CAUCHY TYPE RESULTS CONCERNING LOCATION OF ZEROS OF POLYNOMIALS

H. A. SOLEIMAN MEZERJI and M. BIDKHAM

Abstract

Let $p(z)$ be a polynomial with complex coefficients. In this paper, we obtain some new results concerning the location of zeros of polynomials $p(z)$. Our results sharpen Cauchy's result, along with some of the other known results, which are based on the classical Cauchy's work. Finally, we prove the results concerning the bounds for the number of zeros for the polynomial $p(z)$, which generalize some known results.

1. Introduction and statement of results

Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n, then according to a classical result by Cauchy [8, 9], the polynomial $f(z)$ has all its zeros in $|z| \leq 1+M$, where

$$
\begin{equation*}
M=\max \left|\frac{a_{j}}{a_{n}}\right|, \quad j=0,1,2, \ldots, n-1 . \tag{1.1}
\end{equation*}
$$

Also, if $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ is a polynomial of degree n with real coefficients satisfying

$$
\begin{equation*}
a_{n} \geqslant a_{n-1} \geqslant \cdots \geqslant a_{1} \geqslant a_{0}>0 \tag{1.2}
\end{equation*}
$$

then according to the famous result due to Eneström-Kakeya [8, 9], the polynomial $f(z)$ has all its zeros in $|z| \leq 1$.

[^0]

Go back

Full Screen

Close
Joyal, Labelle and Rahman [7] extended the Eneström-Kakeya theorem to the polynomials whose coefficients are monotonic but not necessarily non-negative, and proved the following theorem.

Theorem A. If $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ is a polynomial of degree n with real coefficients satisfying

$$
\begin{equation*}
a_{n} \geqslant a_{n-1} \geqslant \cdots \geqslant a_{1} \geqslant a_{0}, \tag{1.3}
\end{equation*}
$$

then the polynomial $f(z)$ has all its zeros in

$$
\begin{equation*}
|z| \leq \frac{1}{\left|a_{n}\right|}\left\{a_{n}-a_{0}+\left|a_{0}\right|\right\} . \tag{1.4}
\end{equation*}
$$

Aziz and Zargar [2] generalized Theorem A and proved the next theorem.
Theorem B. If $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ is a polynomial of degree n with real coefficients such that for some $\lambda \geq 1$,

$$
\begin{equation*}
\lambda a_{n} \geq a_{n-1} \geq \cdots \geq a_{1} \geq a_{0} \tag{1.5}
\end{equation*}
$$

then $f(z)$ has all its zeros in the disk

$$
\begin{equation*}
|z+\lambda-1| \leq \frac{\lambda a_{n}-a_{0}+\left|a_{0}\right|}{\left|a_{n}\right|} . \tag{1.6}
\end{equation*}
$$

A related result from Govil and Rahman [6] concerns a restriction on the moduli and arguments of coefficients and proves the following theorem.

Theorem C. If $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ is a polynomial of degree n with complex coefficients such that

$$
\begin{equation*}
\left|\arg a_{k}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, \quad k=0,1,2, \ldots, n \tag{1.7}
\end{equation*}
$$

for some real β, and

$$
\begin{equation*}
\left|a_{n}\right| \geqslant\left|a_{n-1}\right| \geqslant \cdots \geqslant\left|a_{1}\right| \geqslant\left|a_{0}\right| \tag{1.8}
\end{equation*}
$$

then $f(z)$ has all its zeros in

$$
\begin{equation*}
|z| \leq \cos \alpha+\sin \alpha+\frac{2 \sin \alpha}{\left|a_{n}\right|} \sum_{k=0}^{n-1}\left|a_{k}\right| . \tag{1.9}
\end{equation*}
$$

Also, Aziz and Qayoom [1] used a finite set of complex numbers and got a strip in complex plane included zeros of polynomials. In fact, they proved the following theorem.

Theorem D. Let $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a non-constant complex polynomial of degree n. If $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}$ is any set of n real or complex numbers such that

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right| \leq 1
$$

then all the zeros of $p(z)$ lie in the annulus

$$
\begin{equation*}
R=\left\{z \in \mathbb{C}: r_{1} \leq|z| \leq r_{2}\right\} \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{1}=\min _{1 \leq k \leq n}\left|\lambda_{k} \frac{a_{0}}{a_{k}}\right|^{\frac{1}{k}} \quad \text { and } \quad r_{2}=\max _{1 \leq k \leq n}\left|\frac{1}{\lambda_{k}} \frac{a_{n-k}}{a_{k}}\right|^{\frac{1}{k}} . \tag{1.11}
\end{equation*}
$$

Recently M. Dehmer investigated two classes of bounds for the zeros of complex polynomials, namely explicit and implicit zeros bounds [3, 4, 5]. By using special classes of polynomials, he showed that his results might be suitable and optimal from classical Cauchy's result. In fact, he proved the following results.

