vi) Many other examples are presented in [8].

Definition 5. Let A be a $\sigma-P B W$ extension of R with endomorphisms σ_{i}, $1 \leq i \leq n$, as in Proposition 2 .
(i) For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}, \sigma^{\alpha}:=\sigma_{1}^{\alpha_{1}} \cdots \sigma_{n}^{\alpha_{n}},|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$. If $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$, then $\alpha+\beta:=\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{n}+\beta_{n}\right)$.
(ii) For $X=x^{\alpha} \in \operatorname{Mon}(A), \exp (X):=\alpha$ and $\operatorname{deg}(X):=|\alpha|$.
(iii) Let $0 \neq f \in A, t(f)$ is the finite set of terms that conform f, i.e., if $f=c_{1} X_{1}+\cdots+c_{t} X_{t}$, with $X_{i} \in \operatorname{Mon}(A)$ and $c_{i} \in R-\{0\}$, then $t(f):=\left\{c_{1} X_{1}, \ldots, c_{t} X_{t}\right\}$.
(iv) Let f be as in (iii), then $\operatorname{deg}(f):=\max \left\{\operatorname{deg}\left(X_{i}\right)\right\}_{i=1}^{t}$.

The $\sigma-P B W$ extensions can be characterized in a similar way as was done in [4] for $P B W$ rings.

Theorem 6. Let A be a left polynomial ring over R w.r.t $\left\{x_{1}, \ldots, x_{n}\right\}$. A is a $\sigma-P B W$ extension of R if and only if the following conditions hold:
(a) For every $x^{\alpha} \in \operatorname{Mon}(A)$ and every $0 \neq r \in R$ there exists unique elements $r_{\alpha}:=\sigma^{\alpha}(r) \in R-\{0\}$ and $p_{\alpha, r} \in A$ such that

$$
\begin{equation*}
x^{\alpha} r=r_{\alpha} x^{\alpha}+p_{\alpha, r}, \tag{1.5}
\end{equation*}
$$

where $p_{\alpha, r}=0$ or $\operatorname{deg}\left(p_{\alpha, r}\right)<|\alpha|$ if $p_{\alpha, r} \neq 0$. Moreover, if r is left invertible, then r_{α} is left invertible.
(b) For every $x^{\alpha}, x^{\beta} \in \operatorname{Mon}(A)$ there exist unique elements $c_{\alpha, \beta} \in R$ and $p_{\alpha, \beta} \in A$ such that

$$
\begin{equation*}
x^{\alpha} x^{\beta}=c_{\alpha, \beta} x^{\alpha+\beta}+p_{\alpha, \beta}, \tag{1.6}
\end{equation*}
$$

where $c_{\alpha, \beta}$ is left invertible, $p_{\alpha, \beta}=0$ or $\operatorname{deg}\left(p_{\alpha, \beta}\right)<|\alpha+\beta|$ if $p_{\alpha, \beta} \neq 0$.
Proof. See [5].

Remark 7. (i) A left inverse of $c_{\alpha, \beta}$ will be denoted by $c_{\alpha, \beta}^{\prime}$. We observe that if $\alpha=0$ or $\beta=0$, then $c_{\alpha, \beta}=1$ and hence $c_{\alpha, \beta}^{\prime}=1$.
(ii) Let $\theta, \gamma, \beta \in \mathbb{N}^{n}$ and $c \in R$, then we it is easy to check the following identities:

$$
\begin{gathered}
\sigma^{\theta}\left(c_{\gamma, \beta}\right) c_{\theta, \gamma+\beta}=c_{\theta, \gamma} c_{\theta+\gamma, \beta}, \\
\sigma^{\theta}\left(\sigma^{\gamma}(c)\right) c_{\theta, \gamma}=c_{\theta, \gamma} \sigma^{\theta+\gamma}(c) .
\end{gathered}
$$

(iii) We observe if A is a $\sigma-P B W$ extension quasi-commutative, then from the proof of Theorem 6 (see [5]) we conclude that $p_{\alpha, r}=0$ and $p_{\alpha, \beta}=0$, for every $0 \neq r \in R$ and every $\alpha, \beta \in \mathbb{N}^{n}$.
(iv) We have also that if A is a bijective $\sigma-P B W$ extension, then $c_{\alpha, \beta}$ is invertible for any $\alpha, \beta \in \mathbb{N}^{n}$.

A key property of $\sigma-P B W$ extensions is the content of the following theorem.

Theorem 8. Let A be a bijective skew $P B W$ extension of R. If R is a left Noetherian ring then A is also a left Noetherian ring.

Proof. See [8].
Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a $\sigma-P B W$ extension of R and let \succeq be a total order defined on $\operatorname{Mon}(A)$. If $x^{\alpha} \succeq x^{\beta}$ but $x^{\alpha} \neq x^{\beta}$ we will write $x^{\alpha} \succ x^{\beta}$. Let $f \neq 0$ be a polynomial of A, if

$$
f=c_{1} X_{1}+\cdots+c_{t} X_{t}
$$

with $c_{i} \in R-\{0\}$ and $X_{1} \succ \cdots \succ X_{t}$ are the monomials of f, then $\operatorname{lm}(f):=X_{1}$ is the leading monomial of $f, \operatorname{lc}(f):=c_{1}$ is the leading coefficient of f and $\operatorname{lt}(f):=c_{1} X_{1}$ is the leading term of f. If $f=0$, we define $\operatorname{lm}(0):=0, \operatorname{lc}(0):=$ $0, \operatorname{lt}(0):=0$, and we set $X \succ 0$ for any $X \in \operatorname{Mon}(A)$. Thus, we extend \succeq to $\operatorname{Mon}(A) \cup\{0\}$.

Definition 9. Let \succeq be a total order on $\operatorname{Mon}(A)$, we say that \succeq is a monomial order on $\operatorname{Mon}(A)$ if the following conditions hold:
(i) For every $x^{\beta}, x^{\alpha}, x^{\gamma}, x^{\lambda} \in \operatorname{Mon}(A)$

$$
x^{\beta} \succeq x^{\alpha} \Rightarrow \operatorname{lm}\left(x^{\gamma} x^{\beta} x^{\lambda}\right) \succeq \operatorname{lm}\left(x^{\gamma} x^{\alpha} x^{\lambda}\right)
$$

(ii) $x^{\alpha} \succeq 1$, for every $x^{\alpha} \in \operatorname{Mon}(A)$.
(iii) \succeq is degree compatible, i.e., $|\beta| \geq|\alpha| \Rightarrow x^{\beta} \succeq x^{\alpha}$.

Monomial orders are also called admissible orders. From now on we will assume that $\operatorname{Mon}(A)$ is endowed with some monomial order.
Definition 10. Let $x^{\alpha}, x^{\beta} \in \operatorname{Mon}(A)$, we say that x^{α} divides x^{β}, denoted by $x^{\alpha} \mid x^{\beta}$, if there exists $x^{\gamma}, x^{\lambda} \in \operatorname{Mon}(A)$ such that $x^{\beta}=\operatorname{lm}\left(x^{\gamma} x^{\alpha} x^{\lambda}\right)$.
Proposition 11. Let $x^{\alpha}, x^{\beta} \in \operatorname{Mon}(A)$ and $f, g \in A-\{0\}$. Then,
(a) $\operatorname{lm}\left(x^{\alpha} g\right)=\operatorname{lm}\left(x^{\alpha} \operatorname{lm}(g)\right)=x^{\alpha+\exp (\operatorname{lm}(g))}$. In particular,

$$
\operatorname{lm}(\operatorname{lm}(f) \operatorname{lm}(g))=x^{\exp (\ln (f))+\exp (\operatorname{lm}(g))}
$$

and

$$
\begin{equation*}
\operatorname{lm}\left(x^{\alpha} x^{\beta}\right)=x^{\alpha+\beta} . \tag{1.7}
\end{equation*}
$$

(b) The following conditions are equivalent:
(i) $x^{\alpha} \mid x^{\beta}$.
(ii) There exists a unique $x^{\theta} \in \operatorname{Mon}(A)$ such that $x^{\beta}=\operatorname{lm}\left(x^{\theta} x^{\alpha}\right)=$ $x^{\theta+\alpha}$ and hence $\beta=\theta+\alpha$.
(iii) There exists a unique $x^{\theta} \in \operatorname{Mon}(A)$ such that $x^{\beta}=\operatorname{lm}\left(x^{\alpha} x^{\theta}\right)=$ $x^{\alpha+\theta}$ and hence $\beta=\alpha+\theta$.
(iv) $\beta_{i} \geq \alpha_{i}$ for $1 \leq i \leq n$, with $\beta:=\left(\beta_{1}, \ldots, \beta_{n}\right)$ and $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Proof. See [5].
We note that a least common multiple of monomials of $\operatorname{Mon}(A)$ there exists: in fact, let $x^{\alpha}, x^{\beta} \in \operatorname{Mon}(A)$, then $\operatorname{lcm}\left(x^{\alpha}, x^{\beta}\right)=x^{\gamma} \in \operatorname{Mon}(A)$, where $\gamma=$ $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with $\gamma_{i}:=\max \left\{\alpha_{i}, \beta_{i}\right\}$ for each $1 \leq i \leq n$.

Some natural computational conditions on R will be assumed in the rest of this paper (compare with [7]).
Definition 12. A ring R is left Gröbner soluble $L G S$ if the following conditions hold:
(i) R is left Noetherian.
(ii) Given $a, r_{1}, \ldots, r_{m} \in R$ there exists an algorithm which decides whether a is in the left ideal $R r_{1}+\cdots+R r_{m}$, and if so, find $b_{1}, \ldots, b_{m} \in R$ such that $a=b_{1} r_{1}+\cdots+b_{m} r_{m}$.
(iii) Given $r_{1}, \ldots, r_{m} \in R$ there exists an algorithm which finds a finite set of generators of the left R-module

$$
\mathrm{Syz}_{R}\left[r_{1} \cdots r_{m}\right]:=\left\{\left(b_{1}, \ldots, b_{m}\right) \in R^{m} \mid b_{1} r_{1}+\cdots+b_{m} r_{m}=0\right\} .
$$

The three above conditions imposed to R are needed in order to guarantee a Gröbner theory in the rings of coefficients, in particular, to have an effective solution of the membership problem in R (see (ii) in Definition 20 below). From now on we will assume that $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a $\sigma-P B W$ extension of R, where R is a $L G S$ ring and $\operatorname{Mon}(A)$ is endowed with some monomial order.

We conclude this chapter with a remark about some other classes of noncommutative rings of polynomial type close related with $\sigma-P B W$ extensions.

Remark 13. (i) Viktor Levandovskyy has defined in [6] the G-algebras and has constructed the theory of Gröbner bases for them. Let K be a field, a K algebra A is called a G-algebra if $K \subset Z(A)$ (center of A) and A is generated by a finite set $\left\{x_{1}, \ldots, x_{n}\right\}$ of elements that satisfy the following conditions: (a) the collection of standard monomials of $A, \operatorname{Mon}(A)=\operatorname{Mon}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$, is a K-basis of A. (b) $x_{j} x_{i}=c_{i j} x_{i} x_{j}+d_{i j}$, for $1 \leq i<j \leq n$, with $c_{i j} \in K^{*}$
and $d_{i j} \in A$. (c) There exists a total order $<_{A}$ on $\operatorname{Mon}(A)$ such that for $i<j$, $\operatorname{lm}\left(d_{i j}\right)<{ }_{A} x_{i} x_{j}$. (d) For $1 \leq i<j<k \leq n, c_{i k} c_{j k} d_{i j} x_{k}-x_{k} d_{i j}+c_{j k} x_{j} d_{i k}-$ $c_{i j} d_{i k} x_{j}+d_{j k} x_{i}-c_{i j} c_{i k} x_{i} d_{j k}=0$. According to this definition, the coefficients of a polynomial in a G-algebra are in a field and they commute with the variables x_{1}, \ldots, x_{n}. From this, and also from (c) and (d), we conclude that the class of G-algebras does not coincide with the class of $\sigma-P B W$ extensions. However, the intersection of these two classes of rings is not empty. In fact, the universal enveloping algebra of a finite dimensional Lie algebra, Weyl algebras and the additive or multiplicative analogue of a Weyl algebra, are G-algebras and also $\sigma-P B W$ extensions.
(ii) A similar remark can be done with respect to $P B W$ rings and algebras defined by Bueso, Gómez-Torrecillas and Verschoren in [3].

2. Monomial orders on $\operatorname{Mon}\left(A^{m}\right)$

We will often write the elements of A^{m} also as row vectors if this not represent confusion. We recall that the canonical basis of A^{m} is

$$
\boldsymbol{e}_{1}=(1,0, \ldots, 0), \boldsymbol{e}_{2}=(0,1,0, \ldots, 0), \ldots, \boldsymbol{e}_{m}=(0,0, \ldots, 1)
$$

Definition 14. A monomial in A^{m} is a vector $\mathbf{X}=X \mathbf{e}_{i}$, where $X=x^{\alpha} \in$ $\operatorname{Mon}(A)$ and $1 \leq i \leq m$, i.e.,

$$
\mathbf{X}=X \mathbf{e}_{i}=(0, \ldots, X, \ldots, 0)
$$

where X is in the i th position, named the index of $\mathbf{X}, \operatorname{ind}(\mathbf{X}):=i$. A term is a vector $c \mathbf{X}$, where $c \in R$. The set of monomials of A^{m} will be denoted by $\operatorname{Mon}\left(A^{m}\right)$. Let $\mathbf{Y}=Y \mathbf{e}_{j} \in \operatorname{Mon}\left(A^{m}\right)$, we say that \mathbf{X} divides \mathbf{Y} if $i=j$ and X divides Y. We will say that any monomial $\mathbf{X} \in \operatorname{Mon}\left(A^{m}\right)$ divides the null vector \boldsymbol{O}. The least common multiple of \mathbf{X} and \mathbf{Y}, denoted by $\operatorname{lcm}(\mathbf{X}, \mathbf{Y})$, is \boldsymbol{O} if $i \neq j$, and $U \mathbf{e}_{i}$, where $U=\operatorname{lcm}(X, Y)$, if $i=j$. Finally, we define $\exp (\mathbf{X}):=\exp (X)=\alpha$ and $\operatorname{deg}(\mathbf{X}):=\operatorname{deg}(X)=|\alpha|$.

We now define monomials orders on $\operatorname{Mon}\left(A^{m}\right)$.
Definition 15. A monomial order on $\operatorname{Mon}\left(A^{m}\right)$ is a total order \succeq satisfying the following three conditions:
(i) $\operatorname{lm}\left(x^{\beta} x^{\alpha}\right) \mathbf{e}_{i} \succeq x^{\alpha} \mathbf{e}_{i}$, for every monomial $\mathbf{X}=x^{\alpha} \mathbf{e}_{i} \in \operatorname{Mon}\left(A^{m}\right)$ and any monomial x^{β} in $\operatorname{Mon}(A)$.
(ii) If $\mathbf{Y}=x^{\beta} \mathbf{e}_{j} \succeq \mathbf{X}=x^{\alpha} \mathbf{e}_{i}$, then $\operatorname{lm}\left(x^{\gamma} x^{\beta}\right) \mathbf{e}_{j} \succeq \operatorname{lm}\left(x^{\gamma} x^{\alpha}\right) \mathbf{e}_{i}$ for all $\mathbf{X}, \mathbf{Y} \in$ $\operatorname{Mon}\left(A^{m}\right)$ and every $x^{\gamma} \in \operatorname{Mon}(A)$.
(iii) \succeq is degree compatible, i.e., $\operatorname{deg}(\mathbf{X}) \geq \operatorname{deg}(\mathbf{Y}) \Rightarrow \mathbf{X} \succeq \mathbf{Y}$.

If $\mathbf{X} \succeq \mathbf{Y}$ but $\mathbf{X} \neq \mathbf{Y}$ we will write $\mathbf{X} \succ \mathbf{Y}$. $\mathbf{Y} \preceq \mathbf{X}$ means that $\mathbf{X} \succeq \mathbf{Y}$.
Proposition 16. Every monomial order on $\operatorname{Mon}\left(A^{m}\right)$ is a well order.
Proof. We can easy adapt the proof for left ideals presented in [5].
Given a monomial order \succeq on $\operatorname{Mon}(A)$, we can define two natural orders on $\operatorname{Mon}\left(A^{m}\right)$.

