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CAUCHY TYPE RESULTS CONCERNING LOCATION

OF ZEROS OF POLYNOMIALS

H. A. SOLEIMAN MEZERJI and M. BIDKHAM

Abstract. Let p(z) be a polynomial with complex coefficients. In this paper, we obtain some new
results concerning the location of zeros of polynomials p(z). Our results sharpen Cauchy’s result, along
with some of the other known results, which are based on the classical Cauchy’s work. Finally, we prove
the results concerning the bounds for the number of zeros for the polynomial p(z), which generalize
some known results.

1. Introduction and statement of results

Let f(z) =
∑n
i=0 aiz

i be a polynomial of degree n, then according to a classical result by Cauchy
[8, 9], the polynomial f(z) has all its zeros in |z| ≤ 1 +M , where

(1.1) M = max | aj
an
|, j = 0, 1, 2, . . . , n− 1.

Also, if f(z) =
∑n
i=0 aiz

i is a polynomial of degree n with real coefficients satisfying

(1.2) an > an−1 > · · · > a1 > a0 > 0,

then according to the famous result due to Eneström-Kakeya [8, 9], the polynomial f(z) has all
its zeros in |z| ≤ 1.
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Joyal, Labelle and Rahman [7] extended the Eneström-Kakeya theorem to the polynomials
whose coefficients are monotonic but not necessarily non-negative, and proved the following theo-
rem.

Theorem A. If f(z) =
∑n
i=0 aiz

i is a polynomial of degree n with real coefficients satisfying

(1.3) an > an−1 > · · · > a1 > a0,

then the polynomial f(z) has all its zeros in

(1.4) |z| ≤ 1

|an|
{an − a0 + |a0|} .

Aziz and Zargar [2] generalized Theorem A and proved the next theorem.

Theorem B. If f(z) =
∑n
i=0 aiz

i is a polynomial of degree n with real coefficients such that
for some λ ≥ 1,

(1.5) λan ≥ an−1 ≥ · · · ≥ a1 ≥ a0,

then f(z) has all its zeros in the disk

(1.6) |z + λ− 1| ≤ λan − a0 + |a0|
|an|

.

A related result from Govil and Rahman [6] concerns a restriction on the moduli and arguments
of coefficients and proves the following theorem.

Theorem C. If f(z) =
∑n
i=0 aiz

i is a polynomial of degree n with complex coefficients such
that

(1.7) | arg ak − β| ≤ α ≤
π

2
, k = 0, 1, 2, . . . , n
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for some real β, and

(1.8) |an| > |an−1| > · · · > |a1| > |a0|,
then f(z) has all its zeros in

(1.9) |z| ≤ cosα+ sinα+
2 sinα

|an|

n−1∑
k=0

|ak|.

Also, Aziz and Qayoom [1] used a finite set of complex numbers and got a strip in complex
plane included zeros of polynomials. In fact, they proved the following theorem.

Theorem D. Let p(z) =
∑n
i=0 aiz

i be a non-constant complex polynomial of degree n. If
{λ1, λ2, · · · , λn} is any set of n real or complex numbers such that

n∑
i=1

|λi| ≤ 1,

then all the zeros of p(z) lie in the annulus

(1.10) R = {z ∈ C : r1 ≤ |z| ≤ r2},
where

(1.11) r1 = min
1≤k≤n

∣∣∣∣λk a0ak
∣∣∣∣ 1k and r2 = max

1≤k≤n

∣∣∣∣ 1

λk

an−k
ak

∣∣∣∣ 1k .
Recently M. Dehmer investigated two classes of bounds for the zeros of complex polynomials,

namely explicit and implicit zeros bounds [3, 4, 5]. By using special classes of polynomials, he
showed that his results might be suitable and optimal from classical Cauchy’s result. In fact, he
proved the following results.
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Theorem E. Let f(z) =
∑n
i=0 aiz

i be a complex polynomial of degree n. If for any p > 1,
q > 1,

1

p
+

1

q
= 1,

then all the zeros of f(z) lie in the closed disk K

(
0,
(

1 +Mqn
q
p

) 1
q

)
, where

(1.12) M = max

∣∣∣∣ ajan
∣∣∣∣ , j = 0, 1, 2, . . . , n− 1.

