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Abstract

In this paper a new notion of topological spaces namely, I-sequential topo-
logical spaces is introduced and investigated. This new space is a strictly weaker
notion than the first countable space. Also I-sequential topological space is a
quotient of a metric space.

1 Introduction

The idea of convergence of real sequence have been extended to statistical convergence
by [2, 14, 15] as follows: If N denotes the set of natural numbers and K ⊂ N then Kn

denotes the set {k ∈ K : k ≤ n} and |Kn| stands for the cardinality of the set Kn. The
natural density of the subset K is defined by

d(K) = lim
n→∞

|Kn|
n

,

provided the limit exists.
A sequence {xn}n∈N of points in a metric space (X, ρ) is said to be statistically

convergent to l if for arbitrary ε > 0, the set K(ε) = {k ∈ N : ρ(xk, l) ≥ ε} has
natural density zero. A lot of investigation has been done on this convergence and its
topological consequences after initial works by [5, 13].
It is easy to check that the family Id = {A ⊂ N : d(A) = 0} forms a non-trivial

admissible ideal of N (recall that I ⊂ 2N is called an ideal if (i) A,B ∈ I implies
A ∪ B ∈ I and (ii) A ∈ I, B ⊂ A implies B ∈ I. I is called non-trivial if I 6= {φ} and
N /∈ I. I is admissible if it contains all the singletons, cf. [8]). Thus one may consider
an arbitrary ideal I of N and define I-convergence of a sequence by replacing a set of
density zero in the definition of statistical convergence by a member of I.
In a topological space X, a set A is open if and only if every a ∈ A has a neigh-

borhood contained in A. A is sequentially open if and only if no sequence in X \ A
has a limit in A. In this paper using the idea of ideal convergence in topological spaces
(cf. [9]), we define, I-sequentially open set and hence I-sequential topological space.
Though the concept of these two sets, open and I-sequentially open are the same in case
of metric spaces. We give an example of a topological space which is not I-sequential.
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Next we formulate an equivalent result for a topological space to be I-sequential and
show that every I-sequential topological space is a quotient of a metric space. Finally
we give an example of a topological space which is I-sequential but not first countable.

Throughout the paper we assume X to be a topological space and I be a non-trivial
admissible ideal in N.

2 Main Results

We first introduce the following definitions.

DEFINITION 2.1. A set O ⊂ X is said to be open in X if and only if every a ∈ O
has a neighborhood contained in O.

DEFINITION 2.2. O is I-sequentially open if and only if no sequence in X \O has
an I-limit in O. i.e. sequence can not I-converge out of a I-sequentially closed set.

DEFINITION 2.3. A topological space is I-sequential when any set O is open if
and only if it is I-sequentally open.

We first show that the concept of these two sets are the same in case of metric
spaces.

THEOREM 2.1. If X is a metric space, then the notion of open and I-sequentially
open are equivalent.

PROOF. Let O be open and {xn}n∈N be a sequence in X \ O. let y ∈ O. Then
there is a neighborhood U of y which contained in O. Hence U can not contain any
term of {xn}n∈N. So y is not an I-limit of the sequence and O is I-sequentially open.
Conversely, if O is not open then there is an y ∈ O such that any neighborhood of y
intersects X \O. In particular we can pick an element xn ∈ (X \O)∩B(y, 1

n+1 ) for all
n ∈ N. Now the sequence {xn}n∈N in X \O converges and hence I-converges to y ∈ O,
so O is not I-sequentially open.

The implication from open to I-sequentially open is true in any topological space.

THEOREM 2.2. In any topological space X, if O is open then O is I-sequentially
open.

PROOF. The proof is similar to the first part of the Theorem 2.1.

Now we give an example of a topological space which is not I-sequential.

EXAMPLE 2.1. Consider (R, τ cc), the countable complement topology on R. Thus
A ⊂ R is closed if and only if A = R or A is countable. Suppose that a sequence
{xn}n∈N has an I-limit y. Then the neighborhood (R \ {xn : n ∈ N}) ∪ {y} of y must
contain xn for infinitely many n. This is only possible when xn = y for n large enough.
Consequently, a sequence in any set A can only I-converge to an element of A, so every
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subset of R is I-sequentially open. But as R is uncountable, not every subset is open.
So (R, τ cc) is not I-sequential.
The next theorem shows that if the space is first countable then it is I-sequential.

THEOREM 2.3. Every first countable space is I-sequential.

PROOF. Let A ⊂ X is not open. Then there exists y ∈ A such that every neigh-
borhood of y intersects X \ A. Let {Un : n ∈ N} be a countable basis at y. Now for
every n ∈ N choose xn ∈ (X \A)∩ (

⋂n
i=1Ui). Then for every neighborhood V of y there

exists n ∈ N such that Un ⊂ V and hence xm ∈ V for every m ≥ n. Clearly {xn}n∈N
is I-convergent to y. Therefore A is not I-sequentially open.

In the following Lemma we give a necessary and suffi cient condition for a set A ⊂ X
to be I-sequentially open.

LEMMA 2.1. Let X be a topological space. Then A ⊂ X is I-sequentially open
if and only if every sequence with I-limit in A has all but finitely many terms in A.
Where the index set of the part in A of the sequence does not belong to I.