Definition 17. Let $\mathbf{X}=X \mathbf{e}_{i}$ and $\mathbf{Y}=Y \mathbf{e}_{j} \in \operatorname{Mon}\left(A^{m}\right)$.
(i) The TOP term over position order is defined by

$$
\mathbf{X} \succeq \mathbf{Y} \Longleftrightarrow\left\{\begin{array}{l}
X \succeq Y \\
\text { or } \\
X=Y \text { and } \quad i>j
\end{array}\right.
$$

(ii) The TOPREV order is defined by

$$
\mathbf{X} \succeq \mathbf{Y} \Longleftrightarrow\left\{\begin{array}{l}
X \succeq Y \\
\text { or } \\
X=Y \text { and } \quad i<j
\end{array}\right.
$$

Remark 18. (i) Note that with TOP we have

$$
\boldsymbol{e}_{m} \succ \boldsymbol{e}_{m-1} \succ \cdots \succ \boldsymbol{e}_{1}
$$

and

$$
e_{1} \succ e_{2} \succ \cdots \succ e_{m}
$$

for TOPREV.
(ii) The POT (position over term) and POTREV orders defined in [1] and [7] for modules over classical polynomial commutative rings are not degree compatible.
(iii) Other examples of monomial orders in $\operatorname{Mon}\left(A^{m}\right)$ are considered in [3].

We fix monomial orders on $\operatorname{Mon}(A)$ and $\operatorname{Mon}\left(A^{m}\right)$; let $\boldsymbol{f} \neq \mathbf{0}$ be a vector of A^{m}, then we may write \boldsymbol{f} as a sum of terms in the following way

$$
\boldsymbol{f}=c_{1} \boldsymbol{X}_{1}+\cdots+c_{t} \boldsymbol{X}_{t},
$$

where $c_{1}, \ldots, c_{t} \in R-\{0\}$ and $\boldsymbol{X}_{1} \succ \boldsymbol{X}_{2} \succ \cdots \succ \boldsymbol{X}_{t}$ are monomials of $\operatorname{Mon}\left(A^{m}\right)$.

Definition 19. With the above notation, we say that
(i) $\operatorname{lt}(\mathbf{f}):=c_{1} \mathbf{X}_{1}$ is the leading term of \mathbf{f}.
(ii) $\operatorname{lc}(\mathbf{f}):=c_{1}$ is the leading coefficient of \mathbf{f}.
(iii) $\operatorname{lm}(\mathbf{f}):=\mathbf{X}_{1}$ is the leading monomial of \mathbf{f}.

For $\boldsymbol{f}=\mathbf{0}$ we define $\operatorname{lm}(\mathbf{0})=\mathbf{0}, \operatorname{lc}(\mathbf{0})=0, \operatorname{lt}(\mathbf{0})=\mathbf{0}$, and if \succeq is a monomial order on $\operatorname{Mon}\left(A^{m}\right)$, then we define $\mathbf{X} \succ \mathbf{0}$ for any $\mathbf{X} \in \operatorname{Mon}\left(A^{m}\right)$. So, we extend \succeq to $\operatorname{Mon}\left(A^{m}\right) \cup\{\mathbf{0}\}$.

3. Reduction in A^{m}

The reduction process in A^{m} is defined as follows.
Definition 20. Let F be a finite set of non-zero vectors of A^{m}, and let $\mathbf{f}, \mathbf{h} \in$ A^{m}, we say that \mathbf{f} reduces to \mathbf{h} by F in one step, denoted $\mathbf{f} \xrightarrow{F} \mathbf{h}$, if there exist elements $\mathbf{f}_{1}, \ldots, \mathbf{f}_{t} \in F$ and $r_{1}, \ldots, r_{t} \in R$ such that
(i) $\operatorname{lm}\left(\mathbf{f}_{i}\right) \mid \operatorname{lm}(\mathbf{f}), 1 \leq i \leq t$, i.e., $\operatorname{ind}\left(\operatorname{lm}\left(\mathbf{f}_{i}\right)\right)=\operatorname{ind}(\operatorname{lm}(\mathbf{f}))$ and there exists $x^{\alpha_{i}} \in \operatorname{Mon}(A)$ such that $\alpha_{i}+\exp \left(\operatorname{lm}\left(\mathbf{f}_{i}\right)\right)=\exp (\operatorname{lm}(\mathbf{f}))$.
(ii) $\operatorname{lc}(\mathbf{f})=r_{1} \sigma^{\alpha_{1}}\left(\operatorname{lc}\left(\mathbf{f}_{1}\right)\right) c_{\alpha_{1}, \mathbf{f}_{1}}+\cdots+r_{t} \sigma^{\alpha_{t}}\left(\operatorname{lc}\left(\mathbf{f}_{t}\right)\right) c_{\alpha_{t}, \mathbf{f}_{t}}$, with $c_{\alpha_{i}, \mathbf{f}_{i}}:=$ $c_{\alpha_{i}, \exp \left(\operatorname{lm}\left(\boldsymbol{f}_{i}\right)\right)}$.
(iii) $\mathbf{h}=\mathbf{f}-\sum_{i=1}^{t} r_{i} x^{\alpha_{i}} \mathbf{f}_{i}$.

We say that \mathbf{f} reduces to \mathbf{h} by F, denoted $\mathbf{f} \xrightarrow{F} \mathbf{h}_{+}$, if and only if there exist vectors $\mathbf{h}_{1}, \ldots, \mathbf{h}_{t-1} \in A^{m}$ such that

$$
\mathbf{f} \xrightarrow{F} \mathbf{h}_{1} \xrightarrow{F} \mathbf{h}_{2} \xrightarrow{F} \cdots \xrightarrow{F} \mathbf{h}_{t-1} \xrightarrow{F} \mathbf{h} .
$$

\mathbf{f} is reduced also called minimal w.r.t. F if $\mathbf{f}=\boldsymbol{O}$ or there is no one step reduction of \mathbf{f} by F, i.e., one of the first two conditions of Definition 20 fails. Otherwise, we will say that \mathbf{f} is reducible w.r.t. F. If $\mathbf{f} \xrightarrow{F} \mathbf{h}_{+}$and \mathbf{h} is reduced w.r.t. F, then we say that \mathbf{h} is a remainder for \mathbf{f} w.r.t. F.

Remark 21. Related to the previous definition we have the following remarks:
(i) By Theorem 6, the coefficients $c_{\alpha_{i}, f_{i}}$ are unique and satisfy

$$
x^{\alpha_{i}} x^{\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{i}\right)\right)}=c_{\alpha_{i}, f_{i}} x^{\alpha_{i}+\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{i}\right)\right)}+p_{\alpha_{i}, f_{i}},
$$

where $p_{\alpha_{i}, f_{i}}=0$ or $\operatorname{deg}\left(\operatorname{lm}\left(p_{\alpha_{i}, f_{i}}\right)\right)<\left|\alpha_{i}+\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{i}\right)\right)\right|, 1 \leq i \leq t$.
(ii) $\operatorname{lm}(\boldsymbol{f}) \succ \operatorname{lm}(\boldsymbol{h})$ and $\boldsymbol{f}-\boldsymbol{h} \in\langle F\rangle$, where $\langle F\rangle$ is the submodule of A^{m} generated by F.
(iii) The remainder of \boldsymbol{f} is not unique.
(iv) By definition we will assume that $\mathbf{0} \xrightarrow{F} \mathbf{0}$.
(v)

$$
\operatorname{lt}(\boldsymbol{f})=\sum_{i=1}^{t} r_{i} \operatorname{lt}\left(x^{\alpha_{i}} \operatorname{lt}\left(\boldsymbol{f}_{i}\right)\right)
$$

The proofs of the next technical proposition and theorem can be also adapted from [5].
Proposition 22. Let A be a $\sigma-P B W$ extension such that $c_{\alpha, \beta}$ is invertible for each $\alpha, \beta \in \mathbb{N}^{n}$. Let $\boldsymbol{f}, \boldsymbol{h} \in A^{m}, \theta \in \mathbb{N}^{n}$ and $F=\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{t}\right\}$ be a finite set of non-zero vectors of A^{m}. Then,
(i) If $\boldsymbol{f} \xrightarrow{F} \boldsymbol{h}$, then there exists $\boldsymbol{p} \in A^{m}$ with $\boldsymbol{p}=\mathbf{0}$ or $\operatorname{lm}\left(x^{\theta} \boldsymbol{f}\right) \succ \operatorname{lm}(\boldsymbol{p})$ such that $x^{\theta} \boldsymbol{f}+\boldsymbol{p} \xrightarrow{F} x^{\theta} \boldsymbol{h}$. In particular, if A is quasi-commutative, then $\boldsymbol{p}=\mathbf{0}$.
(ii) If $\boldsymbol{f} \xrightarrow{F}_{+} \boldsymbol{h}$ and $\boldsymbol{p} \in A^{m}$ is such that $\boldsymbol{p}=\mathbf{0}$ or $\operatorname{lm}(\boldsymbol{h}) \succ \operatorname{lm}(\boldsymbol{p})$, then $\boldsymbol{f}+\boldsymbol{p} \xrightarrow{F} \boldsymbol{h}+\boldsymbol{p}$.
(iii) If $\boldsymbol{f} \xrightarrow{F}{ }_{+} \boldsymbol{h}$, then there exists $\boldsymbol{p} \in A^{m}$ with $\boldsymbol{p}=\mathbf{0}$ or $\operatorname{lm}\left(x^{\theta} \boldsymbol{f}\right) \succ \operatorname{lm}(\boldsymbol{p})$ such that $x^{\theta} \boldsymbol{f}+\boldsymbol{p} \xrightarrow{F}+x^{\theta} \boldsymbol{h}$. If A is quasi-commutative, then $\boldsymbol{p}=\mathbf{0}$.
(iv) If $\boldsymbol{f} \xrightarrow{F}+\mathbf{0}$, then there exists $\boldsymbol{p} \in A^{m}$ with $\boldsymbol{p}=\mathbf{0}$ or $\operatorname{lm}\left(x^{\theta} \boldsymbol{f}\right) \succ \operatorname{lm}(\boldsymbol{p})$ such that $x^{\theta} \boldsymbol{f}+\boldsymbol{p} \xrightarrow{F} \mathbf{0}_{+}$. If A is quasi-commutative, then $\boldsymbol{p}=\mathbf{0}$.

Theorem 23. Let $F=\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{t}\right\}$ be a set of non-zero vectors of A^{m} and $\boldsymbol{f} \in A^{m}$, then the Division Algorithm below produces polynomials $q_{1}, \ldots, q_{t} \in A$ and a reduced vector $\boldsymbol{h} \in A^{m}$ w.r.t. F such that $\boldsymbol{f} \xrightarrow{F}_{+} \boldsymbol{h}$ and

$$
\boldsymbol{f}=q_{1} \boldsymbol{f}_{1}+\cdots+q_{t} \boldsymbol{f}_{t}+\boldsymbol{h}
$$

with

$$
\operatorname{lm}(\boldsymbol{f})=\max \left\{\operatorname{lm}\left(\operatorname{lm}\left(q_{1}\right) \operatorname{lm}\left(\boldsymbol{f}_{1}\right)\right), \ldots, \operatorname{lm}\left(\operatorname{lm}\left(q_{t}\right) \operatorname{lm}\left(\boldsymbol{f}_{t}\right)\right), \operatorname{lm}(\boldsymbol{h})\right\} .
$$

Division Algorithm in A^{m}

```
INPUT: }\boldsymbol{f},\mp@subsup{\boldsymbol{f}}{1}{},\ldots,\mp@subsup{\boldsymbol{f}}{t}{}\in\mp@subsup{A}{}{m}\mathrm{ with }\mp@subsup{\boldsymbol{f}}{j}{}\not=\mathbf{0}(1\leqj\leqt
OUTPUT: }\mp@subsup{q}{1}{},\ldots,\mp@subsup{q}{t}{}\inA,\boldsymbol{h}\in\mp@subsup{A}{}{m}\mathrm{ with }\boldsymbol{f}=\mp@subsup{q}{1}{}\mp@subsup{\boldsymbol{f}}{1}{}+\cdots+\mp@subsup{q}{t}{}\mp@subsup{\boldsymbol{f}}{t}{}+\boldsymbol{h}\mathrm{ ,
    h reduced w.r.t. {\mp@subsup{\boldsymbol{f}}{1}{},\ldots,\mp@subsup{\boldsymbol{f}}{t}{}}\mathrm{ and}
        lm}(\boldsymbol{f})=\operatorname{max}{\operatorname{lm}(\operatorname{lm}(\mp@subsup{q}{1}{})\operatorname{lm}(\mp@subsup{\boldsymbol{f}}{1}{})),\ldots,\operatorname{lm}(\operatorname{lm}(\mp@subsup{q}{t}{})\operatorname{lm}(\mp@subsup{\boldsymbol{f}}{t}{\prime})),\operatorname{lm}(\boldsymbol{h})
INITIALIZATION: }\mp@subsup{q}{1}{}:=0,\mp@subsup{q}{2}{}:=0,\ldots,\mp@subsup{q}{t}{}:=0,\boldsymbol{h}:=\boldsymbol{f
    WHILE }\boldsymbol{h}\not=\mathbf{0}\mathrm{ and there exists j such that }\operatorname{lm}(\mp@subsup{\boldsymbol{f}}{j}{})\mathrm{ divides }\operatorname{lm}(\boldsymbol{h}
    DO
```

 Calculate \(J:=\left\{j \mid \operatorname{lm}\left(\boldsymbol{f}_{j}\right)\right.\) divides \(\left.\operatorname{lm}(\boldsymbol{h})\right\}\)
 FOR \(j \in J\) DO
 Calculate \(\alpha_{j} \in \mathbb{N}^{n}\) such that \(\alpha_{j}+\)
 \(\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{j}\right)\right)=\exp (\operatorname{lm}(\boldsymbol{h}))\)
 IF the equation \(\operatorname{lc}(\boldsymbol{h})=\sum_{j \in J} r_{j} \sigma^{\alpha_{j}}\left(\operatorname{lc}\left(\boldsymbol{f}_{j}\right)\right) c_{\alpha_{j}, \boldsymbol{f}_{j}}\) is solu-
 ble, where \(c_{\alpha_{j}, f_{j}}\) are defined as in Definition 20
 THEN
 Calculate one solution \(\left(r_{j}\right)_{j \in J}\)
 \(\boldsymbol{h}:=\boldsymbol{h}-\sum_{j \in J} r_{j} x^{\alpha_{j}} \boldsymbol{f}_{j}\)
 FOR \(j \in J\) DO
 \(q_{j}:=q_{j}+r_{j} x^{\alpha_{j}}\)
 ELSE
 Stop
 Example 24. We consider the Heisenberg algebra, $A:=h_{1}(2)=\sigma(\mathbb{Q})\langle x, y, z\rangle$, with deglex order and $x>y>z$ in $\operatorname{Mon}(A)$ and the TOPREV order in $\operatorname{Mon}\left(A^{3}\right)$ with $\boldsymbol{e}_{1} \succ \boldsymbol{e}_{2} \succ \boldsymbol{e}_{3}$. Let $\boldsymbol{f}:=x^{2} y z \boldsymbol{e}_{1}+y^{2} z \boldsymbol{e}_{2}+x z \boldsymbol{e}_{1}+z^{2} \boldsymbol{e}_{3}, \boldsymbol{f}_{1}:=$ $x z \boldsymbol{e}_{1}+x \boldsymbol{e}_{3}+y \boldsymbol{e}_{2}$ and $\boldsymbol{f}_{2}:=x y \boldsymbol{e}_{1}+z \boldsymbol{e}_{2}+z \boldsymbol{e}_{3}$. Following the Division Algorithm we will compute $q_{1}, q_{2} \in A$ and $\boldsymbol{h} \in A^{3}$ such that $\boldsymbol{f}=q_{1} \boldsymbol{f}_{1}+q_{2} \boldsymbol{f}_{2}+\boldsymbol{h}$, with $\operatorname{lm}(\boldsymbol{f})=\max \left\{\operatorname{lm}\left(\operatorname{lm}\left(q_{1}\right) \operatorname{lm}\left(\boldsymbol{f}_{1}\right)\right), \operatorname{lm}\left(\operatorname{lm}\left(q_{2}\right) \operatorname{lm}\left(\boldsymbol{f}_{2}\right)\right), \operatorname{lm}(\boldsymbol{h})\right\}$. We will represent the elements of $\operatorname{Mon}(A)$ by t^{α} instead of x^{α}. For $j=1,2$, we will note $\alpha_{j}:=$ $\left(\alpha_{j 1}, \alpha_{j 2}, \alpha_{j 3}\right) \in \mathbb{N}^{3}$.

