
Annales Mathematicae et Informaticae

33 (2006) pp. 151–165
http://www.ektf.hu/tanszek/matematika/ami

Variations for spanning trees

László Zsakó

Faculty of Informatics ELTE

e-mail: Zsako@ludens.elte.hu

Submitted 20 June 2006; Accepted 8 December 2006

Abstract

Coursebooks discussing graph algorithms usually have a chapter on mini-
mum spanning trees. It usually contains Prim’s and Kruskal’s algorithms [1,
2] but often lacks other applications. This type of problem is rarely present
at informatics competitions or in tests in secondary or higher level informat-
ics education This article is aimed at describing some competition tasks that
help us prove that the application of the above algorithms are well-suited for
both competition and evaluation purposes.

The Hungarian National Informatics Competition for Secondary School Stu-
dents look back on a history of 20 years and so does the International Olympiad in
Informatics. Basically, informatics competitions rely on algoritmization tasks [3,
4], the circle of which is continually developing though showing a surprisingly great
constancy at the same time.

At both types of competitions there are often tasks connected to graphs or
problems that can be reduced to representation of graphs. International competi-
tions nearly lack tasks in connection with minimum spanning trees. On the other
hand, at national competitions (Hungarian National Informatics Competitions for
Secondary School Students and the Selecting Competition for the International
Olympiad) the scientific committees deciding on tasks (mainly Gyula Horváth and
László Zsakó) has set this kind of problem several times. You could also have met
a similar one for instance at the 11th Lithuanian Olympiad in Informatics (Winter
in The Kingdom of Fancy).

This article is about the experience gained so far: with the help of the tasks
below, we would like to show that their solution is not a simple description of the
two classical spanning tree algorithms (Prim’s and Kruskal’s) but their creative
application [5, 6].

151



152 L. Zsakó

As being a methodologist, in this article I do not intend to invent

fundamentally new algorithms but rather discover the applicability and

limits of algorithms known so far.

When Hungarian secondary school students are being prepared for competi-
tions, we rely on two fundamental books on algorithms [1, 2]. Therefore, our
stepping stone here are two basic algorithms described in these books (one is taken
from one of the books while the other is from the other one). This article is not
aimed at describing further algorithms that are too complicated for this age group
but the studying of the applicability of the two basic procedures.

Definition 1.1. Let G = (V,E) be a connected undirected graph. An acyclic
connected F (V,E′) subgraph of a G graph is a spanning tree of the graph where
E′ ⊆ E (A spanning tree is a tree that contains all the nodes of G and its edges
are taken from the edges of G.) Let a weight function c : E → R be given. Then
an F spanning tree of G is a minimum spanning tree if its cost (the sum of the
weights of its edges) is the minimum of all the spanning trees of G.

Prim’s procedure [1]: Let G = (V,E) be a connected graph, V = {1, . . . , N}.
Starting from node 1, expand the tree containing this node until – expanded with
all the nodes – you get the minimum spanning tree.

Procedure Prim(G: graph; var F: set of edges);
var U: set of nodes;

u,v: nodes;
begin

F:={};
U:={1};
while U 6= G.V do begin

let (u, v) be a minimum weight edge, for which u ∈ U and v ∈ G.V \U ;
F := F ∪ {(u, v)};
U := U ∪ {v};

end;
end;

Kruskal’s procedure [2]: Sort the edges in increasing order by weight. Create
an N-member spanning forest from node N. Check the edges and if there are any
that connect various spanning trees, join the spanning trees.

Procedure Kruskal(G: graph; var A: set of edges)
A := ∅;
for all v ∈ G.V do Create-a-set(v);
sort the edges of G.E in increasing order by weight w;
for all (u, v) ∈ G.E

do if Find − set(u) 6= Find − set(v)
then begin A := A ∪ {(u, v)}; Join(u, v); end;

end;



Variations for spanning trees 153

In this article we are only dealing with problems that can be solved by secondary
school students participating at informatics competitions if they are familiar with
the above basic graph algorithms. The essence of the method is the analysis of two
starting situations:

• Let us modify the text of the task by adding or dropping conditions then
examine whether the above algorithms are applicable and if so what modifi-
cations are necessary.