Theorem F. Let f(z) =
∑n
i=0 aiz

i be a complex polynomial of degree n, then all the zeros of

f(z) lie in the closed disk K(0, 1 + M̃), where

(1.13) M̃ = max
0≤j≤n

∣∣∣∣an−j − an−j−1an

∣∣∣∣ , a−1 = 0.

Theorem G. Let f(z) =
∑n
i=0 aiz

i, anan−1 6= 0 be a complex polynomial. All zeros of f(z) lie
in the closed disk

(1.14) K

(
0,

1 + φ2
2

+

√
(φ2 − 1)2 + 4M1

2

)
,

where

(1.15) M1 := max
0≤j≤n−2

∣∣∣∣ ajan
∣∣∣∣ , φ2 :=

∣∣∣∣an−1an

∣∣∣∣ .
Also, concerning the number of zeros of a polynomial in the given region, we have the following

results due to Shah and Liman [10].
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Theorem H. If p(z) =
∑n
i=0 aiz

i is a complex polynomial satisfying

(1.16)

n∑
i=1

|ai| < |a0|,

then p(z) does not vanish in |z| < 1.

Theorem I. If p(z) =
∑n
i=0 aiz

i is a complex polynomial satisfying

(1.17)

n−1∑
i=0

|ai| < |an|,

then p(z) has all its zeros in |z| < 1.

In this paper, first we prove the following theorem without any restrictions on the coefficients
of a polynomial which include not only Cauchy’s theorem and Eneström-Kakeya theorem simulta-
neously but also some other well-known results.

Theorem 1. Let f(z) =
∑n
i=0 aiz

i be a complex polynomial of degree n. If for any p > 1,
q > 1,

1

p
+

1

q
= 1,

then all the zeros of f(z) lie in the closed disk K
(

0,
(
1 +Aqp

) 1
q

)
, where Ap = min−1≤i≤n{Ap,i},

(1.18) Ap,i =


n∑
j=0

∣∣∣∣aian−j − anan−j−1a2n

∣∣∣∣p


1
p

, a−1 = 0, −1 ≤ i ≤ n.
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If Ap is obtained for i = −1, Theorem 1 reduces to a result by Tôya ([12], see also [8, Theo-
rem 27.4, pp. 124]). Also, for p = q = 2, Theorem 1 gives the bound investigated by Carmichael
and Mason (for reference see [9, pp. 247]). Furthermore, by taking

(1.19) M = max

∣∣∣∣ ajan
∣∣∣∣ , j = 0, 1, 2, · · · , n− 1,

we get

(1.20) Ap,−1 =


n∑
j=0

∣∣∣∣an−j−1an

∣∣∣∣p


1
p

≤Mn
1
p , a−1 = 0.

Therefore the bound obtained in Theorem 1 is better than that one in Theorem E due to Dehmer.
Finally, if Ap is obtained for i = n, then we get the following result.

Corollary 1. Let f(z) =
∑n
i=0 aiz

i be a complex polynomial of degree n. If for any p > 1,
q > 1,

1

p
+

1

q
= 1,

then all the zeros of f(z) lie in the disk K
(

0,
(
1 +Aqp,n

) 1
q

)
, where

(1.21) Ap,n =


n∑
j=0

∣∣∣∣an−j − an−j−1an

∣∣∣∣p


1
p

, a−1 = 0.

Remark 1. For p = q = 2, Corollary 1 reduces to a result of Williams ([13], see also [8, pp. 126]).
If p→∞ in Corollary 1, then it reduces to Theorem F.
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Also, by letting p→∞ in Theorem 1, we have q = 1 and

lim
p−→∞

Ap,i = Mi,

where

Mi = max
0≤j≤n

∣∣∣∣aian−j − anan−j−1a2n

∣∣∣∣ , a−1 = 0,

so we get the following result.

Corollary 2. Let f(z) =
∑n
i=0 aiz

i be a complex polynomial of degree n. Then all the zeros of
f(z) lie in the K (0, 1 +M), where M = min−1≤i≤n{Mi}.