Step 1: we start with $\boldsymbol{h}:=\boldsymbol{f}, q_{1}:=0$ and $q_{2}:=0$; since $\operatorname{lm}\left(\boldsymbol{f}_{1}\right) \mid \operatorname{lm}(\boldsymbol{h})$ and $\operatorname{lm}\left(\boldsymbol{f}_{2}\right) \mid \operatorname{lm}(\boldsymbol{h})$, we compute α_{j} such that $\alpha_{j}+\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{\boldsymbol{j}}\right)\right)=\exp (\operatorname{lm}(\boldsymbol{h}))$.

- $\operatorname{lm}\left(t^{\alpha_{1}} \operatorname{lm}\left(\boldsymbol{f}_{1}\right)\right)=\operatorname{lm}(\boldsymbol{h})$, so $\operatorname{lm}\left(x^{\alpha_{11}} y^{\alpha_{12}} z^{\alpha_{13}} x z\right)=x^{2} y z$, and hence $\alpha_{11}=1 ; \alpha_{12}=1 ; \alpha_{13}=0$. Thus, $t^{\alpha_{1}}=x y$.
- $\operatorname{lm}\left(t^{\alpha_{2}} \operatorname{lm}\left(\boldsymbol{f}_{2}\right)\right)=\operatorname{lm}(\boldsymbol{h})$, so $\operatorname{lm}\left(x^{\alpha_{21}} y^{\alpha_{22}} z^{\alpha_{23}} x y\right)=x^{2} y z$, and hence $\alpha_{21}=1 ; \alpha_{22}=0 ; \alpha_{23}=1$. Thus, $t^{\alpha_{2}}=x z$.

Next, for $j=1,2$ we compute $c_{\alpha_{j}, f_{j}}$:

- $t^{\alpha_{1}} t^{\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{1}\right)\right)}=(x y)(x z)=x(2 x y) z=2 x^{2} y z$. Thus, $c_{\alpha_{1}, f_{1}}=2$.
- $t^{\alpha_{2}} t^{e x p\left(\operatorname{lm}\left(f_{2}\right)\right)}=(x z)(x y)=x\left(\frac{1}{2} x z+y\right) y=\frac{1}{2} x^{2} z y+x y^{2}=x^{2} y z+x y^{2}$. So, $c_{\alpha_{2}, f_{2}}=1$.
We must solve the equation

$$
\begin{aligned}
1 & =\operatorname{lc}(\boldsymbol{h})=r_{1} \sigma^{\alpha_{1}}\left(\operatorname{lc}\left(\boldsymbol{f}_{1}\right)\right) c_{\alpha_{1}, \boldsymbol{f}_{1}}+r_{2} \sigma^{\alpha_{2}}\left(\operatorname{lc}\left(\boldsymbol{f}_{2}\right)\right) c_{\alpha_{2}, \boldsymbol{f}_{2}} \\
& =r_{1} \sigma^{\alpha_{1}}(1) 2+r_{2} \sigma^{\alpha_{2}}(1) 1 \\
& =2 r_{1}+r_{2}
\end{aligned}
$$

then $r_{1}=0$ and $r_{2}=1$.
We make $\boldsymbol{h}:=\boldsymbol{h}-\left(r_{1} t^{\alpha_{1}} \boldsymbol{f}_{1}+r_{2} t^{\alpha_{2}} \boldsymbol{f}_{2}\right)$, i.e.,

$$
\begin{aligned}
\boldsymbol{h} & :=\boldsymbol{h}-\left(x z\left(x y \boldsymbol{e}_{1}+z \boldsymbol{e}_{2}+z \boldsymbol{e}_{3}\right)\right) \\
& =\boldsymbol{h}-\left(x z x y \boldsymbol{e}_{1}+x z^{2} \boldsymbol{e}_{2}+x z^{2} \boldsymbol{e}_{3}\right) \\
& =\boldsymbol{h}-\left(\left(x^{2} y z+x y^{2}\right) \boldsymbol{e}_{1}+x z^{2} \boldsymbol{e}_{2}+x z^{2} \boldsymbol{e}_{3}\right) \\
& =x^{2} y z \boldsymbol{e}_{1}+x z \boldsymbol{e}_{1}+y^{2} z \boldsymbol{e}_{2}+z^{2} \boldsymbol{e}_{3}-x^{2} y z \boldsymbol{e}_{1}-x y^{2} \boldsymbol{e}_{1}-x z^{2} \boldsymbol{e}_{2}-x z^{2} \boldsymbol{e}_{3} \\
& =-x y^{2} \boldsymbol{e}_{1}-x z^{2} \boldsymbol{e}_{2}-x z^{2} \boldsymbol{e}_{3}+y^{2} z \boldsymbol{e}_{2}+x z \boldsymbol{e}_{1}+z^{2} \boldsymbol{e}_{3} .
\end{aligned}
$$

In addition, we have $q_{1}:=q_{1}+r_{1} t^{\alpha_{1}}=0$ and $q_{2}:=q_{2}+r_{2} t^{\alpha_{2}}=x z$.
Step 2: $\boldsymbol{h}:=-x y^{2} \boldsymbol{e}_{1}-x z^{2} \boldsymbol{e}_{2}-x z^{2} \boldsymbol{e}_{3}+y^{2} z \boldsymbol{e}_{2}+x z \boldsymbol{e}_{1}+z^{2} \boldsymbol{e}_{3}$, so $\operatorname{lm}(\boldsymbol{h})=x y^{2} \boldsymbol{e}_{1}$ and $\operatorname{lc}(\boldsymbol{h})=-1$; moreover, $q_{1}=0$ and $q_{2}=x z$. Since $\operatorname{lm}\left(\boldsymbol{f}_{2}\right) \mid \operatorname{lm}(\boldsymbol{h})$, we compute α_{2} such that $\alpha_{2}+\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{2}\right)\right)=\exp (\operatorname{lm}(\boldsymbol{h}))$:
$\bullet \operatorname{lm}\left(t^{\alpha_{2}} \operatorname{lm}\left(\boldsymbol{f}_{2}\right)\right)=\operatorname{lm}(\boldsymbol{h})$, then $\operatorname{lm}\left(x^{\alpha_{21}} y^{\alpha_{22}} z^{\alpha_{23}} x y\right)=x y^{2}$, so $\alpha_{21}=0$; $\alpha_{22}=1 ; \alpha_{23}=0$. Thus, $t^{\alpha_{2}}=y$.
We compute $c_{\alpha_{2}, \boldsymbol{f}_{2}}: t^{\alpha_{2}} t^{\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{2}\right)\right)}=y(x y)=2 x y^{2}$. Then, $c_{\alpha_{2}, \boldsymbol{f}_{2}}=2$.
We solve the equation

$$
\begin{aligned}
-1 & =\operatorname{lc}(\boldsymbol{h})=r_{2} \sigma^{\alpha_{2}}\left(\operatorname{lc}\left(\boldsymbol{f}_{2}\right)\right) c_{\alpha_{2}, \boldsymbol{f}_{2}} \\
& =r_{2} \sigma^{\alpha_{2}}(1) 2=2 r_{2},
\end{aligned}
$$

thus, $r_{2}=-\frac{1}{2}$.
We make $\boldsymbol{h}:=\boldsymbol{h}-r_{2} t^{\alpha_{2}} \boldsymbol{f}_{2}$, i.e.,

$$
\begin{aligned}
\boldsymbol{h} & :=\boldsymbol{h}+\frac{1}{2} y\left(x y \boldsymbol{e}_{1}+z \boldsymbol{e}_{2}+z \boldsymbol{e}_{3}\right) \\
& =\boldsymbol{h}+\frac{1}{2} y x y \boldsymbol{e}_{1}+\frac{1}{2} y z \boldsymbol{e}_{2}+\frac{1}{2} y z \boldsymbol{e}_{3} \\
& =-x z^{2} \boldsymbol{e}_{2}-x z^{2} \boldsymbol{e}_{3}+y^{2} z \boldsymbol{e}_{2}+x z \boldsymbol{e}_{1}+\frac{1}{2} y z \boldsymbol{e}_{2}+\frac{1}{2} y z \boldsymbol{e}_{3}+z^{2} \boldsymbol{e}_{3} .
\end{aligned}
$$

We have also that $q_{1}:=0$ and $q_{2}:=q_{2}+r_{2} t^{\alpha_{2}}=x z-\frac{1}{2} y$.
Step 3: $\boldsymbol{h}=-x z^{2} \boldsymbol{e}_{2}-x z^{2} \boldsymbol{e}_{3}+y^{2} z \boldsymbol{e}_{2}+x z \boldsymbol{e}_{1}+\frac{1}{2} y z \boldsymbol{e}_{2}+\frac{1}{2} y z \boldsymbol{e}_{3}+z^{2} \boldsymbol{e}_{3}$, so $\operatorname{lm}(\boldsymbol{h})=x z^{2} \boldsymbol{e}_{2}$ and $\operatorname{lc}(\boldsymbol{h})=-1$; moreover, $q_{1}=0$ and $q_{2}=x z-\frac{1}{2} y$. Since
$\operatorname{lm}\left(\boldsymbol{f}_{1}\right) \nmid \operatorname{lm}(\boldsymbol{h})$ and $\operatorname{lm}\left(\boldsymbol{f}_{2}\right) \nmid \operatorname{lm}(\boldsymbol{h})$, then \boldsymbol{h} is reduced with respect to $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$, so the algorithm stops.

Thus, we get $q_{1}, q_{2} \in A$ and $\boldsymbol{h} \in A^{3}$ reduced such that $\boldsymbol{f}=q_{1} \boldsymbol{f}_{1}+q_{2} \boldsymbol{f}_{2}+\boldsymbol{h}$. In fact,

$$
\begin{aligned}
& q_{1} \boldsymbol{f}_{1}+q_{2} \boldsymbol{f}_{2}+\boldsymbol{h}=0 \boldsymbol{f}_{1}+\left(x z-\frac{1}{2} y\right) \boldsymbol{f}_{2}+\boldsymbol{h} \\
= & \left(x z-\frac{1}{2} y\right)\left(x y \boldsymbol{e}_{1}+z \boldsymbol{e}_{2}+z \boldsymbol{e}_{3}\right)-x z^{2} \boldsymbol{e}_{2}-x z^{2} \boldsymbol{e}_{3}+y^{2} z \boldsymbol{e}_{2}+x z \boldsymbol{e}_{1} \\
& +\frac{1}{2} y z \boldsymbol{e}_{2}+\frac{1}{2} y z \boldsymbol{e}_{3}+z^{2} \boldsymbol{e}_{3} \\
= & x^{2} y z \boldsymbol{e}_{1}+x y^{2} \boldsymbol{e}_{1}-x y^{2} \boldsymbol{e}_{1}+x z^{2} \boldsymbol{e}_{2}-\frac{1}{2} y z \boldsymbol{e}_{2}+x z^{2} \boldsymbol{e}_{3}-\frac{1}{2} y z \boldsymbol{e}_{3} \\
& -x z^{2} \boldsymbol{e}_{2}-x z^{2} \boldsymbol{e}_{3}+y^{2} z \boldsymbol{e}_{2}+x z \boldsymbol{e}_{1}+\frac{1}{2} y z \boldsymbol{e}_{2}+\frac{1}{2} y z \boldsymbol{e}_{3}+z^{2} \boldsymbol{e}_{3} \\
= & x^{2} y z \boldsymbol{e}_{1}+y^{2} z \boldsymbol{e}_{2}+x z \boldsymbol{e}_{1}+z^{2} \boldsymbol{e}_{3}=\boldsymbol{f},
\end{aligned}
$$

and $\max \left\{\operatorname{lm}\left(\operatorname{lm}\left(q_{i}\right) \operatorname{lm}\left(\boldsymbol{f}_{i}\right)\right), \operatorname{lm}(\boldsymbol{h})\right\}_{i=1,2}=\max \left\{0, x^{2} y z \boldsymbol{e}_{1}, x z^{2} \boldsymbol{e}_{2}\right\}=x^{2} y z \boldsymbol{e}_{1}=$ $\operatorname{lm}(\boldsymbol{f})$.

4. Gröbner bases

Our next purpose is to define Gröbner bases for submodules of A^{m}.
Definition 25. Let $M \neq 0$ be a submodule of A^{m} and let G be a non empty finite subset of non-zero vectors of M, we say that G is a Gröbner basis for M if each element $\boldsymbol{O} \neq \mathbf{f} \in M$ is reducible w.r.t. G.

We will say that $\{\mathbf{0}\}$ is a Gröbner basis for $M=0$.
Theorem 26. Let $M \neq 0$ be a submodule of A^{m} and let G be a finite subset of non-zero vectors of M. Then the following conditions are equivalent:
(i) G is a Gröbner basis for M.
(ii) For any vector $\boldsymbol{f} \in A^{m}$,

$$
\boldsymbol{f} \in M \text { if and only if } \boldsymbol{f} \xrightarrow{G}+\mathbf{0} \text {. }
$$

(iii) For any $\mathbf{0} \neq \boldsymbol{f} \in M$ there exist $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{t} \in G$ such that $\operatorname{lm}\left(\boldsymbol{g}_{j}\right) \mid \operatorname{lm}(\boldsymbol{f})$, $1 \leq j \leq t$, i.e., $\operatorname{ind}\left(\operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)=\operatorname{ind}(\operatorname{lm}(\boldsymbol{f}))$ and there exist $\alpha_{j} \in \mathbb{N}^{n}$ such that $\alpha_{j}+\exp \left(\operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)=\exp (\operatorname{lm}(\boldsymbol{f}))$ and

$$
\operatorname{lc}(\boldsymbol{f}) \in\left\langle\sigma^{\alpha_{1}}\left(\operatorname{lc}\left(\boldsymbol{g}_{1}\right)\right) c_{\alpha_{1}, \boldsymbol{g}_{1}}, \ldots, \sigma^{\alpha_{t}}\left(\operatorname{lc}\left(\boldsymbol{g}_{t}\right)\right) c_{\alpha_{t}, \boldsymbol{g}_{t}}\right\rangle
$$

(iv) For $\alpha \in \mathbb{N}^{n}$ and $1 \leq u \leq m$, let $\langle\alpha, M\rangle_{u}$ be the left ideal of R defined by

$$
\langle\alpha, M\rangle_{u}:=\langle\operatorname{lc}(\boldsymbol{f}) \mid \boldsymbol{f} \in M, \operatorname{ind}(\operatorname{lm}(\boldsymbol{f}))=u, \exp (\operatorname{lm}(\boldsymbol{f}))=\alpha\rangle .
$$

Then, $\langle\alpha, M\rangle_{u}=J_{u}$, with

$$
\left.J_{u}:=\left\langle\sigma^{\beta}(\operatorname{lc}(\boldsymbol{g})) c_{\beta, g}\right| \boldsymbol{g} \in G, \operatorname{ind}(\operatorname{lm}(\boldsymbol{g}))=u \text { and } \beta+\exp (\operatorname{lm}(\boldsymbol{g}))=\alpha\right\rangle .
$$

Proof. (i) \Rightarrow (ii): let $\boldsymbol{f} \in M$, if $\boldsymbol{f}=\mathbf{0}$, then by definition $\boldsymbol{f} \xrightarrow{G}$. If $\boldsymbol{f} \neq \mathbf{0}$, then there exists $\boldsymbol{h}_{1} \in A^{m}$ such that $\boldsymbol{f} \xrightarrow{G} \boldsymbol{h}_{1}$, with $\operatorname{lm}(\boldsymbol{f}) \succ \operatorname{lm}\left(\boldsymbol{h}_{1}\right)$ and $\boldsymbol{f}-\boldsymbol{h}_{1} \in\langle G\rangle \subseteq M$, hence $\boldsymbol{h}_{1} \in M$; if $\boldsymbol{h}_{1}=\mathbf{0}$, so we end. If $\boldsymbol{h}_{1} \neq \mathbf{0}$, then we can repeat this reasoning for \boldsymbol{h}_{1}, and since $\operatorname{Mon}\left(A^{m}\right)$ is well ordered, we get that $\boldsymbol{f} \xrightarrow{G}+\mathbf{0}$.