44 4 \bullet •
Go back

Full Screen

Close
Theorem E. Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n. If for any $p>1$, $q>1$,

$$
\frac{1}{p}+\frac{1}{q}=1
$$

then all the zeros of $f(z)$ lie in the closed disk $K\left(0,\left(1+M^{q} n^{\frac{q}{p}}\right)^{\frac{1}{q}}\right)$, where

$$
\begin{equation*}
M=\max \left|\frac{a_{j}}{a_{n}}\right|, \quad j=0,1,2, \ldots, n-1 \tag{1.12}
\end{equation*}
$$

Theorem F. Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n, then all the zeros of $f(z)$ lie in the closed disk $K(0,1+\widetilde{M})$, where

$$
\begin{equation*}
\widetilde{M}=\max _{0 \leq j \leq n}\left|\frac{a_{n-j}-a_{n-j-1}}{a_{n}}\right|, \quad a_{-1}=0 . \tag{1.13}
\end{equation*}
$$

Theorem G. Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}, a_{n} a_{n-1} \neq 0$ be a complex polynomial. All zeros of $f(z)$ lie in the closed disk

$$
\begin{equation*}
K\left(0, \frac{1+\phi_{2}}{2}+\frac{\sqrt{\left(\phi_{2}-1\right)^{2}+4 M_{1}}}{2}\right) \tag{1.14}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{1}:=\max _{0 \leq j \leq n-2}\left|\frac{a_{j}}{a_{n}}\right|, \quad \phi_{2}:=\left|\frac{a_{n-1}}{a_{n}}\right| . \tag{1.15}
\end{equation*}
$$

Also, concerning the number of zeros of a polynomial in the given region, we have the following results due to Shah and Liman [10].

Theorem H. If $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ is a complex polynomial satisfying

$$
\begin{equation*}
\sum_{i=1}^{n}\left|a_{i}\right|<\left|a_{0}\right|, \tag{1.16}
\end{equation*}
$$

then $p(z)$ does not vanish in $|z|<1$.
Theorem I. If $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ is a complex polynomial satisfying

$$
\begin{equation*}
\sum_{i=0}^{n-1}\left|a_{i}\right|<\left|a_{n}\right|, \tag{1.17}
\end{equation*}
$$

then $p(z)$ has all its zeros in $|z|<1$.
In this paper, first we prove the following theorem without any restrictions on the coefficients of a polynomial which include not only Cauchy's theorem and Eneström-Kakeya theorem simultaneously but also some other well-known results.

Theorem 1. Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n. If for any $p>1$, $q>1$,

$$
\frac{1}{p}+\frac{1}{q}=1,
$$

$$
\begin{equation*}
A_{p, i}=\left\{\sum_{j=0}^{n}\left|\frac{a_{i} a_{n-j}-a_{n} a_{n-j-1}}{a_{n}^{2}}\right|^{p}\right\}^{\frac{1}{p}}, \quad a_{-1}=0,-1 \leq i \leq n . \tag{1.18}
\end{equation*}
$$

$44 \mid \gg$
Go back

Full Screen

$$
A_{p,-1}=\left\{\sum_{j=0}^{n}\left|\frac{a_{n-j-1}}{a_{n}}\right|^{p}\right\}^{\frac{1}{p}} \leq M n^{\frac{1}{p}}, \quad a_{-1}=0
$$

Therefore the bound obtained in Theorem 1 is better than that one in Theorem E due to Dehmer. Finally, if A_{p} is obtained for $i=n$, then we get the following result.

Corollary 1. Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n. If for any $p>1$, $q>1$,

$$
\frac{1}{p}+\frac{1}{q}=1
$$

then all the zeros of $f(z)$ lie in the disk $K\left(0,\left(1+A_{p, n}^{q}\right)^{\frac{1}{q}}\right)$, where

$$
\begin{equation*}
A_{p, n}=\left\{\sum_{j=0}^{n}\left|\frac{a_{n-j}-a_{n-j-1}}{a_{n}}\right|^{p}\right\}^{\frac{1}{p}}, \quad a_{-1}=0 \tag{1.21}
\end{equation*}
$$

Remark 1. For $p=q=2$, Corollary 1 reduces to a result of Williams ([13], see also [8, pp. 126]).

Also, by letting $p \rightarrow \infty$ in Theorem 1, we have $q=1$ and

$$
\lim _{p \rightarrow \infty} A_{p, i}=M_{i},
$$

where

$$
M_{i}=\max _{0 \leq j \leq n}\left|\frac{a_{i} a_{n-j}-a_{n} a_{n-j-1}}{a_{n}^{2}}\right|, \quad a_{-1}=0,
$$

so we get the following result.
Corollary 2. Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n. Then all the zeros of $f(z)$ lie in the $K(0,1+M)$, where $M=\min _{-1 \leq i \leq n}\left\{M_{i}\right\}$.

Remark 2. It is clear that Corollary 2 is an improvement of Theorem F and Cauchy's theorem, when M is obtained for $i \neq n,-1$. For example, if we consider the polynomial $f(z)=z^{3}+0.1 z^{2}+$ $0.3 z+0.7$, then by Cauchy's theorem and Theorem F of Dehmer, it has all the zeros in the closed disk $K(0,1.7)$, but by Corollary 2 , it has all the zeros in the closed disk $K(0,1.49)$.

Since

$$
\lim _{q \rightarrow \infty}\left(1+A_{p, i}^{q}\right)^{\frac{1}{q}}=\left\{\begin{array}{rl}
1 & \text { if } A_{1, i} \leq 1 \tag{1.22}\\
A_{1, i} & \text { if } A_{1, i}>1
\end{array},\right.
$$

hence, we get the following interesting result.
Corollary 3. Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n. Then all the zeros of $f(z)$ lie in the $K(0, R)$ where

$$
\begin{gather*}
R=\min _{-1 \leq i \leq n} R_{i}, \\
R_{i}=\left\{\begin{aligned}
1 & \text { if } A_{1, i} \leq 1 \\
A_{1, i} & \text { if } A_{1, i}>1
\end{aligned}\right. \tag{1.23}
\end{gather*}
$$

and

$$
\begin{equation*}
A_{1, i}=\left\{\sum_{j=0}^{n}\left|\frac{a_{i} a_{n-j}-a_{n} a_{n-j-1}}{a_{n}^{2}}\right|\right\}, \quad a_{-1}=0 . \tag{1.24}
\end{equation*}
$$