Remark 2. It is clear that Corollary 2 is an improvement of Theorem F and Cauchy’s theorem,
when M is obtained for i 6= n,−1. For example, if we consider the polynomial f(z) = z3 + 0.1z2 +
0.3z + 0.7, then by Cauchy’s theorem and Theorem F of Dehmer, it has all the zeros in the closed
disk K(0, 1.7), but by Corollary 2, it has all the zeros in the closed disk K(0, 1.49).

Since

(1.22) lim
q→∞

(
1 +Aqp,i

) 1
q =

{
1 if A1,i ≤ 1

A1,i if A1,i > 1
,

hence, we get the following interesting result.

Corollary 3. Let f(z) =
∑n
i=0 aiz

i be a complex polynomial of degree n. Then all the zeros of
f(z) lie in the K (0, R) where

R = min
−1≤i≤n

Ri,

(1.23) Ri =

{
1 if A1,i ≤ 1

A1,i if A1,i > 1
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and

(1.24) A1,i =


n∑
j=0

∣∣∣∣aian−j − anan−j−1a2n

∣∣∣∣
 , a−1 = 0.

Remark 3. Under assumption in Theorem C and by using the inequality in [6]

|ak − ak−1| ≤ (|ak| − |ak−1|) cosα+ (|ak|+ |ak−1|) sinα,

we conclude that

(1.25)

R ≤ Rn =
1

|an|


n−1∑
j=0

|an−j − an−j−1|+ |a0|


≤ cosα+ sinα+

2 sinα

|an|

n−1∑
k=0

|ak|.

Consequently, Corollary 3 is an improvement of Theorem C. In some cases, our result is signif-
icantly better than that one of Theorem C. We can illustrate this by the following examples.

Example 1.
i) For the polynomial f1(z) = i z3 + z2 + i z + 1, Theorem C (with β = α = π

4 ) results in fact

that f1(z) has all its zeros in |z| ≤ 5
√

2 ≈ 7.07. While our result shows that all the zeros of
f1(z) lie in |z| ≤ 3.

ii) For the polynomial f2(z) = iz3 + z2− i z+ 1, Theorem C (with β = 0, α = π
2 ) results in fact

that f2(z) has all its zeros in |z| ≤ 9. While our result shows that all the zeros of f2(z) lie
in |z| ≤ 3.
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iii) For the polynomial f3(z) = − i z3 − z2 + i z + 1, Theorem C is not applicable. While our
result shows that all the zeros of f3(z) lie in |z| ≤ 1.

Furthermore, in general, the comparison between zeros bound of Theorem G and Theorem 1 is
not possible. But in some cases, our result is better than that one of Theorem G. We can illustrate
this by the following examples.

Example 2.
i) For the polynomial f4(z) = 100z9+100z8+100z7+100z6+100z5+100z4+100z3+100z2+1,

Theorem G results in fact that f4(z) has all zeros in K(0, 2). While Theorem 1 for p =
1.00002, q = 50001, shows that all the zeros of f4(z) lie in |z| ≤ 1.

ii) For the polynomial f5(z) = 20z3 + 20z2 + 19z+ 19, Theorem G results in fact that f5(z) has
all zeros in K(0, 2). While for p = q = 2, Theorem 1 shows that all the zeros of f5(z) lie in
K(0, 1.3).

iii) For the polynomial f6(z) = z3 + 0.1z2 + 0.3z+ 0.7, Theorem G results in fact that f6(z) has
all zeros in K(0, 1.5). While for p = q = 2, Theorem 1 shows that all the zeros of f6(z) lie
in K(0, 1.2).

The following theorem gives the lower bound for the zeros of polynomials.

Theorem 2. Let f(z) =
∑n
i=0 aiz

i be a complex polynomial of degree n. If for any p > 1,
q > 1,

1

p
+

1

q
= 1,

then all the zeros of f(z) lie outside the disk K

(
0, 1

(1+Bqp)
1
q

)
, where

Bp = min
−1≤i≤n

{Bp,i},
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(1.26) Bp,i =


n∑
j=0

∣∣∣∣aiaj − a0aj+1

a20

∣∣∣∣p


1
p

, a−1 = an+1 = 0, −1 ≤ i ≤ n.