Conversely, if $\boldsymbol{f} \xrightarrow{G}+\mathbf{0}$, then by Theorem 23 , there exist $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{t} \in G$ and $q_{1}, \ldots, q_{t} \in A$ such that $\boldsymbol{f}=q_{1} \boldsymbol{g}_{1}+\cdots+q_{t} \boldsymbol{g}_{t}$, i.e., $\boldsymbol{f} \in M$.
(ii) \Rightarrow (i): evident.
(i) \Leftrightarrow (iii): this is a direct consequence of Definition 20 .
(iii) \Rightarrow (iv) Since R is left Noetherian, there exist $r_{1}, \ldots, r_{s} \in R, \boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{l} \in$ M such that $\langle\alpha, M\rangle_{u}=\left\langle r_{1}, \ldots, r_{s}\right\rangle, \operatorname{ind}\left(\operatorname{lm}\left(\boldsymbol{f}_{i}\right)\right)=u$ and $\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{i}\right)\right)=\alpha$ for each $1 \leq i \leq l$, with $\left\langle r_{1}, \ldots, r_{s}\right\rangle \subseteq\left\langle\operatorname{lc}\left(\boldsymbol{f}_{1}\right), \ldots, \operatorname{lc}\left(\boldsymbol{f}_{l}\right)\right\rangle$. Then, $\left\langle\operatorname{lc}\left(\boldsymbol{f}_{1}\right), \ldots, \operatorname{lc}\left(\boldsymbol{f}_{l}\right)\right\rangle$ $=\langle\alpha, M\rangle_{u}$. Let $r \in\langle\alpha, M\rangle_{u}$, there exist $a_{1}, \ldots, a_{l} \in R$ such that $r=a_{1} \operatorname{lc}\left(\boldsymbol{f}_{1}\right)+$ $\cdots+a_{l} \operatorname{lc}\left(\boldsymbol{f}_{l}\right)$; by (iii), for each $i, 1 \leq i \leq l$, there exist $\boldsymbol{g}_{1 i}, \ldots, \boldsymbol{g}_{t_{i} i} \in G$ and $b_{j i} \in R$ such that $\operatorname{lc}\left(\boldsymbol{f}_{i}\right)=b_{1 i} \sigma^{\alpha_{1 i}}\left(\operatorname{lc}\left(\boldsymbol{g}_{1 i}\right)\right) c_{\alpha_{1 i}, \boldsymbol{g}_{1 i}}+\cdots+b_{t_{i} i} \sigma^{\alpha_{t_{i} i}}\left(\operatorname{lc}\left(\boldsymbol{g}_{t_{i} i}\right)\right) c_{\alpha_{t_{i} i}, \boldsymbol{g}_{t_{i} i}}$, with $u=\operatorname{ind}\left(\operatorname{lm}\left(\boldsymbol{f}_{i}\right)\right)=\operatorname{ind}\left(\operatorname{lm}\left(\boldsymbol{g}_{j i}\right)\right)$ and $\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{i}\right)\right)=\alpha_{j i}+\exp \left(\operatorname{lm}\left(\boldsymbol{g}_{j i}\right)\right)$, thus $\langle\alpha, M\rangle_{u} \subseteq J_{u}$. Conversely, if $r \in J_{u}$, then $r=b_{1} \sigma^{\beta_{1}}\left(\operatorname{lc}\left(\boldsymbol{g}_{1}\right)\right) c_{\beta_{1}, g_{1}}+\cdots+$ $b_{t} \sigma^{\beta_{t}}\left(\operatorname{lc}\left(\boldsymbol{g}_{t}\right)\right) c_{\beta_{t}, \boldsymbol{g}_{t}}$, with $b_{i} \in R, \beta_{i} \in \mathbb{N}^{n}, \boldsymbol{g}_{i} \in G$ such that $\operatorname{ind}\left(\operatorname{lm}\left(\boldsymbol{g}_{i}\right)\right)=u$ and $\beta_{i}+\exp \left(\operatorname{lm}\left(\boldsymbol{g}_{i}\right)\right)=\alpha$ for any $1 \leq i \leq t$. Note that $x^{\beta_{i}} \boldsymbol{g}_{i} \in M$, $\operatorname{ind}\left(\operatorname{lm}\left(x^{\beta_{i}} \boldsymbol{g}_{i}\right)\right)=u, \exp \left(\operatorname{lm}\left(x^{\beta_{i}} \boldsymbol{g}_{i}\right)\right)=\alpha, \operatorname{lc}\left(x^{\beta_{i}} \boldsymbol{g}_{i}\right)=\sigma^{\beta_{i}}\left(\operatorname{lc}\left(\boldsymbol{g}_{i}\right)\right) c_{\beta_{i}, \boldsymbol{g}_{i}}$, for $1 \leq i \leq t$, and $r=b_{1} \operatorname{lc}\left(x^{\beta_{1}} \boldsymbol{g}_{1}\right)+\cdots+b_{t} \operatorname{lc}\left(x^{\beta_{t}} \boldsymbol{g}_{t}\right)$, i.e., $r \in\langle\alpha, M\rangle_{u}$.
(iv) \Rightarrow (iii): let $\mathbf{0} \neq \boldsymbol{f} \in M$ and let $u=\operatorname{ind}(\operatorname{lm}(\boldsymbol{f})), \alpha=\exp (\operatorname{lm}(\boldsymbol{f}))$, then $\operatorname{lc}(\boldsymbol{f}) \in\langle\alpha, M\rangle_{u}$; by (iv) $\operatorname{lc}(\boldsymbol{f})=b_{1} \sigma^{\beta_{1}}\left(\operatorname{lc}\left(\boldsymbol{g}_{1}\right)\right) c_{\beta_{1}, \boldsymbol{g}_{1}}+\cdots+b_{t} \sigma^{\beta_{t}}\left(\operatorname{lc}\left(\boldsymbol{g}_{t}\right)\right) c_{\beta_{t}, \boldsymbol{g}_{t}}$, with $b_{i} \in R, \beta_{i} \in \mathbb{N}^{n}, \boldsymbol{g}_{i} \in G$ such that $u=\operatorname{ind}\left(\operatorname{lm}\left(\boldsymbol{g}_{i}\right)\right)$ and $\beta_{i}+\exp \left(\operatorname{lm}\left(\boldsymbol{g}_{i}\right)\right)=$ α for any $1 \leq i \leq t$. From this we conclude that $\operatorname{lm}\left(\boldsymbol{g}_{j}\right) \mid \operatorname{lm}(\boldsymbol{f}), 1 \leq j \leq t$.

From this theorem we get the following consequences.
Corollary 27. Let $M \neq 0$ be a submodule of A^{m}. Then,
(i) If G is a Gröbner basis for M, then $M=\langle G\rangle$.
(ii) Let G be a Gröbner basis for M, if $\boldsymbol{f} \in M$ and $\boldsymbol{f} \xrightarrow{G}_{+} \boldsymbol{h}$, with \boldsymbol{h} reduced w.r.t. G, then $\boldsymbol{h}=\mathbf{0}$.
(iii) Let $G=\left\{\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{t}\right\}$ be a set of non-zero vectors of M with $\operatorname{lc}\left(\boldsymbol{g}_{i}\right)=1$, for each $1 \leq i \leq t$, such that given $\boldsymbol{r} \in M$ there exists i such that $\operatorname{lm}\left(\boldsymbol{g}_{i}\right)$ divides $\operatorname{lm}(\boldsymbol{r})$. Then, G is a Gröbner basis of M.

5. Computing Gröbner bases

The following two theorems are the support for the Buchberger's algorithm for computing Gröbner bases when A is a quasi-commutative bijective σ $P B W$ extension The proofs of these results are as in [5].

Definition 28. Let $F:=\left\{\mathbf{g}_{1}, \ldots, \mathbf{g}_{s}\right\} \subseteq A^{m}$ such that the least common multiple of $\left\{\operatorname{lm}\left(\mathbf{g}_{1}\right), \ldots, \operatorname{lm}\left(\mathbf{g}_{s}\right)\right\}$, denoted by \mathbf{X}_{F}, is non-zero. Let $\theta \in \mathbb{N}^{n}$,
$\beta_{i}:=\exp \left(\operatorname{lm}\left(\mathbf{g}_{i}\right)\right)$ and $\gamma_{i} \in \mathbb{N}^{n}$ such that $\gamma_{i}+\beta_{i}=\exp \left(\mathbf{X}_{F}\right), 1 \leq i \leq s . B_{F, \theta}$ will denote a finite set of generators of

$$
\left.S_{F, \theta}:=\operatorname{Syz}_{R}\left[\sigma^{\gamma_{1}+\theta}\left(\operatorname{lc}\left(\mathbf{g}_{1}\right)\right) c_{\gamma_{1}+\theta, \beta_{1}} \cdots \sigma^{\gamma_{s}+\theta}\left(\operatorname{lc}\left(\mathbf{g}_{s}\right)\right) c_{\gamma_{s}+\theta, \beta_{s}}\right)\right] .
$$

For $\theta=\boldsymbol{0}:=(0, \ldots, 0), S_{F, \theta}$ will be denoted by S_{F} and $B_{F, \theta}$ by B_{F}.
Theorem 29. Let $M \neq 0$ be a submodule of A^{m} and let G be a finite subset of non-zero generators of M. Then the following conditions are equivalent:
(i) G is a Gröbner basis of M.
(ii) For all $F:=\left\{\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{s}\right\} \subseteq G$, with $\boldsymbol{X}_{F} \neq \mathbf{0}$, and for all $\theta \in \mathbb{N}^{n}$ and any $\left(b_{1}, \ldots, b_{s}\right) \in B_{F, \theta}$,

$$
\sum_{i=1}^{s} b_{i} x^{\gamma_{i}+\theta} \boldsymbol{g}_{i} \xrightarrow{G} 0 .
$$

In particular, if G is a Gröbner basis of M then for all $F:=\left\{\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{s}\right\} \subseteq G$, with $\boldsymbol{X}_{F} \neq \mathbf{0}$, and any $\left(b_{1}, \ldots, b_{s}\right) \in B_{F}$,

$$
\sum_{i=1}^{s} b_{i} x^{\gamma_{i}} \boldsymbol{g}_{i} \xrightarrow{G}+0 .
$$

Theorem 30. Let A be a quasi-commutative bijective $\sigma-P B W$ extension. Let $M \neq 0$ be a submodule of A^{m} and let G be a finite subset of non-zero generators of M. Then the following conditions are equivalent:
(i) G is a Gröbner basis of M.
(ii) For all $F:=\left\{\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{s}\right\} \subseteq G$, with $\boldsymbol{X}_{F} \neq \mathbf{0}$, and any $\left(b_{1}, \ldots, b_{s}\right) \in B_{F}$,

$$
\sum_{i=1}^{s} b_{i} x^{\gamma_{i}} \boldsymbol{g}_{i} \xrightarrow{G}+\mathbf{0} .
$$

Corollary 31. Let A be a quasi-commutative bijective $\sigma-P B W$ extension. Let $F=\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{s}\right\}$ be a set of non-zero vectors of A^{m}. The algorithm below produces a Gröbner basis for the submodule $\left\langle\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{s}\right\rangle P(X)$ denotes the set of subsets of the set X :

Gröbner Basis Algorithm for Modules over Quasi-Commutative Bijective $\sigma-P B W$ Extensions

INPUT: $F:=\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{s}\right\} \subseteq A^{m}, \boldsymbol{f}_{i} \neq \mathbf{0}, 1 \leq i \leq s$
OUTPUT: $G=\left\{\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{t}\right\}$ a Gröbner basis for $\langle F\rangle$
INITIALIZATION: $G:=\emptyset, G^{\prime}:=F$
WHILE $G^{\prime} \neq G$ DO
$D:=P\left(G^{\prime}\right)-P(G)$
$G:=G^{\prime}$
FOR each $S:=\left\{\boldsymbol{g}_{i_{1}}, \ldots, \boldsymbol{g}_{i_{k}}\right\} \in D$, with $\boldsymbol{X}_{S} \neq \mathbf{0}$, DO
Compute B_{S}
FOR each $\boldsymbol{b}=\left(b_{1}, \ldots, b_{k}\right) \in B_{S} \mathbf{D O}$
Reduce $\sum_{j=1}^{k} b_{j} x^{\gamma_{j}} \boldsymbol{g}_{i_{j}} \xrightarrow{G^{\prime}}+\boldsymbol{r}$, with \boldsymbol{r} reduced with respect to G^{\prime} and γ_{j} defined as in Definition 28
IF $\boldsymbol{r} \neq 0$ THEN
$G^{\prime}:=G^{\prime} \cup\{\boldsymbol{r}\}$
From Theorem 8 and the previous corollary we get the following direct conclusion.

Corollary 32. Let A be a quasi-commutative bijective $\sigma-P B W$ extension. Then each submodule of A^{m} has a Gröbner basis.

Now, we illustrate with an example the algorithm presented in Corollary 31.
Example 33. We will consider the multiplicative analogue of the Weyl algebra

$$
A:=\mathcal{O}_{3}\left(\lambda_{21}, \lambda_{31}, \lambda_{32}\right)=\mathcal{O}_{3}\left(2, \frac{1}{2}, 3\right)=\sigma\left(\mathbb{Q}\left[x_{1}\right]\right)\left\langle x_{2}, x_{3}\right\rangle
$$

hence we have the relations

$$
\begin{gathered}
x_{2} x_{1}=\lambda_{21} x_{1} x_{2}=2 x_{1} x_{2}, \text { so } \sigma_{2}\left(x_{1}\right)=2 x_{1} \text { and } \delta_{2}\left(x_{1}\right)=0, \\
x_{3} x_{1}=\lambda_{31} x_{1} x_{3}=\frac{1}{2} x_{1} x_{3}, \text { so } \sigma_{3}\left(x_{1}\right)=\frac{1}{2} x_{1} \text { and } \delta_{3}\left(x_{1}\right)=0, \\
x_{3} x_{2}=\lambda_{32} x_{2} x_{3}=3 x_{2} x_{3}, \text { so } c_{2,3}=3,
\end{gathered}
$$

and for $r \in \mathbb{Q}, \sigma_{2}(r)=r=\sigma_{3}(r)$. We choose in $\operatorname{Mon}(A)$ the deglex order with $x_{2}>x_{3}$ and in $\operatorname{Mon}\left(A^{2}\right)$ the TOPREV order with $\boldsymbol{e}_{1} \succ \boldsymbol{e}_{2}$.

Let $\boldsymbol{f}_{1}=x_{1}^{2} x_{2}^{2} \boldsymbol{e}_{1}+x_{2} x_{3} \boldsymbol{e}_{2}, \operatorname{lm}\left(\boldsymbol{f}_{1}\right)=x_{2}^{2} \boldsymbol{e}_{1}$ and $\boldsymbol{f}_{2}=2 x_{1} x_{2} x_{3} \boldsymbol{e}_{1}+x_{2} \boldsymbol{e}_{2}$, $\operatorname{lm}\left(\boldsymbol{f}_{2}\right)=x_{2} x_{3} \boldsymbol{e}_{1}$. We will construct a Gröbner basis for the module $M:=$ $\left\langle\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\rangle$.