Remark 3. Under assumption in Theorem C and by using the inequality in [6]

$$
\left|a_{k}-a_{k-1}\right| \leq\left(\left|a_{k}\right|-\left|a_{k-1}\right|\right) \cos \alpha+\left(\left|a_{k}\right|+\left|a_{k-1}\right|\right) \sin \alpha
$$

we conclude that

$$
\begin{align*}
R \leq R_{n} & =\frac{1}{\left|a_{n}\right|}\left\{\sum_{j=0}^{n-1}\left|a_{n-j}-a_{n-j-1}\right|+\left|a_{0}\right|\right\} \tag{1.25}\\
& \leq \cos \alpha+\sin \alpha+\frac{2 \sin \alpha}{\left|a_{n}\right|} \sum_{k=0}^{n-1}\left|a_{k}\right| .
\end{align*}
$$

Consequently, Corollary 3 is an improvement of Theorem C. In some cases, our result is significantly better than that one of Theorem C. We can illustrate this by the following examples.

Example 1.

i) For the polynomial $f_{1}(z)=\mathrm{i} z^{3}+z^{2}+\mathrm{i} z+1$, Theorem C (with $\beta=\alpha=\frac{\pi}{4}$) results in fact that $f_{1}(z)$ has all its zeros in $|z| \leq 5 \sqrt{2} \approx 7.07$. While our result shows that all the zeros of $f_{1}(z)$ lie in $|z| \leq 3$.
ii) For the polynomial $f_{2}(z)=i z^{3}+z^{2}-\mathrm{i} z+1$, Theorem C (with $\beta=0, \alpha=\frac{\pi}{2}$) results in fact that $f_{2}(z)$ has all its zeros in $|z| \leq 9$. While our result shows that all the zeros of $f_{2}(z)$ lie in $|z| \leq 3$.
$44|4|>$

Go back

Full Screen
iii) For the polynomial $f_{3}(z)=-\mathrm{i} z^{3}-z^{2}+\mathrm{i} z+1$, Theorem C is not applicable. While our result shows that all the zeros of $f_{3}(z)$ lie in $|z| \leq 1$.
Furthermore, in general, the comparison between zeros bound of Theorem G and Theorem 1 is not possible. But in some cases, our result is better than that one of Theorem G. We can illustrate this by the following examples.

Example 2.

i) For the polynomial $f_{4}(z)=100 z^{9}+100 z^{8}+100 z^{7}+100 z^{6}+100 z^{5}+100 z^{4}+100 z^{3}+100 z^{2}+1$, Theorem G results in fact that $f_{4}(z)$ has all zeros in $K(0,2)$. While Theorem 1 for $p=$ $1.00002, q=50001$, shows that all the zeros of $f_{4}(z)$ lie in $|z| \leq 1$.
ii) For the polynomial $f_{5}(z)=20 z^{3}+20 z^{2}+19 z+19$, Theorem G results in fact that $f_{5}(z)$ has all zeros in $K(0,2)$. While for $p=q=2$, Theorem 1 shows that all the zeros of $f_{5}(z)$ lie in $K(0,1.3)$.
iii) For the polynomial $f_{6}(z)=z^{3}+0.1 z^{2}+0.3 z+0.7$, Theorem G results in fact that $f_{6}(z)$ has all zeros in $K(0,1.5)$. While for $p=q=2$, Theorem 1 shows that all the zeros of $f_{6}(z)$ lie in $K(0,1.2)$.
The following theorem gives the lower bound for the zeros of polynomials.
Theorem 2. Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n. If for any $p>1$, $q>1$,

$$
\frac{1}{p}+\frac{1}{q}=1
$$

then all the zeros of $f(z)$ lie outside the disk $K\left(0, \frac{1}{\left(1+B_{p}^{q}\right)^{\frac{1}{q}}}\right)$, where

$$
B_{p}=\min _{-1 \leq i \leq n}\left\{B_{p, i}\right\},
$$

$$
\begin{equation*}
B_{p, i}=\left\{\sum_{j=0}^{n}\left|\frac{a_{i} a_{j}-a_{0} a_{j+1}}{a_{0}^{2}}\right|^{p}\right\}^{\frac{1}{p}}, \quad a_{-1}=a_{n+1}=0,-1 \leq i \leq n . \tag{1.26}
\end{equation*}
$$

Many interesting results can be deduced from Theorem 2 in exactly the same way as we have done from Theorem 1. Since

$$
\lim _{q \rightarrow \infty}\left(1+B_{p, i}^{q}\right)^{\frac{1}{q}}=\left\{\begin{array}{cl}
1 & \text { if } B_{1, i} \leq 1 \tag{1.27}\\
B_{1, i} & \text { if } B_{1, i}>1
\end{array},\right.
$$

hence, we get the following interesting result.
Corollary 4. Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n, then all the zeros of $f(z)$ lie outside the disk $K\left(0, \frac{1}{r}\right)$, where

$$
\begin{gather*}
r=\min _{-1 \leq i \leq n} r_{i}, \\
r_{i}=\left\{\begin{array}{cl}
1 & \text { if } B_{1, i} \leq 1 \\
B_{1, i} & \text { if } \\
B_{1, i}>1
\end{array}\right. \tag{1.28}
\end{gather*}
$$

and

$$
\begin{equation*}
B_{1, i}=\sum_{j=0}^{n}\left|\frac{a_{i} a_{j}-a_{0} a_{j+1}}{a_{0}^{2}}\right|, \quad a_{-1}=a_{n+1}=0,-1 \leq i \leq n . \tag{1.29}
\end{equation*}
$$