• Let us modify either of the above algorithms then find a sensible problem to
match it, which can thus be solved.

First let us see some competition tasks from the past few years and the solutions
we expected to receive. You can find examples for both strategies among them as
well as among the ideas that follow them.

Problem 1.2 (Plant – spanning forest).1 A company manufactures goods in its
plants based in K cities, which are then to be transported to N cities. The transport
routes must be strengthened so that heavy lorries will be able to run along them.
Therefore, the transport routes are meant to be arranged in such a way that the total
length of the transport routes to be strengthened will be the smallest possible. Write
a program that determines the minimum total length of the roads to be strengthened
as well as from which city to which city the goods are to be transported.

At this problem it is feasible to start with Prim’s algorithm. The basic variant
takes an arbitrary node (right node 1) as a starting tree. In this task take a starting
forest with nodes 1, 2, . . . ,K. Here you do not even need to assume that the graph
is connected. The only thing is that in its every connected component there must
be at least one plant.

In the solution you will need the spanning trees themselves. The starting nodes
of the spanning trees are the nodes with plants. The task expects you to determine
for all the nodes of the graph from which nodes of a given spanning tree they can
be reached directly.

Therefore, you have to modify the algorithm at two parts–at the ones in italics:

Procedure Prim(G: graph; var F: set of edges);
var U: set of nodes;

u,v: nodes;
begin

F := {};
U := {1, 2, . . . ,K};
for all u ∈ U do w(u) := u;
while U 6= G.V do begin

let (u, v) be the cheapest edge for which u ∈ U and v ∈ G.V \U ;

1The Selecting Competition for the International Olympiad in 2002. Competition tasks are

printed in italics. From the original tasks we have omitted the descriptions of the imput and the

output as well as the limitations and the conditions.



154 L. Zsakó

F := F ∪ {(u, v)}; w(v) := u;
U := U ∪ {v};

end;
end;

Here Kruskal’s procedure is a bit awkward to use because you should work
around so as not to join two sub-trees in both of which there is a plant.

Problem 1.3 (Mill – spanning forest).2 The Milling Company has flour milled and
packed in K Mills. The flour should be transported to N cities in such a way that
the total transportation cost be the lowest possible. Write a program that gives the
minimum transportation cost, and for each town from which mill the flour is to be
transported.

The problem is fairly similar to the previous one: you have to construct a
spanning forest here, as well [7]. As for time, it was set after that one at the
competition but it is a bit tricky because in this problem it is not the total length
of the edges that should be minimum but the total length of the paths deriving
from the roots (mill) of trees. Therefore, it is possible that the shortest edge of the
graph is not an element of the spanning forest as the figure above shows (Kruskal’s
procedure would first join these two nodes). According to the previous problem
(Mill,A), (A,B) would be the minimum spanning tree, whereas for this problem the
correct solution is (Mill,A), (Mill,B).

Figure 1:

Thus you need to store in the modified Prim’s algorithm for each node of the
spanning trees to-be-built, the length of the shortest path leading from the root
(mill) to it, then you need to attach a node to one of its spanning trees to which
the path leading from the root is the shortest. A further modification is that here
for each node of the spanning tree you need to store its root (i.e. the starting node
of the path leading there instead of the edge leading there).

Now you have to modify the algorithm at three places; the modifications here
are in italics, as well:

2The Hungarian National Informatics Competition for Secondary School Students in 2005.



Variations for spanning trees 155

Procedure Prim(G: graph; var F: set of edges);
var U: set of nodes;

u,v: nodes;
begin

F := ;
U := {1, 2, . . . ,K}; for all u ∈ U do w(u) := u;
while U 6= G.V do begin

Let (u, v) be an edge where u ∈ U and v ∈ G.V \U and
Min(u) + weight(u, v) are minimum;

F := F ∪ {(u, v)}; w(v) := w(u);
U := U ∪ {v}; Min(v) := Min(u) + weight(u, v);

end;
end;

Remark 1.4. If you started from one node, you would actually get a variant of
Dijkstra’s algorithm to determine the minimum paths starting from one node.