Step 1: we start with $G:=\emptyset, G^{\prime}:=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$. Since $G^{\prime} \neq G$, we make
$D:=\mathcal{P}\left(G^{\prime}\right)-\mathcal{P}(G)=\left\{S_{1}, S_{2}, S_{1,2}\right\}$, with $S_{1}:=\left\{\boldsymbol{f}_{1}\right\}, S_{2}:=\left\{\boldsymbol{f}_{2}\right\}, S_{1,2}:=$ $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$. We also make $G:=G^{\prime}$, and for every $S \in D$ such that $\boldsymbol{X}_{S} \neq \mathbf{0}$ we compute B_{S} :

- For S_{1} we have

$$
\operatorname{Syz}_{\mathbb{Q}\left[x_{1}\right]}\left[\sigma^{\gamma_{1}}\left(\operatorname{lc}\left(\boldsymbol{f}_{1}\right)\right) c_{\gamma_{1}, \beta_{1}}\right],
$$

where $\beta_{1}=\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{1}\right)\right)=(2,0) ; \boldsymbol{X}_{S_{1}}=$ l.c.m. $\left\{\operatorname{lm}\left(\boldsymbol{f}_{1}\right)\right\}=\operatorname{lm}\left(\boldsymbol{f}_{1}\right)=x_{2}^{2} \boldsymbol{e}_{1}$; $\exp \left(\boldsymbol{X}_{S_{1}}\right)=(2,0) ; \gamma_{1}=\exp \left(\boldsymbol{X}_{S_{1}}\right)-\beta_{1}=(0,0) ; x^{\gamma_{1}} x^{\beta_{1}}=x_{2}^{2}$, so $c_{\gamma_{1}, \beta_{1}}=1$. Then,

$$
\sigma^{\gamma_{1}}\left(\operatorname{lc}\left(\boldsymbol{f}_{1}\right)\right) c_{\gamma_{1}, \beta_{1}}=\sigma^{\gamma_{1}}\left(x_{1}^{2}\right) 1=\sigma_{2}^{0} \sigma_{3}^{0}\left(x_{1}^{2}\right)=x_{1}^{2} .
$$

Thus, $\operatorname{Syz}_{\mathbb{Q}\left[x_{1}\right]}\left[x_{1}^{2}\right]=\{0\}$ and $B_{S_{1}}=\{0\}$, i.e., we do not add any vector to G^{\prime}.

- For S_{2} we have an identical situation.
- For $S_{1,2}$ we compute

$$
\operatorname{Syz}_{\mathbb{Q}\left[x_{1}\right]}\left[\sigma^{\gamma_{1}}\left(\operatorname{lc}\left(\boldsymbol{f}_{1}\right)\right) c_{\gamma_{1}, \beta_{1}} \quad \sigma^{\gamma_{2}}\left(\operatorname{lc}\left(\boldsymbol{f}_{2}\right)\right) c_{\gamma_{2}, \beta_{2}}\right],
$$

where $\beta_{1}=\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{1}\right)\right)=(2,0)$ and $\beta_{2}=\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{2}\right)\right)=(1,1)$;

$$
\boldsymbol{X}_{S_{1,2}}=\operatorname{lcm}\left\{\operatorname{lm}\left(\boldsymbol{f}_{1}\right), \operatorname{lm}\left(\boldsymbol{f}_{2}\right)\right\}=\operatorname{lcm}\left(x_{2}^{2} \boldsymbol{e}_{1}, x_{2} x_{3} \boldsymbol{e}_{1}\right)=x_{2}^{2} x_{3} \boldsymbol{e}_{1}
$$

$\exp \left(\boldsymbol{X}_{S_{1,2}}\right)=(2,1) ; \gamma_{1}=\exp \left(\boldsymbol{X}_{S_{1,2}}\right)-\beta_{1}=(0,1)$ and $\gamma_{2}=\exp \left(\boldsymbol{X}_{S_{1,2}}\right)-\beta_{2}$ $=(1,0) ; x^{\gamma_{1}} x^{\beta_{1}}=x_{3} x_{2}^{2}=3 x_{2} x_{3} x_{2}=9 x_{2}^{2} x_{3}$, so $c_{\gamma_{1}, \beta_{1}}=9$; in a similar way $x^{\gamma_{2}} x^{\beta_{2}}=x_{2}^{2} x_{3}$, i.e., $c_{\gamma_{2}, \beta_{2}}=1$. Then,

$$
\sigma^{\gamma_{1}}\left(\operatorname{lc}\left(\boldsymbol{f}_{1}\right)\right) c_{\gamma_{1}, \beta_{1}}=\sigma^{\gamma_{1}}\left(x_{1}^{2}\right) 9=\sigma_{2}^{0} \sigma_{3}\left(x_{1}^{2}\right) 9=\left(\sigma_{3}\left(x_{1}\right) \sigma_{3}\left(x_{1}\right)\right) 9=\frac{9}{4} x_{1}^{2}
$$

and

$$
\sigma^{\gamma_{2}}\left(\operatorname{lc}\left(\boldsymbol{f}_{2}\right)\right) c_{\gamma_{2}, \beta_{2}}=\sigma^{\gamma_{2}}\left(2 x_{1}\right) 1=\sigma_{2} \sigma_{3}^{0}\left(2 x_{1}\right)=\sigma_{2}\left(2 x_{1}\right)=4 x_{1} .
$$

Hence $\operatorname{Syz}_{\mathbb{Q}\left[x_{1}\right]}\left[\frac{9}{4} x_{1}^{2} \quad 4 x_{1}\right]=\left\{\left(b_{1}, b_{2}\right) \in \mathbb{Q}\left[x_{1}\right]^{2} \left\lvert\, b_{1}\left(\frac{9}{4} x_{1}^{2}\right)+b_{2}\left(4 x_{1}\right)=0\right.\right\}$ and $B_{S_{1,2}}=\left\{\left(4,-\frac{9}{4} x_{1}\right)\right\}$. From this we get

$$
\begin{aligned}
4 x^{\gamma_{1}} \boldsymbol{f}_{1}-\frac{9}{4} x_{1} x^{\gamma_{2}} \boldsymbol{f}_{2} & =4 x_{3}\left(x_{1}^{2} x_{2}^{2} \boldsymbol{e}_{1}+x_{2} x_{3} \boldsymbol{e}_{2}\right)-\frac{9}{4} x_{1} x_{2}\left(2 x_{1} x_{2} x_{3} \boldsymbol{e}_{1}+x_{2} \boldsymbol{e}_{2}\right) \\
& =4 x_{3} x_{1}^{2} x_{2}^{2} \boldsymbol{e}_{1}+4 x_{3} x_{2} x_{3} \boldsymbol{e}_{2}-\frac{9}{4} x_{1} x_{2} 2 x_{1} x_{2} x_{3} \boldsymbol{e}_{1}-\frac{9}{4} x_{1} x_{2}^{2} \boldsymbol{e}_{2} \\
& =9 x_{1}^{2} x_{2}^{2} x_{3} \boldsymbol{e}_{1}+12 x_{2} x_{3}^{2} \boldsymbol{e}_{2}-9 x_{1}^{2} x_{2}^{2} x_{3} \boldsymbol{e}_{1}-\frac{9}{4} x_{1} x_{2}^{2} \boldsymbol{e}_{2} \\
& =12 x_{2} x_{3}^{2} \boldsymbol{e}_{2}-\frac{9}{4} x_{1} x_{2}^{2} \boldsymbol{e}_{2}:=\boldsymbol{f}_{3},
\end{aligned}
$$

so $\operatorname{lm}\left(\boldsymbol{f}_{3}\right)=x_{2} x_{3}^{2} \boldsymbol{e}_{2}$. We observe that \boldsymbol{f}_{3} is reduced with respect to G^{\prime}. We make $G^{\prime}:=G^{\prime} \cup\left\{\boldsymbol{f}_{3}\right\}$, i.e., $G^{\prime}=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}\right\}$.

Step 2: since $G=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\} \neq G^{\prime}=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}\right\}$, we make $D:=\mathcal{P}\left(G^{\prime}\right)-$ $\mathcal{P}(G)$, i.e., $D:=\left\{S_{3}, S_{1,3}, S_{2,3}, S_{1,2,3}\right\}$, where $S_{1}:=\left\{\boldsymbol{f}_{1}\right\}, S_{1,3}:=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{3}\right\}, S_{2,3}:=$ $\left\{\boldsymbol{f}_{2}, \boldsymbol{f}_{3}\right\}, S_{1,2,3}:=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}\right\}$. We make $G:=G^{\prime}$, and for every $S \in D$ such that $\boldsymbol{X}_{S} \neq \mathbf{0}$ we must compute B_{S}. Since $\boldsymbol{X}_{S_{1,3}}=\boldsymbol{X}_{S_{2,3}}=\boldsymbol{X}_{S_{1,2,3}}=\mathbf{0}$, we only need to consider S_{3}.

- We have to compute

$$
\operatorname{Syz}_{\mathbb{Q}\left[x_{1}\right]}\left[\sigma^{\gamma_{3}}\left(\operatorname{lc}\left(\boldsymbol{f}_{3}\right)\right) c_{\gamma_{3}, \beta_{3}}\right],
$$

where $\beta_{3}=\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{3}\right)\right)=(1,2) ; \boldsymbol{X}_{S_{3}}=\operatorname{lcm}\left\{\operatorname{lm}\left(\boldsymbol{f}_{3}\right)\right\}=\operatorname{lm}\left(\boldsymbol{f}_{3}\right)=x_{2} x_{3}^{2} \boldsymbol{e}_{2}$; $\exp \left(\boldsymbol{X}_{S_{3}}\right)=(1,2) ; \gamma_{3}=\exp \left(\boldsymbol{X}_{S_{3}}\right)-\beta_{3}=(0,0) ; x^{\gamma_{3}} x^{\beta_{3}}=x_{2} x_{3}^{2}$, so $c_{\gamma_{3}, \beta_{3}}=1$. Hence

$$
\sigma^{\gamma_{3}}\left(\operatorname{lc}\left(\boldsymbol{f}_{3}\right)\right) c_{\gamma_{3}, \beta_{3}}=\sigma^{\gamma_{3}}(12) 1=\sigma_{2}^{0} \sigma_{3}^{0}(12)=12
$$

and $\operatorname{Syz}_{\mathbb{Q}\left[x_{1}\right]}[12]=\{0\}$, i.e., $B_{S_{3}}=\{0\}$. This means that we not add any vector to G^{\prime} and hence $G=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}\right\}$ is a Gröbner basis for M.

6. Syzygy of a module

We present in this section a method for computing the syzygy module of a submodule $M=\left\langle\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{s}\right\rangle$ of A^{m} using Gröbner bases. This implies that we have a method for computing such bases. Thus, we will assume that A is a bijective quasi-commutative $\sigma-P B W$ extension.

Let f be the canonical homomorphism defined by

$$
\begin{aligned}
& A^{s} \xrightarrow{f} A^{m} \\
& \boldsymbol{e}_{j} \mapsto \boldsymbol{f}_{j}
\end{aligned}
$$

where $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{s}\right\}$ is the canonical basis of A^{s}. Observe that f can be represented by a matrix, i.e., if $\boldsymbol{f}_{j}:=\left(f_{1 j}, \ldots, f_{m j}\right)^{T}$, then the matrix of f in the canonical bases of A^{s} and A^{m} is

$$
F:=\left[\boldsymbol{f}_{1} \cdots \boldsymbol{f}_{s}\right]=\left[\begin{array}{ccc}
f_{11} & \cdots & f_{1 s} \\
\vdots & & \vdots \\
f_{m 1} & \cdots & f_{m s}
\end{array}\right] \in M_{m \times s}(A)
$$

Note that $\operatorname{Im}(f)$ is the column module of F, i.e., the left A-module generated by the columns of F :

$$
\operatorname{Im}(f)=\left\langle f\left(\boldsymbol{e}_{1}\right), \ldots, f\left(\boldsymbol{e}_{s}\right)\right\rangle=\left\langle\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{s}\right\rangle=\langle F\rangle
$$

Moreover, observe that if $\boldsymbol{a}:=\left(a_{1}, \ldots, a_{s}\right)^{T} \in A^{s}$, then

$$
\begin{equation*}
f(\boldsymbol{a})=\left(\boldsymbol{a}^{T} F^{T}\right)^{T} \tag{6.1}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
f(\boldsymbol{a}) & =a_{1} f\left(\boldsymbol{e}_{1}\right)+\cdots+a_{s} f\left(\boldsymbol{e}_{s}\right)=a_{1} \boldsymbol{f}_{1}+\cdots+a_{s} \boldsymbol{f}_{s} \\
& =a_{1}\left[\begin{array}{c}
f_{11} \\
\vdots \\
f_{m 1}
\end{array}\right]+\cdots+a_{s}\left[\begin{array}{c}
f_{1 s} \\
\vdots \\
f_{m s}
\end{array}\right] \\
& =\left[\begin{array}{c}
a_{1} f_{11}+\cdots+a_{s} f_{1 s} \\
\vdots \\
a_{1} f_{m 1}+\cdots+a_{s} f_{m s}
\end{array}\right] \\
& =\left(\left[a_{1} \cdots a_{s}\right]\left[\begin{array}{ccc}
f_{11} & \cdots & f_{m 1} \\
\vdots & & \vdots \\
f_{1 s} & \cdots & f_{m s}
\end{array}\right]\right)^{T} \\
& =\left(\boldsymbol{a}^{T} F^{T}\right)^{T} .
\end{aligned}
$$

We recall that

$$
\operatorname{Syz}\left(\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{s}\right\}\right):=\left\{\boldsymbol{a}:=\left(a_{1}, \ldots, a_{s}\right)^{T} \in A^{s} \mid a_{1} \boldsymbol{f}_{1}+\cdots+a_{s} \boldsymbol{f}_{s}=\mathbf{0}\right\} .
$$

Note that

$$
\begin{equation*}
\operatorname{Syz}\left(\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{s}\right\}\right)=\operatorname{ker}(f), \tag{6.2}
\end{equation*}
$$

but $\operatorname{Syz}\left(\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{s}\right\}\right) \neq \operatorname{ker}(F)$ since we have

$$
\begin{equation*}
\boldsymbol{a} \in \operatorname{Syz}\left(\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{s}\right\}\right) \Leftrightarrow \boldsymbol{a}^{T} F^{T}=\mathbf{0} \tag{6.3}
\end{equation*}
$$

The modules of syzygies of M and F are defined by

$$
\begin{equation*}
\operatorname{Syz}(M):=\operatorname{Syz}(F):=\operatorname{Syz}\left(\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{s}\right\}\right) \tag{6.4}
\end{equation*}
$$

The generators of $\operatorname{Syz}(F)$ can be disposed into a matrix, so sometimes we will refer to $\operatorname{Syz}(F)$ as a matrix. Thus, if $\operatorname{Syz}(F)$ is generated by r vectors, $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{r}$, then

$$
\operatorname{Syz}(F)=\left\langle\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{r}\right\rangle,
$$

and we will use the following matrix notation

$$
\operatorname{Syz}(F):=Z(F):=\left[\boldsymbol{z}_{1} \cdots \boldsymbol{z}_{r}\right]=\left[\begin{array}{ccc}
z_{11} & \cdots & z_{1 r} \\
\vdots & & \vdots \\
z_{s 1} & \cdots & z_{s r}
\end{array}\right] \in M_{s \times r}(A),
$$

thus we have

$$
\begin{equation*}
Z(F)^{T} F^{T}=0 . \tag{6.5}
\end{equation*}
$$

Let $G:=\left\{\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{t}\right\}$ be a Gröbner basis of M, then from Division Algorithm and Corollary 27, there exist polynomials $q_{i j} \in A, 1 \leq i \leq t, 1 \leq j \leq s$ such
that

$$
\begin{gathered}
\boldsymbol{f}_{1}=q_{11} \boldsymbol{g}_{1}+\cdots+q_{t 1} \boldsymbol{g}_{t} \\
\quad \vdots \\
\boldsymbol{f}_{s}=q_{1 s} \boldsymbol{g}_{1}+\cdots+q_{t s} \boldsymbol{g}_{t},
\end{gathered}
$$

i.e.,

$$
\begin{equation*}
F^{T}=Q^{T} G^{T} \tag{6.6}
\end{equation*}
$$

with

$$
Q:=\left[q_{i j}\right]=\left[\begin{array}{ccc}
q_{11} & \cdots & q_{1 s} \\
\vdots & & \vdots \\
q_{t 1} & \cdots & q_{t s}
\end{array}\right], \quad G:=\left[\begin{array}{lll}
\boldsymbol{g}_{1} & \cdots & \boldsymbol{g}_{t}
\end{array}\right]:=\left[\begin{array}{ccc}
g_{11} & \cdots & g_{1 t} \\
\vdots & & \vdots \\
g_{m 1} & \cdots & g_{m t}
\end{array}\right] .
$$