Remark 4. If

$$
\begin{equation*}
\left|a_{0}\right| \geq\left|a_{1}\right| \geq \cdots \geq\left|a_{n}\right| \tag{1.30}
\end{equation*}
$$

similar to (1.25), we have

$$
\begin{equation*}
r \leq r_{0}=\frac{1}{\left|a_{0}\right|}\left\{\sum_{j=0}^{n-1}\left|a_{j}-a_{j+1}\right|+\left|a_{n}\right|\right\} \leq \cos \alpha+\sin \alpha+\frac{2 \sin \alpha}{\left|a_{0}\right|} \sum_{k=1}^{n}\left|a_{k}\right| . \tag{1.31}
\end{equation*}
$$

Therefore Corollary 4 is an improvement of a result of Govil [6].
Next, we prove the result which generalizes Eneström-Kakeya theorem.
Theorem 3. Let $f(z)=\sum_{k=0}^{n} a_{k} z^{k}$, $\left(a_{k} \neq 0\right)$, be a non-constant complex polynomial. If $\operatorname{Re} a_{j}=\alpha_{j}$ and $\operatorname{Im} a_{j}=\beta_{j}$ for $j=0,1,2, \ldots, n$, such that for some $\lambda \geq 1$ and $t \geq 1$,

$$
\begin{align*}
& \lambda \alpha_{n} \geq \alpha_{n-1} \geq \cdots \geq \alpha_{1} \geq \alpha_{0}, \\
& t \beta_{n} \geq \beta_{n-1} \geq \cdots \geq \beta_{1} \geq \beta_{0}, \tag{1.32}
\end{align*}
$$

then all the zeros of $f(z)$ lie in

$$
\begin{equation*}
\left|z+\frac{(\lambda-1) \alpha_{n}+(t-1) \beta_{n} \mathrm{i}}{a_{n}}\right| \leq \frac{\lambda \alpha_{n}+t \beta_{n}+\left|\alpha_{0}\right|+\left|\beta_{0}\right|-\alpha_{0}-\beta_{0}}{\left|a_{n}\right|} . \tag{1.33}
\end{equation*}
$$

If we take $t=1$ in Theorem 3 , then we get the following result.

Corollary 5. Let $f(z)=\sum_{k=0}^{n} a_{k} z^{k},\left(a_{k} \neq 0\right)$ be a non-constant complex polynomial. If $\operatorname{Re} a_{j}=\alpha_{j}$ and $\operatorname{Im} a_{j}=\beta_{j}$ for $j=0,1,2, \ldots, n$, such that for some $\lambda \geq 1$,

$$
\begin{align*}
& \lambda \alpha_{n} \geq \alpha_{n-1} \geq \cdots \geq \alpha_{1} \geq \alpha_{0}, \\
& \beta_{n} \geq \beta_{n-1} \geq \cdots \geq \beta_{1} \geq \beta_{0}, \tag{1.34}
\end{align*}
$$

then all the zeros of $f(z)$ lie in

$$
\begin{equation*}
\left|z+\frac{(\lambda-1) \alpha_{n}}{a_{n}}\right| \leq \frac{\lambda \alpha_{n}+\beta_{n}+\left|\alpha_{0}\right|+\left|\beta_{0}\right|-\alpha_{0}-\beta_{0}}{\left|a_{n}\right|} . \tag{1.35}
\end{equation*}
$$

44 4 $\bullet \mid>$
Go back

Full Screen

Close
For $\beta_{0}>0$, Corollary 5 reduces to the result of Shah and Liman [11, Theorem 2]. If we take $\lambda=1$ in Theorem 3 , then we get the following result.

Corollary 6. Let $f(z)=\sum_{k=0}^{n} a_{k} z^{k},\left(a_{k} \neq 0\right)$ be a non-constant complex polynomial. If $\operatorname{Re} a_{j}=\alpha_{j}$ and $\operatorname{Im} a_{j}=\beta_{j}$ for $j=0,1,2, \ldots, n$, such that for some $t \geq 1$,

$$
\begin{align*}
& \alpha_{n} \geq \alpha_{n-1} \geq \cdots \geq \alpha_{1} \geq \alpha_{0} \\
& t \beta_{n} \geq \beta_{n-1} \geq \cdots \geq \beta_{1} \geq \beta_{0} \tag{1.36}
\end{align*}
$$

then all the zeros of $f(z)$ lie in

$$
\begin{equation*}
\left|z-\frac{(t-1) \beta_{n} \mathrm{i}}{a_{n}}\right| \leq \frac{\alpha_{n}+t \beta_{n}+\left|\alpha_{0}\right|+\left|\beta_{0}\right|-\alpha_{0}-\beta_{0}}{\left|a_{n}\right|} . \tag{1.37}
\end{equation*}
$$

Also if we take $\lambda=t$ in Theorem 3, then we get the following result.
Corollary 7. Let $f(z)=\sum_{k=0}^{n} a_{k} z^{k},\left(a_{k} \neq 0\right)$ be a non-constant complex polynomial. If $\operatorname{Re} a_{j}=\alpha_{j}$ and $\operatorname{Im} a_{j}=\beta_{j}$ for $j=0,1,2, \ldots, n$, such that for some $\lambda \geq 1$,

$$
\begin{align*}
& \lambda \alpha_{n} \geq \alpha_{n-1} \geq \cdots \geq \alpha_{1} \geq \alpha_{0}, \\
& \lambda \beta_{n} \geq \beta_{n-1} \geq \cdots \geq \beta_{1} \geq \beta_{0}, \tag{1.38}
\end{align*}
$$

then all the zeros of $f(z)$ lie in

$$
\begin{equation*}
\left|z+(\lambda-1) \frac{\overline{a_{n}}}{a_{n}}\right| \leq \frac{\lambda a_{n}+\left|\alpha_{0}\right|+\left|\beta_{0}\right|-\alpha_{0}-\beta_{0}}{\left|a_{n}\right|} . \tag{1.39}
\end{equation*}
$$