PROOF. If A is not I-sequentially open, then by definition there is a sequence with
terms in X \ A but I-limit in A. Conversely, suppose {xn}n∈N is a sequence with
infinitely many terms in X \A such that I-converges to y ∈ A and the index set of the
part in A of the sequence does not belong to I. Then {xn}n∈N has a subsequence in
X \A that must still converges to y ∈ A, so A is not sequentially open.

THEOREM 2.4. The following are equivalent for any topological space X.

(i) X is I-sequential.

(ii) For any topological space Y and function f : X → Y, f is continuous if and only
if it preserves I-convergence.

PROOF. SupposeX is I-sequential. Any continuous function preserves I-convergence
of sequences [1], so we only need to prove that if f : X → Y preserves I-convergence,
then f is continuous. Suppose to the contrary that f is not continuous. Then there is
an open set U ⊂ Y such that f−1(U) is not open in X. As X is I-sequential, f−1(U)
is also not I-sequentially open, so there is a sequence {xn}n∈N in X \ f−1(U) that
I-converges to an y ∈ f−1(U). However {f(xn)}n∈N is then a sequence in the closed
set Y \U , so it can not have f(y) as an I-limit. So f does not preserves I-convergence,
as required. Thus assertions (ii) holds.
Suppose that the topological space (X, τ) is not I-sequential. Let (X, τ Iseq) be the

topological space where A ⊂ X is open if and only if A is I-sequentially open in (X, τ).
Since X is not I-sequential, the topology τ Iseq is strictly finer than τ . Hence the

identity map from τ to τ Iseq is not continuous. Suppose {xn}n∈N is I-convergent
to y in (X, τ). Then every open neighborhood A of y in (X, τ Iseq) is I-sequentially
open in (X, τ), so A contains all but finitely many terms of {xn}n∈N. Therefore X is
I-sequential.
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We now give some result to prove the fact that all I-sequential topological spaces
are the quotients of some metric spaces [3, 4].
First we recall the definition of a quotient space. Let X be a topological space and

let ∼ be an equivalence relation on X. Consider the set of equivalence classes X/ ∼
and the projection mapping Π : X → X/ ∼ . Now we consider X/ ∼ as a topological
space by defining A ⊂ X/ ∼ to be open if and only if Π−1(A) is open in X [10].

PROPOSITION 2.1. Any quotient space X/ ∼ of an I-sequential topological space
X is I-sequential.

PROOF. Suppose that A ⊂ X/ ∼ is not open. By definition of quotient space
Π−1(A) is not open in X. As X is I-sequential, there is a sequence {xn}n∈N in
X \ Π−1(A) that I-converges to some y ∈ Π−1(A). As Π is continuous it preserve
convergence. Hence {Π(xn)}n∈N is a sequence in (X/ ∼) \ A with I-limit Π(y) ∈ A.
Thus A is not I-sequentially open. Hence X/ ∼ is I-sequential.

PROPOSITION 2.2. Every I-sequential space X is a quotient of some metric space.

PROOF. Let M be the set of all sequences {xn}n∈N in X that I-converges to their

first term, i.e. xn
I−→ x0. Consider the subspace Y = {0} ∪ { 1

n+1 , n ∈ N} of R with the
standard metric. Thus A ⊂ Y is open if and only if 0 /∈ A or A contains all but finitely
many elements of Y . Now consider the disjoint sum

S =
⊕

{xn}n∈N∈M

{xn}n∈N × Y.

A ⊂ S is open if and only if for every {xn}n∈N ∈M the set {y ∈ Y : ({xn}n∈N, y) ∈ A}
is open in Y . Consider the map f : S → X by ({xn}n∈N, 0)→ x0 and ({xn}n∈N, 1

i+1 )→
xi for all i ∈ N. Here f is clearly surjective as for all x ∈ X the constant sequence
I-converges to x, so x = f({x}, 0).
Suppose that A ⊂ X is open. As X is I-sequential, every sequence {xn}n∈N in X

that I-converging to some a ∈ A must have all but finitely many terms in A where, the
index set of the part in A of the sequence does not belong to I by Definition 2.2. Hence
if ({xn}n∈N, 0) ∈ f−1(A) we have f−1(A) contains all but finitely many elements of
{xn}n∈N × Y . So for each {xn}n∈N ∈ M , the set {y ∈ Y : ({xn}n∈N, y) ∈ f−1(A)}
is open in Y . Hence f−1(A) is open in S. Conversely, if A is not open in X then
there is a sequence {xn}n∈N in X \ A that I-converges to some a ∈ A. But then
{y ∈ Y : ({xn}n∈N, y) ∈ f−1(A)} = {0} is not open in Y , so f−1(A) is not open in S.

We can now easily prove that I-sequential topological space is a strictly weaker
notion than first countable topological space: There exists an I-sequential space X
which is not first countable.

EXAMPLE 2.2. Consider R with standard topology and the quotient relation ∼
on R, the equivalence classes are N and {x} for every x ∈ R \ N. The quotient space
R/ ∼ is I-sequential as a quotient of a metric space. Suppose that {Un : n ∈ N}



240 I-Sequential Topological Spaces

is any countable collection of neighborhood of N. Then for all n ∈ N,Π−1(Un) is a
neighborhood of n in R with the standard topology, so there is a εn > 0 such that
B(n, εn) ⊂ Π−1(Un). Now consider Π(

⋃
n∈NB(n, εn2 )), this is a neighborhood of N in

R/ ∼, but it does not contain Un for any n ∈ N. So {Un : n ∈ N} is not a countable
basis at N.
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