From (6.6) we get

$$
\begin{equation*}
Z(F)^{T} Q^{T} G^{T}=0 \tag{6.7}
\end{equation*}
$$

From the algorithm of Corollary 31 we observe that each element of G can be expressed as an A-linear combination of columns of F, i.e., there exists polynomials $h_{j i} \in A$ such that

$$
\begin{aligned}
\boldsymbol{g}_{1} & =h_{11} \boldsymbol{f}_{1}+\cdots+h_{s 1} \boldsymbol{f}_{s} \\
\vdots & \\
\boldsymbol{g}_{t} & =h_{1 t} \boldsymbol{f}_{1}+\cdots+h_{s t} \boldsymbol{f}_{s}
\end{aligned}
$$

so we have

$$
\begin{equation*}
G^{T}=H^{T} F^{T}, \tag{6.8}
\end{equation*}
$$

with

$$
H:=\left[h_{j i}\right]=\left[\begin{array}{ccc}
h_{11} & \cdots & h_{1 t} \\
\vdots & & \vdots \\
h_{s 1} & \cdots & h_{s t}
\end{array}\right] .
$$

The next theorem will prove that $\operatorname{Syz}(F)$ can be calculated using $\operatorname{Syz}(G)$, and in turn, Lemma 39 below will establish that for quasi-commutative bijective $\sigma-P B W$ extensions, $\operatorname{Syz}(G)$ can be computed using $\operatorname{Syz}\left(L_{G}\right)$, where

$$
L_{G}:=\left[\operatorname{lt}\left(\boldsymbol{g}_{1}\right) \cdots \operatorname{lt}\left(\boldsymbol{g}_{t}\right)\right] .
$$

Suppose that $\operatorname{Syz}\left(L_{G}\right)$ is generated by l elements,

$$
\operatorname{Syz}\left(L_{G}\right):=Z\left(L_{G}\right):=\left[\begin{array}{lll}
z_{1}^{\prime \prime} & \cdots & z_{l}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ccc}
z_{11}^{\prime \prime} & \cdots & z_{1 l}^{\prime \prime} \tag{6.9}\\
\vdots & & \vdots \\
z_{t 1}^{\prime \prime} & \cdots & z_{t l}^{\prime \prime}
\end{array}\right] .
$$

The proof of Lemma 39 will show that $\operatorname{Syz}(G)$ can be generated also by l elements, say, $\boldsymbol{z}_{1}^{\prime}, \ldots, \boldsymbol{z}_{l}^{\prime}$, i.e., $\operatorname{Syz}(G)=\left\langle\boldsymbol{z}_{1}^{\prime}, \ldots, \boldsymbol{z}_{l}^{\prime}\right\rangle$; we write

$$
\operatorname{Syz}(G):=Z(G):=\left[\begin{array}{lll}
\boldsymbol{z}_{1}^{\prime} & \cdots & \boldsymbol{z}_{l}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
z_{11}^{\prime} & \cdots & z_{1 l}^{\prime} \\
\vdots & & \vdots \\
z_{t 1}^{\prime} & \cdots & z_{t l}^{\prime}
\end{array}\right] \in M_{t \times l}(A),
$$

and hence

$$
\begin{equation*}
Z(G)^{T} G^{T}=0 \tag{6.10}
\end{equation*}
$$

Theorem 34. With the above notation, $\operatorname{Syz}(F)$ coincides with the column module of the extended matrix $\left[\left(Z(G)^{T} H^{T}\right)^{T} I_{s}-\left(Q^{T} H^{T}\right)^{T}\right]$, i.e., in a matrix notation

$$
\begin{equation*}
\operatorname{Syz}(F)=\left[\left(Z(G)^{T} H^{T}\right)^{T} I_{s}-\left(Q^{T} H^{T}\right)^{T}\right] . \tag{6.11}
\end{equation*}
$$

Proof. Let $\boldsymbol{z}:=\left(z_{1}, \ldots, z_{s}\right)^{T}$ be one of generators of $\operatorname{Syz}(F)$, i.e., one of columns of $Z(F)$, then by (6.3) $\boldsymbol{z}^{T} F^{T}=\mathbf{0}$, and by (6.6) we have $\boldsymbol{z}^{T} Q^{T} G^{T}=\mathbf{0}$. Let $\boldsymbol{u}:=\left(\boldsymbol{z}^{T} Q^{T}\right)^{T}$, then $\boldsymbol{u} \in \operatorname{Syz}(G)$ and there exists polynomials $w_{1}, \ldots, w_{l} \in$ A such that $\boldsymbol{u}=w_{1} \boldsymbol{z}_{1}^{\prime}+\cdots+w_{l} \boldsymbol{z}_{l}^{\prime}$, i.e., $\boldsymbol{u}=\left(\boldsymbol{w}^{T} Z(G)^{T}\right)^{T}$, with $\boldsymbol{w}:=$ $\left(w_{1}, \ldots, w_{l}\right)^{T}$. Then, $\boldsymbol{u}^{T} H^{T}=\left(\boldsymbol{w}^{T} Z(G)^{T}\right) H^{T}$, i.e., $\boldsymbol{z}^{T} Q^{T} H^{T}=\left(\boldsymbol{w}^{T} Z(G)^{T}\right) H^{T}$ and from this we have

$$
\begin{aligned}
\boldsymbol{z}^{T} & =\boldsymbol{z}^{T} Q^{T} H^{T}+\boldsymbol{z}^{T}-\boldsymbol{z}^{T} Q^{T} H^{T} \\
& =\boldsymbol{z}^{T} Q^{T} H^{T}+\boldsymbol{z}^{T}\left(I_{s}-Q^{T} H^{T}\right) \\
& =\left(\boldsymbol{w}^{T} Z(G)^{T}\right) H^{T}+\boldsymbol{z}^{T}\left(I_{s}-Q^{T} H^{T}\right) .
\end{aligned}
$$

From this can be checked that $\boldsymbol{z} \in\left\langle\left[\left(Z(G)^{T} H^{T}\right)^{T} I_{s}-\left(Q^{T} H^{T}\right)^{T}\right]\right\rangle$.
Conversely, from (6.8) and (6.10) we have $\left(Z(G)^{T} H^{T}\right) F^{T}=Z(G)^{T}\left(H^{T} F^{T}\right)=$ $Z(G)^{T} G^{T}=0$, but this means that each column of $\left(Z(G)^{T} H^{T}\right)^{T}$ is in $\operatorname{Syz}(F)$. In a similar way, from (6.8) and (6.6) we get $\left(I_{s}-Q^{T} H^{T}\right) F^{T}=F^{T}-Q^{T} H^{T} F^{T}=$ $F^{T}-Q^{T} G^{T}=F^{T}-F^{T}=0$, i.e., each column of $\left(I_{s}-Q^{T} H^{T}\right)^{T}$ is also in $\operatorname{Syz}(F)$. This complete the proof.

Our next task is to compute $\operatorname{Syz}\left(L_{G}\right)$. Let $L=\left[c_{1} \boldsymbol{X}_{1} \cdots c_{t} \boldsymbol{X}_{t}\right]$ be a matrix of size $m \times t$, where $\boldsymbol{X}_{1}=X_{1} \boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{X}_{t}=X_{t} \boldsymbol{e}_{i_{t}}$ are monomials of A^{m}, $c_{1}, \ldots, c_{t} \in A-\{0\}$ and $1 \leq i_{1}, \ldots, i_{t} \leq m$. We note that some indexes i_{1}, \ldots, i_{t} could be equals.

Definition 35. We say that a syzygy $\mathbf{h}=\left(h_{1}, \ldots, h_{t}\right)^{T} \in \operatorname{Syz}(L)$ is homogeneous of degree $\mathbf{X}=X \mathbf{e}_{i}$, where $X \in \operatorname{Mon}(A)$ and $1 \leq i \leq m$, if
(i) h_{j} is a term, for each $1 \leq j \leq t$.
(ii) For each $1 \leq j \leq t$, either $h_{j}=0$ or if $h_{j} \neq 0$ then $\operatorname{lm}\left(\operatorname{lm}\left(h_{j}\right) \mathbf{X}_{j}\right)=\mathbf{X}$.

Proposition 36. Let L be as above. For quasi-commutative $\sigma-P B W$ extensions, $\operatorname{Syz}(L)$ has a finite generating set of homogeneous syzygies.

Proof. Since A^{t} is a Noetherian module, $\operatorname{Syz}(L)$ is a finitely generated submodule of A^{t}. So, it is enough to prove that each generator $\boldsymbol{h}=\left(h_{1}, \ldots, h_{t}\right)^{T}$ of $\operatorname{Syz}(L)$ is a finite sum of homogeneous syzygies of $\operatorname{Syz}(L)$. We have $h_{1} c_{1} X_{1} \boldsymbol{e}_{i_{1}}+$ $\cdots+h_{t} c_{t} X_{t} \boldsymbol{e}_{i_{t}}=\mathbf{0}$, and we can group together summands according to equal canonical vectors such that \boldsymbol{h} can be expressed as a finite sum of syzygies of $\operatorname{Syz}(L)$. We observe that each of such syzygies have null entries for those places j where $\boldsymbol{e}_{i_{j}}$ does not coincide with the canonical vector of its group. The idea is to prove that each of such syzygies is a sum of homogeneous syzygies of $\operatorname{Syz}(L)$. But this means that we have reduced the problem to Lemma 4.2.2 of [1], where the canonical vector is the same for all entries. We include the proof for completeness.

So, let $\boldsymbol{f}=\left(f_{1}, \ldots, f_{t}\right)^{T} \in \operatorname{Syz}\left(c_{1} X_{1}, \ldots, c_{t} X_{t}\right)$, then $f_{1} c_{1} X_{1}+\cdots+f_{t} c_{t} X_{t}=$ 0 ; we expand each polynomial f_{j} as a sum of u terms (adding zero summands, if it is necessary):

$$
f_{j}=a_{1 j} Y_{1}+\cdots+a_{u j} Y_{u},
$$

where $a_{l j} \in R$ and $Y_{1} \succ Y_{2} \succ \cdots \succ Y_{u} \in \operatorname{Mon}(A)$ are the different monomials we found in $f_{1}, \ldots, f_{t}, 1 \leq j \leq t$. Then,

$$
\left(a_{11} Y_{1}+\cdots+a_{u 1} Y_{u}\right) c_{1} X_{1}+\cdots+\left(a_{1 t} Y_{1}+\cdots+a_{u t} Y_{u}\right) c_{t} X_{t}=0 .
$$

Since A is quasi-commutative, the product of two terms is a term, so in the previous relation we can assume that there are $d \leq t u$ different monomials, Z_{1}, \ldots, Z_{d}. Hence, completing with zero entries (if it is necessary), we can write

$$
\boldsymbol{f}=\left(b_{11} Y_{11}, \ldots, b_{1 t} Y_{1 t}\right)^{T}+\cdots+\left(b_{d 1} Y_{d 1}, \ldots, b_{d t} Y_{d t}\right)^{T}
$$

where $\left(b_{k 1} Y_{k 1}, \ldots, b_{k t} Y_{k t}\right)^{T} \in \operatorname{Syz}\left(c_{1} X_{1}, \ldots, c_{t} X_{t}\right)$ is homogeneous of degree Z_{k}, $1 \leq k \leq d$.

Definition 37. Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{t} \in \operatorname{Mon}\left(A^{m}\right)$ and let $J \subseteq\{1, \ldots, t\}$. Let

$$
\mathbf{X}_{J}=\operatorname{lcm}\left\{\mathbf{X}_{j} \mid j \in J\right\} .
$$

We say that J is saturated with respect to $\left\{\mathbf{X}_{1}, \ldots, \mathbf{X}_{t}\right\}$, if

$$
\mathbf{X}_{j} \mid \mathbf{X}_{J} \Rightarrow j \in J
$$

for any $j \in\{1, \ldots, t\}$. The saturation J^{\prime} of J consists of all $j \in\{1, \ldots, t\}$ such that $\mathbf{X}_{j} \mid \mathbf{X}_{J}$.

Lemma 38. Let L be as above. For quasi-commutative bijective $\sigma-P B W$ extensions, a homogeneous generating set for $\operatorname{Syz}(L)$ is

$$
\left\{s_{v}^{J} \mid J \subseteq\{1, \ldots, t\} \text { is saturated with respect to }\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{t}\right\}, 1 \leq v \leq r_{J}\right\}
$$

where

$$
\boldsymbol{s}_{v}^{J}=\sum_{j \in J} b_{v j}^{J} x^{\gamma_{j}} \boldsymbol{e}_{j}
$$

with $\gamma_{j} \in \mathbb{N}^{n}$ such that $\gamma_{j}+\beta_{j}=\exp \left(\boldsymbol{X}_{J}\right), \beta_{j}=\exp \left(\boldsymbol{X}_{j}\right), j \in J$, and $\boldsymbol{b}_{v}^{J}:=$ $\left(b_{v j}^{J}\right)_{j \in J}$, with $B^{J}:=\left\{\boldsymbol{b}_{1}^{J}, \ldots, \boldsymbol{b}_{r_{J}}^{J}\right\}$ is a set of generators for $\operatorname{Syz}_{R}\left[\sigma^{\gamma_{j}}\left(c_{j}\right) c_{\gamma_{j}, \beta_{j}} \mid\right.$ $j \in J]$.

Proof. First note that \boldsymbol{s}_{v}^{J} is a homogeneous syzygy of $\operatorname{Syz}(L)$ of degree \boldsymbol{X}_{J} since each entry of \boldsymbol{s}_{v}^{J} is a term, for each non-zero entry we have $\operatorname{lm}\left(x^{\gamma_{j}} \boldsymbol{X}_{j}\right)=\boldsymbol{X}_{J}$, and moreover, if $i_{J}:=\operatorname{ind}\left(\boldsymbol{X}_{J}\right)$, then

$$
\begin{aligned}
\left(\left(s_{v}^{J}\right)^{T} L^{T}\right)^{T} & =\sum_{j \in J} b_{v j}^{J} x^{\gamma_{j}} c_{j} \boldsymbol{X}_{j}=\sum_{j \in J} b_{v j}^{J} \sigma^{\gamma_{j}}\left(c_{j}\right) x^{\gamma_{j}} \boldsymbol{X}_{j} \\
& =\left(\sum_{j \in J}\left(b_{v j}^{J} \sigma^{\gamma_{j}}\left(c_{j}\right) c_{\gamma_{j}, \beta_{j}}\right) x^{\gamma_{j}+\beta_{j}}\right) \boldsymbol{e}_{i_{J}}=\mathbf{0} .
\end{aligned}
$$

On the other hand, let $\boldsymbol{h} \in \operatorname{Syz}(L)$, then by $\operatorname{Proposition~36,~} \operatorname{Syz}(L)$ is generated by homogeneous syzygies, so we can assume that \boldsymbol{h} is a homogeneous syzygy of some degree $\boldsymbol{Y}=Y \boldsymbol{e}_{i}, Y:=x^{\alpha}$. We will represent \boldsymbol{h} as a linear combination of syzygies of type \boldsymbol{s}_{v}^{J}. Let $\boldsymbol{h}=\left(d_{1} Y_{1}, \ldots, d_{t} Y_{t}\right)^{T}$, with $d_{k} \in R$ and $Y_{k}:=x^{\alpha_{k}}$, $1 \leq k \leq t$, let $J=\left\{j \in\{1, \ldots, t\} \mid d_{j} \neq 0\right\}$, then $\operatorname{lm}\left(Y_{j} \boldsymbol{X}_{j}\right)=\boldsymbol{Y}$ for $j \in J$, and

$$
\mathbf{0}=\sum_{j \in J} d_{j} Y_{j} c_{j} \boldsymbol{X}_{j}=\sum_{j \in J} d_{j} \sigma^{\alpha_{j}}\left(c_{j}\right) Y_{j} \boldsymbol{X}_{j}=\sum_{j \in J} d_{j} \sigma^{\alpha_{j}}\left(c_{j}\right) c_{\alpha_{j}, \beta_{j}} \boldsymbol{Y} .
$$

In addition, since $\operatorname{lm}\left(Y_{j} \boldsymbol{X}_{j}\right)=\boldsymbol{Y}$ then $\boldsymbol{X}_{j} \mid \boldsymbol{Y}$ for any $j \in J$, and hence $\boldsymbol{X}_{J} \mid \boldsymbol{Y}$, i.e., there exists θ such that $\theta+\exp \left(\boldsymbol{X}_{J}\right)=\alpha=\theta+\gamma_{j}+\beta_{j}$; but, $\alpha_{j}+\beta_{j}=\alpha$ since $\operatorname{lm}\left(Y_{j} \boldsymbol{X}_{j}\right)=\boldsymbol{Y}$, so $\alpha_{j}=\theta+\gamma_{j}$.