Problem 1.5 (Pipeline – a spanning forest for a complete graph).3 In a country
oil refineries were built at K places, where petrol is produced from crude oil. There
are N places with filling stations where the petrol should be transported through
pipeline. Both of them are given with their co-ordinates. The pipeline must be
designed in such a way that minimum length of pipes are to be laid. The pipeline can
fork only at filling stations or refineries and can be led only horizontally or vertically
in the map. The refineries are numbered from 1 to K while filling stations from
K+1 to K+N. Write a program that determines between which nodes (oil refineries
or filling stations) the pipeline should be constructed in a way that the lenght of the
pipeline will be minimum.

The problem is nearly identical with the “Plant” problem. There is just one
little peculiarity here: there is an edge between any nodes of the graph and the
length i.e. the weight of the edge is equal to the Manhattan-distance of its two
extreme nodes.

Problem 1.6 (Road – a spanning tree with starting components).4

In a city there are several squares. Some of them are connected with roads while
others are not and they should be constructed. Between the squares there are areas
allocated by the local government for roads. Only after the construction of roads
had started did it turn out that there would not be enough money to build all the
roads. On the other hand, the reconversion of those that already exist is also terri-
bly expensive. Write a program that determines which roads the local government
should build so that it will cost the least and in the meantime you could travel from
each square to each square.

What is peculiar about the problem is that there are starting connected com-
ponents (not necessarily trees). The components can be defined relying on the

3The Selecting Competition for the International Olympiad in 2000.
4The Selecting Competition for the International Olympiad in 2003.



156 L. Zsakó

already strengthened roads. Therefore, it is not the minimum spanning tree of the
starting graph that you should create but the minimum spanning tree of another
graph that consists of the components. And from now on you can choose among
three solutions:

A. Take a graph consisting of the components (i.e. combine the nodes of the com-
ponents into the nodes of the new graph), then with the aid of the non-strengthened
roads apply any algorithm that gives you a minimum spanning tree.

B. Applying Kruskal’s procedure, first join the sub-trees between which there
is a strengthened road without any further conditions then relying on the basic
algorithm, join those between which there is a non-strengthened road.

Let F be the set of strengthened and E the set of not yet strengthened edges.
The modifications are shown in italics:

Procedure Kruskal(G: graph;F: set of edges; var A: set of edges)
A := {};
for all v ∈ G.V do Make-a-set(v);
for all (u, v) ∈ F do if Find-a-set(u)6=Find-a-set(v)

then Join(u,v);
sort the edges of G.E in increasing order by weight w;
for all (u, v) ∈ G.E

do if Find-a-set(u) 6=Find-a-set(v)
then begin A := A ∪ {(u, v)}; Join(u,v); end;

end;

C. As a third solution, the edges of set F could be added to set E with 0
weight. Then the basic algorithm could do nearly without any modifications. The
only thing you need to take care about, however, is that you must not include the
edges with 0 weight in the edge set A arising as a solution. The solution would be
a bit slower since there is a larger edge set here to be sorted than in the case above.

Problem 1.7 (Network – online spanning tree).5 In Fairyland a network is to be
constructed to connect N cities. During K weeks you keep receiving tenders for
constructing a direct connection between two cities. For every week–if possible–
give a plan, based on the tenders received so far, regarding which cities are to be
connected directly so that every city will be accessible from every other city directly
or via other cities but such that the total cost of construction will be minimum. The
plan contains the pairs of cities to be connected and the total cost of constructing
the network.

The problem is the online version of creating a minimum spanning tree. The dif-
ficulty the competitors are to face is that they rarely, if ever, meet such algorithms
at school or at the preparatory courses for the competitions [1].

The problem, however, can be deduced to the following case: if there is a
minimum spanning forest and one single new graph edge, how can you make a

5The Selecting Competition for the International Olympiad in 2004.