Remark 5. If $\beta_{j}=0$ for $j=0,1,2, \ldots, n$, then Corollary 7 reduces to Theorem B due to Aziz and Zargar [2]. If $\lambda=1$ and $\beta_{j}=0$ for $j=0,1,2, \ldots, n$, then Corollary 7 reduces to Theorem A due to Joyal [7]. And if $\lambda=1, \alpha_{0}>0$ and $\beta_{j}=0$ for $j=0,1,2, \ldots, n$, then Corollary 7 reduces to Enesrtöm-Kakeya theorem.

* 4 4 $|\bullet|>$

Go back

Full Screen

Close
Finally, we prove the following generalization of Theorems H and I .
Theorem 4. Let $p(z)=a_{0}+\sum_{i=\mu}^{n} a_{i} z^{i}$ be a complex polynomial of degree n. If

$$
\begin{equation*}
R^{n-k} \sum_{i=0, i \neq j \in A}^{n}\left|a_{i}\right|<\left|a_{k}\right|, \tag{1.40}
\end{equation*}
$$

for some k with $a_{k} \neq 0$ and $R \geq 1$, where $A=\{1,2, \ldots, \mu-1, k\}$, then $p(z)$ has exact k zeros in $|z|<R$.

Remark 6. If $k=0$ and $R=1$, then Theorem 4 reduces to Theorem H. Also, for $k=n$ and $R=1$, Theorem 4 reduces to Theorem I.

If $\mu=k=R=1$, then we have the following result.
Corollary 8. If $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ is a polynomial of degree n and

$$
\begin{equation*}
\sum_{i=0, i \neq 1}^{n}\left|a_{i}\right|<\left|a_{1}\right|, \tag{1.41}
\end{equation*}
$$

then $p(z)$ has exact one zeros in $|z|<1$.
Remark 7. If we define

$$
\begin{equation*}
\lambda_{1}=\frac{a_{0}}{a_{1}}, \quad \lambda_{2}=\frac{a_{2}}{a_{1}}, \quad \lambda_{3}=\frac{a_{3}}{a_{1}}, \quad \ldots \quad, \lambda_{n}=\frac{a_{n}}{a_{1}}, \tag{1.42}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\lambda_{i}\right|=\frac{1}{\left|a_{1}\right|} \sum_{i=0, i \neq 1}^{n}\left|a_{i}\right|<1 \quad(b y \text { (1.41)) } \tag{1.43}
\end{equation*}
$$

So, by applying Theorem D , all the zeros of $p(z)$ lie in annulus $\left\{z \in \mathbb{C}: r_{3} \leq|z| \leq r_{4}\right\}$, where

$$
\begin{equation*}
r_{3}=\min _{1 \leq k \leq n}\left|\lambda_{k} \frac{a_{0}}{a_{k}}\right|^{\frac{1}{k}}, \quad r_{4}=\max _{1 \leq k \leq n}\left|\frac{1}{\lambda_{k}} \frac{a_{n-k}}{a_{n}}\right|^{\frac{1}{k}} . \tag{1.44}
\end{equation*}
$$

By substituting λ_{i} in r_{3}, we have

$$
\begin{align*}
r_{3} & =\min \left\{\left|\frac{a_{0}}{a_{1}} \cdot \frac{a_{0}}{a_{1}}\right|,\left|\frac{a_{2}}{a_{1}} \cdot \frac{a_{0}}{a_{2}}\right|^{\frac{1}{2}}, \ldots,\left|\frac{a_{n}}{a_{1}} \cdot \frac{a_{0}}{a_{n}}\right|^{\frac{1}{n}}\right\} \\
& =\min \left\{\left|\frac{a_{0}}{a_{1}}\right|^{2},\left|\frac{a_{0}}{a_{1}}\right|^{\frac{1}{2}}, \ldots,\left|\frac{a_{0}}{a_{1}}\right|^{\frac{1}{n}}\right\} \tag{1.45}\\
& =\left|\frac{a_{0}}{a_{1}}\right|^{2} .
\end{align*}
$$

Therefore, we conclude the following result.
Corollary 9. If $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ is a polynomial of degree n and

$$
\begin{equation*}
\sum_{i=0, i \neq 1}^{n}\left|a_{i}\right|<\left|a_{1}\right|, \tag{1.46}
\end{equation*}
$$

then, $p(z)$ does not vanish in $|z|<\left|\frac{a_{0}}{a_{1}}\right|^{2}$.
If $\mu=k \geq 1$ in Theorem 4, then we have the following result.
Corollary 10. Let

$$
\begin{equation*}
p(z)=a_{0}+\sum_{i=\mu}^{n} a_{i} z^{i} \tag{1.47}
\end{equation*}
$$

be a complex polynomial of degree n. If

$$
\begin{equation*}
R^{n-\mu} \sum_{i=0, i \neq j \in B}^{n}\left|a_{i}\right|<\left|a_{\mu}\right| \tag{1.48}
\end{equation*}
$$

where $B=\{1,2, \ldots, \mu-1\}$, then $p(z)$ has exact μ zeros in $|z|<R$.
Remark 8. If we define