Thus,

$$
\mathbf{0}=\sum_{j \in J} d_{j} \sigma^{\alpha_{j}}\left(c_{j}\right) c_{\alpha_{j}, \beta_{j}} \boldsymbol{Y}=\sum_{j \in J} d_{j} \sigma^{\theta+\gamma_{j}}\left(c_{j}\right) c_{\theta+\gamma_{j}, \beta_{j}} \boldsymbol{Y},
$$

and from Remark 7 we get that

$$
\begin{aligned}
0 & =\sum_{j \in J} d_{j} \sigma^{\theta+\gamma_{j}}\left(c_{j}\right) c_{\theta+\gamma_{j}, \beta_{j}}=\sum_{j \in J} d_{j} c_{\theta, \gamma_{j}}^{-1} c_{\theta, \gamma_{j}} \sigma^{\theta+\gamma_{j}}\left(c_{j}\right) c_{\theta+\gamma_{j}, \beta_{j}} \\
& =\sum_{j \in J} d_{j} c_{\theta, \gamma_{j}}^{-1} \sigma^{\theta}\left(\sigma^{\gamma_{j}}\left(c_{j}\right)\right) c_{\theta, \gamma_{j}} c_{\theta+\gamma_{j}, \beta_{j}} \\
& =\sum_{j \in J} d_{j} c_{\theta, \gamma_{j}}^{-1} \sigma^{\theta}\left(\sigma^{\gamma_{j}}\left(c_{j}\right)\right) \sigma^{\theta}\left(c_{\gamma_{j}, \beta_{j}}\right) c_{\theta, \gamma_{j}+\beta_{j}} .
\end{aligned}
$$

We multiply the last equality by $c_{\theta, \exp \left(\boldsymbol{X}_{J}\right)}^{-1}$, but $c_{\theta, \exp \left(\boldsymbol{X}_{J}\right)}^{-1}=c_{\theta, \gamma_{j}+\beta_{j}}^{-1}$ for any $j \in J$, so

$$
0=\sum_{j \in J} d_{j} c_{\theta, \gamma_{j}}^{-1} \sigma^{\theta}\left(\sigma^{\gamma_{j}}\left(c_{j}\right) c_{\gamma_{j}, \beta_{j}}\right) .
$$

Since A is bijective, there exists d_{j}^{\prime} such that $\sigma^{\theta}\left(d_{j}^{\prime}\right)=d_{j} c_{\theta, \gamma_{j}}^{-1}$, so

$$
0=\sum_{j \in J} \sigma^{\theta}\left(d_{j}^{\prime}\right) \sigma^{\theta}\left(\sigma^{\gamma_{j}}\left(c_{j}\right) c_{\gamma_{j}, \beta_{j}}\right),
$$

and from this we get

$$
0=\sum_{j \in J} d_{j}^{\prime} \sigma^{\gamma_{j}}\left(c_{j}\right) c_{\gamma_{j}, \beta_{j}} .
$$

Let J^{\prime} be the saturation of J with respect to $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{t}\right\}$, since $d_{j}=0$ if $j \in J^{\prime}-J$, then $d_{j}^{\prime}=0$, and hence, $\left(d_{j}^{\prime} \mid j \in J^{\prime}\right) \in \operatorname{Syz}_{R}\left[\sigma^{\gamma_{j}}\left(c_{j}\right) c_{\gamma_{j}, \beta_{j}} \mid j \in J^{\prime}\right]$. From this we have

$$
\left(d_{j}^{\prime} \mid j \in J^{\prime}\right)=\sum_{v=1}^{r_{J^{\prime}}} a_{v} b_{v j}^{J^{\prime}} .
$$

Since $\boldsymbol{X}_{J^{\prime}}=\boldsymbol{X}_{J}$, then $\boldsymbol{X}_{J^{\prime}}$ also divides \boldsymbol{Y}, and hence

$$
\begin{aligned}
\boldsymbol{h} & =\sum_{j=1}^{t} d_{j} Y_{j} \boldsymbol{e}_{j}=\sum_{j \in J^{\prime}} d_{j} c_{\theta, \gamma_{j}}^{-1} x^{\theta} x^{\gamma_{j}} \boldsymbol{e}_{j}=\sum_{j \in J^{\prime}} \sigma^{\theta}\left(d_{j}^{\prime}\right) x^{\theta} x^{\gamma_{j}} \boldsymbol{e}_{j} \\
& =\sum_{j \in J^{\prime}} x^{\theta} d_{j}^{\prime} x^{\gamma_{j}} \boldsymbol{e}_{j}=\sum_{j \in J^{\prime}} x^{\theta}\left(\sum_{v=1}^{r_{J^{\prime}}} a_{v} b_{v j}^{J^{\prime}}\right) x^{\gamma_{j}} \boldsymbol{e}_{j}=\sum_{j \in J^{\prime}} \sum_{v=1}^{r_{J^{\prime}}} x^{\theta} a_{v} b_{v j^{\prime}}^{J^{\prime}} x^{\gamma_{j}} \boldsymbol{e}_{j} \\
& =\sum_{v=1}^{r_{J^{\prime}}} x^{\theta} a_{v} \sum_{j \in J^{\prime}} b_{v j}^{J^{\prime}} x^{\gamma_{j}} \boldsymbol{e}_{j} \\
& =\sum_{v=1}^{r_{J^{\prime}}} \sigma^{\theta}\left(a_{v}\right) x^{\theta} \boldsymbol{s}_{v}^{J^{\prime}} .
\end{aligned}
$$

Finally, we will calculate $\operatorname{Syz}(G)$ using $\operatorname{Syz}\left(L_{G}\right)$. Applying Division Algorithm and Corollary 27 to the columns of $\operatorname{Syz}\left(L_{G}\right)$ (see (6.9)), for each $1 \leq v \leq l$ there exists polynomials $p_{1 v}, \ldots, p_{t v} \in A$ such that

$$
z_{1 v}^{\prime \prime} \boldsymbol{g}_{1}+\cdots+z_{t v}^{\prime \prime} \boldsymbol{g}_{t}=p_{1 v} \boldsymbol{g}_{1}+\cdots+p_{t v} \boldsymbol{g}_{t}
$$

i.e.,

$$
\begin{equation*}
Z\left(L_{G}\right)^{T} G^{T}=P^{T} G^{T} \tag{6.12}
\end{equation*}
$$

with

$$
P:=\left[\begin{array}{ccc}
p_{11} & \cdots & p_{1 l} \\
\vdots & & \vdots \\
p_{t 1} & \cdots & p_{t l}
\end{array}\right] .
$$

With this notation, we have the following result.
Lemma 39. For quasi-commutative bijective $\sigma-P B W$ extensions, the column module of $Z(G)$ coincides with the column module of $Z\left(L_{G}\right)-P$, i.e., in a matrix notation

$$
\begin{equation*}
Z(G)=Z\left(L_{G}\right)-P . \tag{6.13}
\end{equation*}
$$

Proof. From (6.12), $\left(Z\left(L_{G}\right)-P\right)^{T} G^{T}=0$, so each column of $Z\left(L_{G}\right)-P$ is in $\operatorname{Syz}(G)$, i.e., each column of $Z\left(L_{G}\right)-P$ is an A-linear combination of columns of $Z(G)$. Thus, $\left\langle Z\left(L_{G}\right)-P\right\rangle \subseteq\langle Z(G)\rangle$.

Now, we have to prove that $\langle Z(G)\rangle \subseteq\left\langle Z\left(L_{G}\right)-P\right\rangle$. Suppose that $\langle Z(G)\rangle \nsubseteq$ $\left\langle Z\left(L_{G}\right)-P\right\rangle$, so there exists $\boldsymbol{z}^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{t}^{\prime}\right)^{T} \in\langle Z(G)\rangle$ such that $\boldsymbol{z}^{\prime} \notin$ $\left\langle Z\left(L_{G}\right)-P\right\rangle$; from all such vectors we choose one such that

$$
\begin{equation*}
\boldsymbol{X}:=\max _{1 \leq j \leq t}\left\{\operatorname{lm}\left(\operatorname{lm}\left(z_{j}^{\prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right\} \tag{6.14}
\end{equation*}
$$

be the least. Let $\boldsymbol{X}=X \boldsymbol{e}_{i}$ and

$$
J:=\left\{j \in\{1, \ldots, t\} \mid \operatorname{lm}\left(\operatorname{lm}\left(z_{j}^{\prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)=\boldsymbol{X}\right\} .
$$

Since A is quasi-commutative and $\boldsymbol{z}^{\prime} \in \operatorname{Syz}(G)$ then

$$
\sum_{j \in J} \operatorname{lt}\left(z_{j}^{\prime}\right) \operatorname{lt}\left(\boldsymbol{g}_{j}\right)=\mathbf{0}
$$

Let $\boldsymbol{h}:=\sum_{j \in J} \operatorname{lt}\left(z_{j}^{\prime}\right) \widetilde{\boldsymbol{e}}_{j}$, where $\widetilde{\boldsymbol{e}}_{1}, \ldots, \widetilde{\boldsymbol{e}}_{t}$ is the canonical basis of A^{t}. Then, $\boldsymbol{h} \in \operatorname{Syz}\left(\operatorname{lt}\left(\boldsymbol{g}_{1}\right), \ldots, \operatorname{lt}\left(\boldsymbol{g}_{t}\right)\right)$ is a homogeneous syzygy of degree \boldsymbol{X}. Let $B:=$ $\left\{\boldsymbol{z}_{1}^{\prime \prime}, \ldots, \boldsymbol{z}_{l}^{\prime \prime}\right\}$ be a homogeneous generating set for the syzygy module $\left.\operatorname{Syz}\left(L_{G}\right)\right)$, where $\boldsymbol{z}_{v}^{\prime \prime}$ has degree $\boldsymbol{Z}_{v}=Z_{v} \boldsymbol{e}_{i_{v}}$ (see (6.9)). Then, $\boldsymbol{h}=\sum_{v=1}^{l} a_{v} \boldsymbol{z}_{v}^{\prime \prime}$, where $a_{v} \in A$, and hence

$$
\boldsymbol{h}=\left(a_{1} z_{11}^{\prime \prime}+\cdots+a_{l} z_{1 l}^{\prime \prime}, \ldots, a_{1} z_{t 1}^{\prime \prime}+\cdots+a_{l} z_{t l}^{\prime \prime}\right)^{T}
$$

We can assume that for each $1 \leq v \leq l, a_{v}$ is a term. In fact, consider the first entry of \boldsymbol{h} : completing with null terms, each a_{v} is an ordered sum of s terms

$$
\left(c_{11} X_{11}+\cdots+c_{1 s} X_{1 s}\right) z_{11}^{\prime \prime}+\cdots+\left(c_{l 1} X_{l 1}+\cdots+c_{l s} X_{l s}\right) z_{1 l}^{\prime \prime}
$$

with $X_{v 1} \succ X_{v 2} \succ \cdots \succ X_{v s}$ for each $1 \leq v \leq l$, so

$$
\left\{\begin{array}{c}
\operatorname{lm}\left(X_{11} \operatorname{lm}\left(z_{11}^{\prime \prime}\right)\right) \succ \operatorname{lm}\left(X_{12} \operatorname{lm}\left(z_{11}^{\prime \prime}\right)\right) \succ \cdots \succ \operatorname{lm}\left(X_{1 s} \operatorname{lm}\left(z_{11}^{\prime \prime}\right)\right) \tag{6.15}\\
\vdots \\
\operatorname{lm}\left(X_{l 1} \operatorname{lm}\left(z_{1 l}^{\prime \prime}\right)\right) \succ \operatorname{lm}\left(X_{l 2} \operatorname{lm}\left(z_{1 l}^{\prime \prime}\right)\right) \succ \cdots \succ \operatorname{lm}\left(X_{l s} \operatorname{lm}\left(z_{1 l}^{\prime \prime}\right)\right)
\end{array}\right.
$$

Since each $\boldsymbol{z}_{v}^{\prime \prime}$ is a homogeneous syzygy, each entry $z_{j v}^{\prime \prime}$ of $\boldsymbol{z}_{v}^{\prime \prime}$ is a term, but the first entry of \boldsymbol{h} is also a term, then from (6.15) we can assume that a_{v} is a term.

We note that for $j \in J$

$$
\operatorname{lt}\left(z_{j}^{\prime}\right)=a_{1} z_{j 1}^{\prime \prime}+\cdots+a_{l} z_{j l}^{\prime \prime},
$$

and for $j \notin J$

$$
a_{1} z_{j 1}^{\prime \prime}+\cdots+a_{l} z_{j l}^{\prime \prime}=0
$$

Moreover, let $j \in J$, so $\operatorname{lm}\left(\operatorname{lm}\left(a_{1} z_{j 1}^{\prime \prime}+\cdots+a_{l} z_{j l}^{\prime \prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)=\operatorname{lm}\left(\operatorname{lm}\left(z_{j}^{\prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)=$ \boldsymbol{X}, and we can choose those v such that $\operatorname{lm}\left(a_{v} z_{j v}^{\prime \prime}\right)=\operatorname{lm}\left(z_{j}^{\prime}\right)$, for the others v we can take $a_{v}=0$. Thus, for j and such v we have

$$
\operatorname{lm}\left(\operatorname{lm}\left(a_{v}\right) \operatorname{lm}\left(\operatorname{lm}\left(z_{j v}^{\prime \prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right)=\boldsymbol{X}=X \boldsymbol{e}_{i} .
$$