Variations for spanning trees 157

minimum spanning forest? For example, a modification to Kruskal’s algorithm
could be the following:

Procedure online(G: graph; var A: set of edges)
A := {};
for all v∈ G.V do Make-a-set(v);
for all (u,v) ∈ G.E

do if Find-a-set(u) 6= Find-a-set(v)
then begin A := A ∪ {(u, v)}; Join(u,v); end
else begin

(p, q):=the maximum weight edge of path (u, v);
if weight(p, q) > weight(u, v)

then A := A ∪ {(u, v)} − {(p, q)};
end;

end;

Further ideas

Below you will find problem ideas that the scientific committees of the compe-
titions concerned have already dealt with and probably they will be set as compe-
tition tasks in the future.

Idea1

The pipeline problem can also be formulated such that for the sake of safety
there should be constructed a pipeline where every filling station can be supplied
with petrol from at least two oil refineries.

A possible solution is: the solution of the original pipeline problem then con-
necting K components somehow.

Figure 2:

It means that if you take the graph consisting of components, define the min-
imum spanning forest consisting of at least 2-element trees. It is easy to see that
you cannot apply the greedy strategy here: you must not include the edge with
weight 1 you can see in the figure into the spanning forest of the component-graph.

Therefore, this problem cannot be used as a variant of a greedy strategy mini-
mum spanning tree, no matter how much it resembles the basic problem.

Idea2

So far we have been dealing with undirected graphs. And what about directed
ones? If you assume that a graph connected and directed i.e. it has at least one
node from which there is a path to all other nodes then the problem can be solved.



158 L. Zsakó

Figure 3:

If there is one starting node (i.e. one to which does not lead an edge), the solution
is easy: start constructing the tree from that node following Prim’s algorithm.

If there are several such nodes, they are definitely in a cycle (since starting
from any node any of them can be accessed). In this case, create for each node
their spanning trees, then choose the best one out of them. If you look at the
figure, the good starting node is circled. Although all the nodes of the graph
can be accessed from every node, if you start from any other nodes, you will get
higher-cost spanning trees.

There is just one question left: to determine the nodes from which all the other
nodes are accessible.

Figure 4:

If you take graph with several starting nodes and you are aware that all the
nodes can be accessed from at least one node, you can apply Prim’s algorithm (e.g.
just like in the “Plant” problem ), as well.

Interestingly, if you try to use Kruskal’s algorithm, however, you may arrive in
a dead-end street as its simple application can result in a wrong spanning tree. For
example, as for the graph in the figure the edge of weight 1 is not in the spanning
tree.

Idea3

If you are unlucky, in the “Plant” problem you may even have to transport
goods to cities with no plants from one single plant whereas from all the other
plants nowhere i.e. tree K-1 of the minimum spanning forest consists of only one
node whereas the Kth tree contains all the other nodes.

Modify the problem such that every sub-tree contains at least M nodes.



Variations for spanning trees 159

Figure 5:

It is easy to see that this problem cannot be solved with the so far applied
greedy strategy. Let the black circles in the figure denote the starting nodes and
let all the trees of the spanning forest contain 2 nodes. If you include the edge of
weight 1 into any of the sub-trees, the cost of the spanning forest can be only 10
but the correct solution contains only the edges of weights 2 and 3.

For M>4 the problem is NP complete [10]. Therefore, it cannot be used as
a variant of a greedy strategy minimum spanning tree although that is a natural
extension of the original problem.

Idea4

In an archipelago the islands are connected with bridges. The bridges of a max-
imum length of H can be re-newed. Write a program that determines the minimum
total length of the bridges to be renewed in a way that you can travel from any island
to any island. The problem is a modification of the “Plant” problem: the span-
ning forest must consist of maximum H long edges. Actually, you must determine
a subgraph of a graph (excluding edges longer than H) then apply e.g. Kruskal’s
algorithm on them [8]. When sorting the edges, you can exclude the unnecessary
ones.

Idea5

An important feature of Kruskal’s algorithm is that the spanning forest being
built is always of the lowest cost. The number of the trees of the forest is being
decreased by 1 at each step. Relying on this, you can create a K-element minimum
spanning forest. The problem is similar to the “Plant” problem, just the nodes of
the K-element spanning forest are not given in advance. In this case, the solution
is to follow Kruskal’s procedure until you have exactly K trees after the joining.

Idea6

You can also modify Kruskal’s algorithm in a way that in the meantime you
subtract spanning trees of a certain size from further processing. Do this to trees
that contain at least M nodes. (We do not expect, however, that the spanning
forest created this way will be of minimum cost.)