$$
\begin{align*}
& \lambda_{1}=\frac{a_{0}}{R^{n-\mu} a_{\mu}}, \quad \lambda_{2}=\lambda_{3}=\cdots=\lambda_{\mu}=0, \quad \lambda_{\mu+1}=\frac{a_{\mu+1}}{R^{n-\mu_{a}}}, \\
& \quad \ldots, \quad \lambda_{n}=\frac{a_{n}}{R^{n-\mu} a_{\mu}}, \tag{1.49}
\end{align*}
$$

then by Theorem D , all the zeros of $p(z)$ lie in annulus $\left\{z \in \mathbb{C}: r_{5} \leq|z| \leq r_{6}\right\}$, where

$$
\begin{align*}
r_{5} & =\min _{1 \leq k \leq n}\left|\lambda_{k} \frac{a_{0}}{a_{k}}\right|^{\frac{1}{k}} \\
& =\min \left\{\left|\frac{a_{0}}{R^{n-\mu} a_{\mu}} \cdot \frac{a_{0}}{a_{1}}\right|,\left|\frac{a_{\mu+1}}{R^{n-\mu} a_{\mu}} \cdot \frac{a_{0}}{a_{\mu+1}}\right|^{\frac{1}{\mu+1}}, \ldots,\left|\frac{a_{n}}{R^{n-\mu} a_{\mu}} \cdot \frac{a_{0}}{a_{n}}\right|^{\frac{1}{n}}\right\} \\
& =\min \left\{\left|\frac{a_{0}}{R^{n-\mu} a_{\mu}} \cdot \frac{a_{0}}{a_{1}}\right|,\left|\frac{a_{0}}{R^{n-\mu} a_{\mu}}\right|^{\frac{1}{\mu+1}}, \ldots,\left|\frac{a_{o}}{R^{n-\mu} a_{\mu}}\right|^{\frac{1}{n}}\right\} \tag{1.50}\\
& =\min \left\{\left|\frac{a_{0}^{2}}{R^{n-\mu_{1}}}\right|,\left|\frac{a_{0}}{R^{n-\mu} a_{\mu}}\right|^{\frac{1}{\mu+1}}\right\} .
\end{align*}
$$

Hence, we get the following result.

Corollary 11. If the condition of Corollary 9 holds, then $p(z)$ does not vanish in $\{z \in \mathbb{C}:|z|<$ $\left.r_{5}\right\}$, where

$$
r_{5}=\min \left\{\left|\frac{a_{0}^{2}}{R^{n-\mu} a_{1}}\right|,\left|\frac{a_{0}}{R^{n-\mu} a_{\mu}}\right|^{\frac{1}{\mu+1}}\right\} .
$$

2. Proofs of the Theorems

Proof of Theorem 1. For the zeros with $|z| \leq 1$, we have nothing to prove. Assuming $|z|>1$ and defining $q(z)=\left(a_{i}-a_{n} z\right) f(z)$, we obtain

$$
\begin{align*}
q(z)= & -a_{n}^{2} z^{n+1}+\left(a_{i} a_{n}-a_{n} a_{n-1}\right) z^{n}+\left(a_{i} a_{n-1}-a_{n} a_{n-2}\right) z^{n-1} \\
& +\cdots+\left(a_{i} a_{1}-a_{n} a_{0}\right) z+a_{i} a_{0} . \tag{2.1}
\end{align*}
$$

Or

$$
\begin{align*}
|q(z)| \geq & \left|a_{n}^{2} z^{n+1}\right|-\left\{\left|a_{i} a_{n}-a_{n} a_{n-1}\right||z|^{n}+\left|a_{i} a_{n-1}-a_{n} a_{n-2}\right||z|^{n-1}\right. \\
& \left.+\cdots+\left|a_{i} a_{1}-a_{n} a_{0}\right||z|+\left|a_{i} a_{0}\right|\right\} \\
= & \left|a_{n}^{2}\right||z|^{n+1}\left[1-\sum_{j=0}^{n}\left|\frac{a_{i} a_{n-j}-a_{n} a_{n-j-1}}{a_{n}^{2}}\right| \frac{1}{|z|^{j+1}}\right] . \tag{2.2}
\end{align*}
$$

By using Holder's inequality for $p>1, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we have for $|z|>1$,

$$
\begin{align*}
|q(z)| & \geq\left|a_{n}^{2}\right||z|^{n+1}\left(1-\left(\sum_{j=0}^{n}\left|\frac{a_{i} a_{n-j}-a_{n} a_{n-j-1}}{a_{n}^{2}}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{j=0}^{n} \frac{1}{|z|^{q(j+1)}}\right)^{\frac{1}{q}}\right) \\
& =\left|a_{n}^{2} \| z\right|^{n+1}\left(1-A_{p, i}\left(\sum_{j=0}^{n} \frac{1}{|z|^{q(j+1)}}\right)^{\frac{1}{q}}\right) \tag{2.3}\\
& >\left|a_{n}^{2} \| z\right|^{n+1}\left(1-A_{p, i}\left(\sum_{j=0}^{\infty} \frac{1}{|z|^{q(j+1)}}\right)^{\frac{1}{q}}\right) \\
& =\left|a_{n}^{2} \| z\right|^{n+1}\left(1-A_{p, i} \frac{1}{\left(|z|^{q}-1\right)^{\frac{1}{q}}}\right)>0
\end{align*}
$$

if $|z|>\left(1+A_{p, i}^{q}\right)^{\frac{1}{q}}$.
Therefore, $|q(z)|>0$ if $|z|>\left(1+A_{p, i}^{q}\right)^{\frac{1}{q}}$. This shows that all the zeros of $q(z)$ and hence, those of $f(z)$ lie in the closed disk $K\left(0,\left(1+A_{p}^{q}\right)^{\frac{1}{q}}\right)$, where $A_{p}=\min _{-1 \leq i \leq n}\left\{A_{p, i}\right\}$.