On the other hand, for $j, j^{\prime} \in J$ with $j^{\prime} \neq j$, we know that $\boldsymbol{z}_{v}^{\prime \prime}$ is homogeneous of degree $\boldsymbol{Z}_{v}=Z_{v} \boldsymbol{e}_{i_{v}}$, hence, if $z_{j^{\prime} v}^{\prime \prime} \neq 0$, then $\operatorname{lm}\left(\operatorname{lm}\left(z_{j^{\prime} v}^{\prime \prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j^{\prime}}\right)\right)=\boldsymbol{Z}_{v}=$ $\operatorname{lm}\left(\operatorname{lm}\left(z_{j v}^{\prime \prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)$. Thus, we must conclude that $i_{v}=i$ and

$$
\begin{equation*}
\operatorname{lm}\left(\operatorname{lm}\left(a_{v}\right) \operatorname{lm}\left(\operatorname{lm}\left(z_{j v}^{\prime \prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right)=\boldsymbol{X}, \tag{6.16}
\end{equation*}
$$

for any v and any j such that $a_{v} \neq 0$ and $z_{j v}^{\prime \prime} \neq 0$.
We define $\boldsymbol{q}^{\prime}:=\left(q_{1}^{\prime}, \ldots, q_{t}^{\prime}\right)^{T}$, where $q_{j}^{\prime}:=z_{j}^{\prime}$ if $j \notin J$ and $q_{j}^{\prime}:=z_{j}^{\prime}-\operatorname{lt}\left(z_{j}^{\prime}\right)$ if $j \in J$. We observe that $\boldsymbol{z}^{\prime}=\boldsymbol{h}+\boldsymbol{q}^{\prime}$, and hence $\boldsymbol{z}^{\prime}=\sum_{v=1}^{l} a_{v} \boldsymbol{z}_{v}^{\prime \prime}+\boldsymbol{q}^{\prime}=$ $\sum_{v=1}^{l} a_{v}\left(\boldsymbol{s}_{v}+\boldsymbol{p}_{v}\right)+\boldsymbol{q}^{\prime}$, with $\boldsymbol{s}_{v}:=\boldsymbol{z}_{v}^{\prime \prime}-\boldsymbol{p}_{v}$, where \boldsymbol{p}_{v} is the column v of matrix P defined in (6.12). Then, we define

$$
\boldsymbol{r}:=\left(\sum_{v=1}^{l} a_{v} \boldsymbol{p}_{v}\right)+\boldsymbol{q}^{\prime}
$$

and we note that $\boldsymbol{r}=\boldsymbol{z}^{\prime}-\sum_{v=1}^{l} a_{v} \boldsymbol{s}_{v} \in \operatorname{Syz}(G)-\left\langle Z\left(L_{G}\right)-P\right\rangle$. We will get a contradiction proving that $\max _{1 \leq j \leq t}\left\{\operatorname{lm}\left(\operatorname{lm}\left(r_{j}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right\} \prec \boldsymbol{X}$. For each $1 \leq j \leq t$ we have

$$
r_{j}=a_{1} p_{j 1}+\cdots+a_{l} p_{j l}+q_{j}^{\prime}
$$

and hence

$$
\begin{aligned}
\operatorname{lm}\left(\operatorname{lm}\left(r_{j}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right) & =\operatorname{lm}\left(\operatorname{lm}\left(a_{1} p_{j 1}+\cdots+a_{l} p_{j l}+q_{j}^{\prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right) \\
& \preceq \operatorname{lm}\left(\max \left\{\operatorname{lm}\left(a_{1} p_{j 1}+\cdots+a_{l} p_{j l}\right), \operatorname{lm}\left(q_{j}^{\prime}\right)\right\} \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right) \\
& \preceq \operatorname{lm}\left(\max \left\{\max _{1 \leq v \leq l}\left\{\operatorname{lm}\left(\operatorname{lm}\left(a_{v}\right) \operatorname{lm}\left(p_{j v}\right)\right)\right\}, \operatorname{lm}\left(q_{j}^{\prime}\right)\right\} \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right) .
\end{aligned}
$$

By the definition of \boldsymbol{q}^{\prime} we have that for each $1 \leq j \leq t, \operatorname{lm}\left(\operatorname{lm}\left(q_{j}^{\prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right) \prec \boldsymbol{X}$. In fact, if $j \notin J, \operatorname{lm}\left(\operatorname{lm}\left(q_{j}^{\prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)=\operatorname{lm}\left(\operatorname{lm}\left(z_{j}^{\prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right) \prec \boldsymbol{X}$, and for $j \in J$, $\operatorname{lm}\left(\operatorname{lm}\left(q_{j}^{\prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)=\operatorname{lm}\left(\operatorname{lm}\left(z_{j}^{\prime}-\operatorname{lt}\left(z_{j}^{\prime}\right)\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right) \prec \boldsymbol{X}$. On the other hand,

$$
\sum_{j=1}^{t} z_{j v}^{\prime \prime} \boldsymbol{g}_{j}=\sum_{j=1}^{t} p_{j v} \boldsymbol{g}_{j}
$$

with

$$
\operatorname{lm}\left(\sum_{j=1}^{t} z_{j v}^{\prime \prime} \boldsymbol{g}_{j}\right)=\max _{1 \leq j \leq t}\left\{\operatorname{lm}\left(\operatorname{lm}\left(p_{j v}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right\}
$$

But, $\sum_{j=1}^{t} z_{j v}^{\prime \prime} \operatorname{lt}\left(\boldsymbol{g}_{j}\right)=\mathbf{0}$ for each v, then

$$
\operatorname{lm}\left(\sum_{j=1}^{t} z_{j v}^{\prime \prime} \boldsymbol{g}_{j}\right) \prec \max _{1 \leq j \leq t}\left\{\operatorname{lm}\left(\operatorname{lm}\left(z_{j v}^{\prime \prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right\} .
$$

Hence,

$$
\max _{1 \leq j \leq t}\left\{\operatorname{lm}\left(\operatorname{lm}\left(p_{j v}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right\} \prec \max _{1 \leq j \leq t}\left\{\operatorname{lm}\left(\operatorname{lm}\left(z_{j v}^{\prime \prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right\}
$$

for each $1 \leq v \leq l$. From (6.16), $\max _{\substack{1 \leq j \leq v \leq l \\ 1 \leq \leq l}}\left\{\operatorname{lm}\left(\operatorname{lm}\left(a_{v}\right) \operatorname{lm}\left(\operatorname{lm}\left(p_{j v}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right)\right\} \prec$ $\max _{1 \leq j \leq t}^{1 \leq \leq \leq l}\left\{\operatorname{lm}\left(\operatorname{lm}\left(a_{v}\right) \operatorname{lm}\left(\operatorname{lm}\left(z_{j v}^{\prime \prime}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right)\right\}=\boldsymbol{X}$, and hence, we can conclude that $\max _{1 \leq j \leq t}\left\{\operatorname{lm}\left(\operatorname{lm}\left(r_{j}\right) \operatorname{lm}\left(\boldsymbol{g}_{j}\right)\right)\right\} \prec \boldsymbol{X}$.
Example 40. Let $M:=\left\langle\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\rangle$, where $\boldsymbol{f}_{1}=x_{1}^{2} x_{2}^{2} \boldsymbol{e}_{1}+x_{2} x_{3} \boldsymbol{e}_{2}$ and $\boldsymbol{f}_{2}=$ $2 x_{1} x_{2} x_{3} \boldsymbol{e}_{1}+x_{2} \boldsymbol{e}_{2} \in A^{2}$, with $A:=\sigma\left(\mathbb{Q}\left[x_{1}\right]\right)\left\langle x_{2}, x_{3}\right\rangle$. In Example 33 we computed a Gröbner basis $G=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}\right\}$ of M, where $\boldsymbol{f}_{3}=12 x_{2} x_{3}^{2} \boldsymbol{e}_{2}-\frac{9}{4} x_{1} x_{2}^{2} \boldsymbol{e}_{2}$. Now we will calculate $\operatorname{Syz}(F)$ with $F=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$:
(i) Firstly, we compute $\operatorname{Syz}\left(L_{G}\right)$ using Lemma 38:

$$
L_{G}:=\left[\operatorname{lt}\left(\boldsymbol{f}_{1}\right) \operatorname{lt}\left(\boldsymbol{f}_{2}\right) \operatorname{lt}\left(\boldsymbol{f}_{3}\right)\right]=\left[x_{1}^{2} x_{2}^{2} \boldsymbol{e}_{1} 2 x_{1} x_{2} x_{3} \boldsymbol{e}_{1} 12 x_{2} x_{3}^{2} \boldsymbol{e}_{2}\right]
$$

For this we choose the saturated subsets J of $\{1,2,3\}$ with respect to $\left\{x_{2}^{2} \boldsymbol{e}_{1}, x_{2} x_{3} \boldsymbol{e}_{1}, x_{2} x_{3}^{2} \boldsymbol{e}_{2}\right\}$ and such that $\boldsymbol{X}_{J} \neq 0$:

- For $J_{1}=\{1\}$ we compute a system $B^{J_{1}}$ of generators of

$$
\operatorname{Syz}_{\mathbb{Q}\left[x_{1}\right]}\left[\sigma^{\gamma_{1}}\left(\operatorname{lc}\left(\boldsymbol{f}_{1}\right)\right) c_{\gamma_{1}, \beta_{1}}\right],
$$

where $\beta_{1}:=\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{1}\right)\right)$ and $\gamma_{1}=\exp \left(\boldsymbol{X}_{J_{1}}\right)-\beta_{1}$. Then, $B^{J_{1}}=\{0\}$, and hence we have only one generator $\boldsymbol{b}_{1}^{J_{1}}=\left(b_{11}^{J_{1}}\right)=0$ and $s_{1}^{J_{1}}=$ $b_{11}^{J_{1}} x^{\gamma_{1}} \tilde{\boldsymbol{e}}_{1}=0 \tilde{\boldsymbol{e}}_{1}$, with $\tilde{\boldsymbol{e}}_{1}=(1,0,0)^{T}$.

- For $J_{2}=\{2\}$ and $J_{3}=\{3\}$ the situation is similar.
- For $J_{1,2}=\{1,2\}$, a system of generators of

$$
\operatorname{Syz}_{\mathbb{Q}\left[x_{1}\right]}\left[\sigma^{\gamma_{1}}\left(\operatorname{lc}\left(\boldsymbol{f}_{1}\right)\right) c_{\gamma_{1}, \beta_{1}} \quad \sigma^{\gamma_{2}}\left(\operatorname{lc}\left(\boldsymbol{f}_{2}\right)\right) c_{\gamma_{2}, \beta_{2}}\right],
$$

where $\beta_{1}=\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{1}\right)\right), \beta_{2}=\exp \left(\operatorname{lm}\left(\boldsymbol{f}_{2}\right)\right), \gamma_{1}=\exp \left(\boldsymbol{X}_{J_{1,2}}\right)-\beta_{1}$ and $\gamma_{2}=\exp \left(\boldsymbol{X}_{J_{1,2}}\right)-\beta_{2}$, is $B^{J_{1,2}}=\left\{\left(4,-\frac{9}{4} x_{1}\right)\right\}$, thus we have only one generator $\boldsymbol{b}_{1}^{J_{1,2}}=\left(b_{11}^{J_{1,2}}, b_{12}^{J_{1,2}}\right)=\left(4,-\frac{9}{4} x_{1}\right)$ and

$$
\begin{aligned}
s_{1}^{J_{1,2}} & =b_{11}^{J_{1,2}} x^{\gamma_{1}} \tilde{\boldsymbol{e}}_{1}+b_{12}^{J_{1,2}} x^{\gamma_{2}} \tilde{\boldsymbol{e}}_{2} \\
& =4 x_{3} \tilde{\boldsymbol{e}}_{1}-\frac{9}{4} x_{1} x_{2} \tilde{\boldsymbol{e}}_{2} \\
& =\left(\begin{array}{c}
4 x_{3} \\
-\frac{9}{4} x_{1} x_{2} \\
0
\end{array}\right) .
\end{aligned}
$$

Then,

$$
\operatorname{Syz}\left(L_{G}\right)=\left\langle\left(\begin{array}{c}
4 x_{3} \\
-\frac{9}{4} x_{1} x_{2} \\
0
\end{array}\right)\right\rangle,
$$

or in a matrix notation

$$
\operatorname{Syz}\left(L_{G}\right)=Z\left(L_{G}\right)=\left[\begin{array}{c}
4 x_{3} \\
-\frac{9}{4} x_{1} x_{2} \\
0
\end{array}\right] .
$$

(ii) Next we compute $\operatorname{Syz}(G)$: By Division Algorithm we have

$$
4 x_{3} \boldsymbol{f}_{1}-\frac{9}{4} x_{1} x_{2} \boldsymbol{f}_{2}+0 \boldsymbol{f}_{3}=p_{11} \boldsymbol{f}_{1}+p_{21} \boldsymbol{f}_{2}+p_{31} \boldsymbol{f}_{3}
$$

so by the Example 33, $p_{11}=0=p_{21}$ and $p_{31}=1$, i.e., $P=\tilde{\boldsymbol{e}}_{3}$. Thus,

$$
Z(G)=Z\left(L_{G}\right)-P=\left[\begin{array}{c}
4 x_{3} \\
-\frac{9}{4} x_{1} x_{2} \\
-1
\end{array}\right]
$$

and

$$
\operatorname{Syz}(G)=\left\langle\left(\begin{array}{c}
4 x_{3} \\
-\frac{9}{4} x_{1} x_{2} \\
-1
\end{array}\right)\right\rangle .
$$

(iii) Finally we compute $\operatorname{Syz}(F)$: since

$$
\boldsymbol{f}_{1}=1 \boldsymbol{f}_{1}+0 \boldsymbol{f}_{2}+0 \boldsymbol{f}_{3}, \boldsymbol{f}_{2}=0 \boldsymbol{f}_{1}+1 \boldsymbol{f}_{2}+0 \boldsymbol{f}_{3}
$$

then

$$
Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Moreover,

$$
\boldsymbol{f}_{1}=1 \boldsymbol{f}_{1}+0 \boldsymbol{f}_{2}, \quad \boldsymbol{f}_{2}=0 \boldsymbol{f}_{1}+1 \boldsymbol{f}_{2}, \quad \boldsymbol{f}_{3}=4 x_{3} \boldsymbol{f}_{1}-\frac{9}{4} x_{1} x_{2} \boldsymbol{f}_{2},
$$

hence

$$
H=\left[\begin{array}{ccc}
1 & 0 & 4 x_{3} \\
0 & 1 & -\frac{9}{4} x_{1} x_{2}
\end{array}\right] .
$$

By Theorem 34,

$$
\operatorname{Syz}(F)=\left[\left(Z(G)^{T} H^{T}\right)^{T} I_{2}-\left(Q^{T} H^{T}\right)^{T}\right]
$$

with

$$
\begin{aligned}
\left(Z(G)^{T} H^{T}\right)^{T} & =\left(\left[4 x_{3}-\frac{9}{4} x_{1} x_{2}-1\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
4 x_{3}-\frac{9}{4} x_{1} x_{2}
\end{array}\right]\right)^{T} \\
& =\left(\left[\begin{array}{ll}
0 & 0
\end{array}\right)^{T}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

and

$$
I_{2}-\left(Q^{T} H^{T}\right)^{T}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

From this we conclude that $\operatorname{Syz}(F)=0$. Observe that this means that M is free.

References

[1] W. W. Adams and P. Loustaunau. Gröbner bases and primary decomposition in polynomial rings in one variable over Dedekind domains. J. Pure Appl. Algebra, 121(1):1-15, 1997.
[2] A. D. Bell and K. R. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. Pacific J. Math., 131(1):13-37, 1988.
[3] J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic methods in noncommutative algebra, volume 17 of Mathematical Modelling: Theory and Applications. Kluwer Academic Publishers, Dordrecht, 2003. Applications to quantum groups.
[4] J. L. Bueso, J. Gómez-Torrecillas, and F. J. Lobillo. Homological computations in PBW modules. Algebr. Represent. Theory, 4(3):201-218, 2001.
[5] C. Gallego and O. Lezama. Gröbner bases for ideals of $\sigma-P B W$ extensions. Comm. Algebra, 39(1):50-75, 2011.
[6] V. Levandovskyy. PBW bases, non-degeneracy conditions and applications. In Representations of algebras and related topics, volume 45 of Fields Inst. Commun., pages 229-246. Amer. Math. Soc., Providence, RI, 2005.
[7] O. Lezama. Gröbner bases for the modules over Noetherian polynomial commutative rings. Georgian Math. J., 15(1):121-137, 2008.
[8] O. Lezama and A. Reyes. Some homological properties of skew $P B W$ extensions. Comm. Algebra, 42(3):1200-1230, 2014.

Received March 27, 2015.

Haydee Jiménez, Graduate student, Universidad de Sevilla, Spain

Oswaldo Lezama,
Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia
E-mail address: jolezamas@unal.edu.co

[^0]: 2010 Mathematics Subject Classification. 16Z05, 18G10.
 Key words and phrases. PBW extensions, noncommutative Gröbner bases, Buchberger's Algorithm, module of syzygies.

 Seminario de Álgebra Constructiva - SAC^{2}.