160 L. Zsakó

Lemma 2.8. Every tree subtracted from further processing can contain maximum
2(M−1) nodes.

Proof. According to the task, you will have to deal with trees that contain max-
imum M − 1 nodes. The algorithm reduces two trees at each step so the number
of elements of the tree can be maximum double the M − 1. �

You should modify Kruskal’s algorithm in a way that you exclude the edges
leading out from reduced trees with minimum M nodes (the essence of the modifi-
cation is in italics):

If free(u) and free(v) and
Find-a-set(u) 6= Find-a-set(v) then . . .

Idea7

The previous idea shows clearly that if you use Kruskal’s procedure, it is far
from being guaranteed that you will have an exactly M -element spanning tree in
the course of progress.

Figure 6:

Prim’s procedure is suitable for this in principle but the result you get is not
necessarily the minimum M -element spanning tree (the sub-graph containing M

arbitrary nodes). If you take the left node in the figure as a starting point, you will
get a 10-cost long spanning tree with the left 3 nodes but the cost of the spanning
tree on the right containing 3 nodes is only 4. The figure shows that even if you
started from the two ends of the shortest edge as a starting tree, it would not help,
either.

Relying on Prim’s algorithm, however, it may be a sensible task to create a
minimum M -element spanning tree that starts from a given “starting node”.

Idea8

You can get the second best spanning treea from the minimum spanning tree.
Take the minimum spanning tree. Take the edges not belonging to the tree in turn.
If you add them to the tree, you will get a cycle. Omit the longest edge of the
cycle. If you follow this procedure for each possible edge, from the trees obtained
this way that one will be the second best spanning tree in which the difference in
length of its new edge and omitted edge is minimum [1, 2].

Idea9

You can formulate the minimum spanning tree problem by saying that you have
to construct a spanning tree the longest edge of which is minimum. In this case
you do not need a new algorithm as Kruskal’s algorithm will give you the correct
solution just like for the original problem [8].



Variations for spanning trees 161

Idea10

The minimum spanning tree problem can easily be transformed into a maximum
spanning tree one. An easy solution: the sum of the weights is maximal when/if
the sum of their negatives is minimal.

In another formulation of the problem (previous idea): for the shortest edge to
be maximal, the longest among the edges of the respective negative lengths should
be minimal.

Another solution: sort the edges in Kruskal’s algorithm in decreasing order [9].

Idea11

An important feature of Kruskal’s algorithm is that the spanning forest being
constructed is always minimum and the number of trees in it is decreasing by one
at each step. Thus it would be a sensible task to determine a spanning forest
consisting of the fewest trees with less than a given cost.

Idea12

We are going to connect big cities in Hungary with pipelines suitable for trans-
porting petrol. A petrol pipeline can be built between two cities but the pipelines can
be joined at any of their points. Every pipeline connects either two cities or joins a
pipeline already constructed. The task is to construct the pipeline network so that
you use the fewest pipes possible. Write a program that reads in the co-ordinates
(real numbers) of big cities then displays the length of the minimum length pipeline
network.

Figure 7:

The problem just sligthly differs from the “Pipeline” problem but its solution
is completely different: you have to create a Steiner tree, which is far from being
secondary school level.

Big cities of Hungary are to be connected with pipelines suitable for transporting
petrol. First a petrol pipeline is constructed between two cities but a new city can be
joined to the ready network not only at another city but at any point of the pipeline.
Every pipeline connects either two cities or joins a pipeline already constructed. The
task is to construct the pipeline network so that you use the least pipes possible.
Write a program that reads in the co-ordinates (real numbers) of the cities then
displays the length of the minimum length pipeline network.



162 L. Zsakó

It is the online version of the problem. It is greedy but it has nothing to do with
classical spanning tree algorithms since in this case you have to determine in what
order the cities are connected to the network. Undoubtedly, you have to construct
the pipeline between the first two cities. Whereas regarding any other city, you

Figure 8:

have to determine the shortest length between the new city and the already existing
pipes and then to connect the city to the closest node (city or pipeline). (In the
figure you can see the connection sequence.)