Proof of Theorem 2. Consider the polynomial $g(z)=z^{n} f(1 / z)$. For the proof of this theorem, it is sufficient that $g(z)$ has all its zeros in the closed disk $K\left(0,\left(1+B_{p}^{q}\right)^{\frac{1}{q}}\right)$, where $B_{p}=$ $\min _{-1 \leq i \leq n}\left\{B_{p, i}\right\}$.

$$
\begin{align*}
& \text { For the zeros with }|z| \leq 1 \text {, we have nothing to prove. We assume that }|z|>1 \text { and define } \\
& q(z)=\left(a_{i}-a_{0} z\right) g(z) \\
& =-a_{0}^{2} z^{n+1}+\left(a_{i} a_{0}-a_{0} a_{1}\right) z^{n}+\left(a_{i} a_{1}-a_{0} a_{2}\right) z^{n-1} \tag{2.4}\\
& +\cdots+\left(a_{i} a_{n-1}-a_{0} a_{n}\right) z+a_{i} a_{n} . \\
& \text { Then we have } \\
& |q(z)| \geq\left|a_{0}^{2} z^{n+1}\right|-\left\{\left|a_{i} a_{0}-a_{0} a_{1}\right||z|^{n}+\left|a_{i} a_{1}-a_{0} a_{2}\right||z|^{n-1}\right. \\
& \left.+\cdots+\left|a_{i} a_{n-1}-a_{0} a_{n}\right||z|+\left|a_{i} a_{n}\right|\right\} \\
& =\left|a_{0}^{2}\right||z|^{n+1}\left(1-\sum_{j=0}^{n}\left|\frac{a_{i} a_{j}-a_{0} a_{j+1}}{a_{0}^{2}}\right| \frac{1}{|z|^{j+1}}\right) . \tag{2.5}\\
& \text { By using Holder's inequality for } p>1, q>1 \text { with } \frac{1}{p}+\frac{1}{q}=1 \text {, for }|z|>1 \text {, we have } \\
& |q(z)| \geq\left|a_{0}^{2}\right||z|^{n+1}\left(1-\left(\sum_{j=0}^{n}\left|\frac{a_{i} a_{j}-a_{0} a_{j+1}}{a_{0}^{2}}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{j=0}^{n} \frac{1}{|z|^{q(j+1)}}\right)^{\frac{1}{q}}\right) \\
& =\left|a_{0}^{2}\right||z|^{n+1}\left(1-B_{p, i}\left(\sum_{j=0}^{n} \frac{1}{|z|^{q(j+1)}}\right)^{\frac{1}{q}}\right) \tag{2.6}\\
& >\left|a_{0}^{2}\right||z|^{n+1}\left(1-B_{p, i}\left(\sum_{j=0}^{\infty} \frac{1}{|z|^{q(j+1)}}\right)^{\frac{1}{q}}\right) \\
& =\left|a_{0}^{2}\right||z|^{n+1}\left(1-B_{p, i} \frac{1}{\left(|z|^{q}-1\right)^{\frac{1}{q}}}\right)>0
\end{align*}
$$

if $|z|>\left(1+B_{p, i}^{q}\right)^{\frac{1}{q}}$.
Therefore, $|q(z)|>0$ if $|z|>\left(1+B_{p, i}^{q}\right)^{\frac{1}{q}}$. This completes the proving of Theorem 2.

Proof of Theorem 3. Consider the following polynomial

$$
\begin{align*}
q(z)= & (1-z) f(z)=-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\cdots+\left(a_{1}-a_{0}\right) z+a_{0} \\
= & -a_{n} z^{n+1}+\left(\alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1} \\
& +\cdots+\left(\alpha_{1}-\alpha_{0}\right) z+\alpha_{0} \\
& +\mathrm{i}\left(\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\left(\beta_{n-1}-\beta_{n-2}\right) z^{n-1}+\cdots+\left(\beta_{1}-\beta_{0}\right) z+\beta_{0}\right) \\
= & -a_{n} z^{n+1}-(\lambda-1) \alpha_{n} z^{n}+\left(\lambda \alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1} \tag{2.7}\\
& +\cdots+\left(\alpha_{1}-\alpha_{0}\right) z+\alpha_{0} \\
& +\mathrm{i}\left(-(t-1) \beta_{n} z^{n}+\left(t \beta_{n}-\beta_{n-1}\right) z^{n}+\left(\beta_{n-1}-\beta_{n-2}\right) z^{n-1}\right. \\
& \left.+\cdots+\left(\beta_{1}-\beta_{0}\right) z+\beta_{0}\right) .
\end{align*}
$$

Hence, we have
Go back

Full Screen

Close

$$
\begin{align*}
|q(z)| \geq & \left|a_{n} z^{n+1}+(\lambda-1) \alpha_{n} z^{n}+\mathrm{i}(t-1) \beta_{n} z^{n}\right| \\
& -\left(\left|\lambda \alpha_{n}-\alpha_{n-1}\right||z|^{n}+\left|\alpha_{n-1}-\alpha_{n-2}\right||z|^{n-1}\right. \\
& +\cdots+\left|\alpha_{1}-\alpha_{0}\right||z|+\left|\alpha_{0}\right|+\left|t \beta_{n}-\beta_{n-1}\right||z|^{n}+\left|\beta_{n-1}-\beta_{n-2}\right||z|^{n-1} \tag{2.8}\\
& \left.+\cdots+\left|\beta_{1}-\beta_{0}\right||z|+\left|\beta_{0}\right|\right) .
\end{align*}
$$