Remark 2.9. the result you get this way will not be identical with the Steiner
tree of the previous problem. What is more, you will get different spanning trees
if the sequences of nodes are different.

Instead of a conclusion – survey experience

With the help of our survey experience, I would like to prove that these problems
can be solved by the élite of secondary school students. The above shows that
they can be varied highly therefore they are well-suited to be used at informatics
competitions.

Figure 9: Pipeline

The slight deviation from the maximum score mostly derives from efficiency or
from omitting the study of special cases.

This spanning tree task was the first of its kind set at a selecting competition for
the student olympiad. The distribution of scores is interesting: about half of the



Variations for spanning trees 163

competitors handed in a 50% solution and another significant percentage achieved
an 80% performance. Since it was the first task of its kind, it took the competitors
by surprise. The 80% solutions rose from good but not efficient algorithms i.e.
as the diagram shows nobody but one student knew (or discovered) the efficient
minimum spanning tree algorithm. Behind the 40-50% performance lie solutions
of not full value.

Figure 10: Plant

This diagram shows that in 2002 about 50% of the students participating at the
selecting competition for the student olympiad provided a perfect solution while the
other half did not deserve a score or just a little. When analysing their solutions,
it turned out that they did not know either of the two original algorithm. They
attempted at various solutions and in some special cases they got a right one. The
students who received 15 to 20 scores, typically devised a correct algorithm, but
with their minimum cubic or even worse algorithms they were not able to supply
a correct result within the time limit of the competition. It was a definite progress
within two years.

Figure 11: Road

This problem was set at a competition a year after the previous one and it
shows a seemingly surprising distribution of scores. Compared to the previous one,



164 L. Zsakó

many competitors fell into the 0-40% category. Analysing the solutions, you can
see that about half of the 17 competitors belonging to this group did not take into
account the ready components. However, they received a correct result for some
test cases even this way. Most of those with 0-5 scores started working following
Solution A described in the article and they either did not manage to finish work
in time or their programs were correct only in a few cases. Half of those with high
scores chose a solution similar to Variant B, while the other half to Variant C.

Figure 12: Network

As we mentioned above in the article, the online version took the competitors by
surprise. In general, they are not familiar with online algorithms, which is clearly
shown by the scores they achieved. Interestingly, about 50% of the competitors
were the same as the participants of the competition a year before so they had
already seen a spanning tree problem and some of them had given a good solution
then.

Figure 13: Mill

In 2005 this task was solved by a broader circle that could have seen the solutions
of the previous tasks. Typically, here we also had about 50% with a maximum score
and 10% with 0 score. Those with scores in between are different from the other
task: typically, here they knew the original algorithms that give solutions to this
group of problems but they applied them incorrectly.



Variations for spanning trees 165

References

[1] Rónyai Lajos, Ivanyos Gábor, Szabó Réka: Algoritmusok. Typotex, 1999.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest: Introduction to Algorithms, MIT,
1990.

[3] http://olympiads.win.tue.nl/

[4] http://ceoi.inf.elte.hu/

[5] Szlávi Péter, Zsakó László: Módszeres programozás: Gráfok, ELTE Informatikai
Kar, 2004.

[6] Szlávi Péter, Zsakó László: Gráfokkal kapcsolatos algoritmusok, NJSZT – Neumann
János Tehetséggondozó Program, 2004.

[7] Katona Gyula, Recski András, Szabó Csaba: A számítástudomány alapjai. Typotex,
2002.

[8] Steven Skiena: Analysis of Algorithms, SUNY Stony Brook distance learning pro-
gram, 1996.

[9] R. Muhammad: Spanning Tree and Minimum Spanning Tree, web-publications 2005,
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/ms.htm

[10] Xiaoyun Ji, John E. Mitchell: Minimum Weight Constrained Forest Problem, 2005
Optimization Days, Montreal, Canada, 2005.

[11] http://ims.mii.lt/olimp/?lang=en&sk=pasirengimas&id=0610 – Lithuanian
Olympiad in Informatics, tasks

László Zsakó

Faculty of Informatics ELTE

1117 Budapest

Pázmány Péter sétány 1/C

Hungary