Now if $|z|>1$, then by using hypothesis, we get

$$
\begin{align*}
|q(z)| \geq\left|a_{n} z^{n}\right| \times(\mid z & \left.+\frac{(\lambda-1) \alpha_{n}+(t-1) \beta_{n} \mathrm{i}}{\left|a_{n}\right|} \right\rvert\, \\
& \left.-\frac{\lambda \alpha_{n}-\alpha_{0}+\left|\alpha_{0}\right|+t \beta_{n}-\beta_{0}+\left|\beta_{0}\right|}{\left|a_{n}\right|}\right)>0 \tag{2.9}
\end{align*}
$$

if

$$
\begin{equation*}
\left|z+\frac{(\lambda-1) \alpha_{n}+(t-1) \beta_{n} \mathrm{i}}{a_{n}}\right|>\frac{\lambda \alpha_{n}+t \beta_{n}+\left|\alpha_{0}\right|+\left|\beta_{0}\right|-\alpha_{0}-\beta_{0}}{\left|a_{n}\right|} . \tag{2.10}
\end{equation*}
$$

Hence all the zeros of $q(z)$ whose modulus is greater than one lie in the disk

$$
\begin{equation*}
\left|z+\frac{(\lambda-1) \alpha_{n}+(t-1) \beta_{n} \mathrm{i}}{a_{n}}\right| \leq \frac{\lambda \alpha_{n}+t \beta_{n}+\left|\alpha_{0}\right|+\left|\beta_{0}\right|-\alpha_{0}-\beta_{0}}{\left|a_{n}\right|} . \tag{2.11}
\end{equation*}
$$

Proof of Theorem 4. If we set $A=\{1,2, \ldots, \mu-1, k\}$ and

$$
\begin{equation*}
g(z)=\frac{1}{a_{k}} \sum_{i=0, i \neq j \in A}^{n} a_{i} z^{i}, \tag{2.12}
\end{equation*}
$$

$$
\begin{align*}
|g(z)| & =\frac{1}{\left|a_{k}\right|}\left|\sum_{i=0, i \neq j \in A}^{n} a_{i} z^{i}\right| \\
& \leq \frac{1}{\left|a_{k}\right|} \sum_{i=0, i \neq j \in A}^{n}\left|a_{i}\right|\left|z^{i}\right| \\
& =\frac{1}{\left|a_{k}\right|} \sum_{i=0, i \neq j \in A}^{n}\left|a_{i}\right| R^{i} \quad \text { for }|z|=R \tag{2.13}\\
& <R^{n} \frac{1}{\left|a_{k}\right|} \sum_{i=0, i \neq j \in A}^{n}\left|a_{i}\right| \\
& <R^{k} \quad \quad \text { (by (1.40)). }
\end{align*}
$$

Now, we have $|g(z)|<\left|z^{k}\right|=R^{k}$ for $|z|=R$. By Rouche's theorem, $g(z)+z^{k}$ has exactly k zeros in $|z|<R$. Hence, equation $p(z)=0$ has exactly k solutions in $|z|<R$. And theorem proof is obtained.

Acknowledgment. The authors are grateful to the anonymous referee for his careful reading and useful suggestions.

1. Aziz A. and Qayoom A., Estimates for the modulii of the zeros of a polynomial, Mathematical inequalities and applications $\mathbf{1 (9)}$ (2006), 107-116.
2. Aziz A. and Zargar B. A., Some extensions of Eneström- Kakeya theorem, Glas. Mat. Ser. III 31 (1996), 239-244.

Go back
3. Dehmer M., Schranken für die Nullstellen komplexwertiger Polynome, Die Wurzel 8 (2000), 182-185.
4. \qquad , On the location of zeros of complex polynomials, J. Inequal. Pure and Appl. Math. 1(7) (2006).
5. Dehmer M. and Mowshowitz A., Bounds on the moduli of polynomial zeros, Appl. Math. Comput. 218 (2011) 4128-4137.
6. Govil N. K. and Rahman Q. I., On the Eneström-Kakeya theorem, Tohoku Math. Journ., 20 (1968), $126-136$.
7. Joyal A., Labelle G. and Rahman Q. I., On the location of zeros of polynomials, Canad. Math. Bull., 10 (1967), 53-63.
8. Marden M., Geometry of polynomials, Math. Surveys, No. 3; Amer. Math. Soc. Providence R. I., 1966.
9. Milovanovic G. V., Mitrinovic D. S. and Rassias Th. M., Topics in Polynomials, Extremal Problems, Inequalities, Zeros, World Scientific, Singapore 1994.
10. Shah W. M. and Liman A., On Bounds for the zeros of polynomials, Anal. Theory Appl. 20(1) (2004), 16-27.
11. \qquad On Eneström-Kakeya theorem and related analytic function, Proc. Indian Acad. Sci. (Math. Sci) 117(3) (2007), 359-370.
12. Toŷa T., Some remarks on Montel's paper concerning upper limits of absolute values of roots of algebraic equations, Sci. Rep. Tokyo Bunrika Daigaku A 1 (1933), 275-282.
13. Williams K. P., Note concerning the roots of an equation, Bull. Amer. Math. Soc., 28 (1922), 394-396.
H. A. Soleiman Mezerji, Department of Mathematics, Semnan University, Semnan, Iran, e-mail: soleiman50@gmail.com
M. Bidkham, Department of Mathematics, Semnan University, Semnan, Iran, e-mail: mdbidkham@gmail.com

[^0]: Received July 16, 2013; revised December 26, 2013.
 2010 Mathematics Subject Classification. Primary 30C10, 30C15.
 Key words and phrases. Cauchy theorem; Eneström-Kakeya theorem; zeros.