Many interesting results can be deduced from Theorem 2 in exactly the same way as we have
done from Theorem 1. Since

(1.27) lim
q→∞

(
1 +Bqp,i

) 1
q =

{
1 if B1,i ≤ 1
B1,i if B1,i > 1

,

hence, we get the following interesting result.

Corollary 4. Let f(z) =
∑n
i=0 aiz

i be a complex polynomial of degree n, then all the zeros of

f(z) lie outside the disk K
(
0, 1r
)
, where

r = min
−1≤i≤n

ri,

(1.28) ri =

{
1 if B1,i ≤ 1
B1,i if B1,i > 1

and

(1.29) B1,i =

n∑
j=0

∣∣∣∣aiaj − a0aj+1

a20

∣∣∣∣ , a−1 = an+1 = 0, −1 ≤ i ≤ n.

Remark 4. If

(1.30) |a0| ≥ |a1| ≥ · · · ≥ |an|,
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similar to (1.25), we have

(1.31) r ≤ r0 =
1

|a0|


n−1∑
j=0

|aj − aj+1|+ |an|

 ≤ cosα+ sinα+
2 sinα

|a0|

n∑
k=1

|ak|.

Therefore Corollary 4 is an improvement of a result of Govil [6].

Next, we prove the result which generalizes Eneström-Kakeya theorem.

Theorem 3. Let f(z) =
∑n
k=0 akz

k, (ak 6= 0), be a non-constant complex polynomial. If
Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, such that for some λ ≥ 1 and t ≥ 1,

λαn ≥ αn−1 ≥ · · · ≥ α1 ≥ α0,

tβn ≥ βn−1 ≥ · · · ≥ β1 ≥ β0,
(1.32)

then all the zeros of f(z) lie in

(1.33)

∣∣∣∣z +
(λ− 1)αn + (t− 1)βn i

an

∣∣∣∣ ≤ λαn + tβn + |α0|+ |β0| − α0 − β0
|an|

.

If we take t = 1 in Theorem 3, then we get the following result.

Corollary 5. Let f(z) =
∑n
k=0 akz

k, (ak 6= 0) be a non-constant complex polynomial. If
Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, such that for some λ ≥ 1,

λαn ≥ αn−1 ≥ · · · ≥ α1 ≥ α0,

βn ≥ βn−1 ≥ · · · ≥ β1 ≥ β0,
(1.34)

then all the zeros of f(z) lie in

(1.35)

∣∣∣∣z +
(λ− 1)αn

an

∣∣∣∣ ≤ λαn + βn + |α0|+ |β0| − α0 − β0
|an|

.
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For β0 > 0, Corollary 5 reduces to the result of Shah and Liman [11, Theorem 2]. If we take
λ = 1 in Theorem 3, then we get the following result.

Corollary 6. Let f(z) =
∑n
k=0 akz

k, (ak 6= 0) be a non-constant complex polynomial. If
Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, such that for some t ≥ 1,

αn ≥ αn−1 ≥ · · · ≥ α1 ≥ α0,

tβn ≥ βn−1 ≥ · · · ≥ β1 ≥ β0,
(1.36)

then all the zeros of f(z) lie in

(1.37)

∣∣∣∣z − (t− 1)βn i

an

∣∣∣∣ ≤ αn + tβn + |α0|+ |β0| − α0 − β0
|an|

.

Also if we take λ = t in Theorem 3, then we get the following result.

Corollary 7. Let f(z) =
∑n
k=0 akz

k, (ak 6= 0) be a non-constant complex polynomial. If
Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, such that for some λ ≥ 1,

λαn ≥ αn−1 ≥ · · · ≥ α1 ≥ α0,

λβn ≥ βn−1 ≥ · · · ≥ β1 ≥ β0,
(1.38)

then all the zeros of f(z) lie in

(1.39)

∣∣∣∣z + (λ− 1)
an
an

∣∣∣∣ ≤ λan + |α0|+ |β0| − α0 − β0
|an|

.

Remark 5. If βj = 0 for j = 0, 1, 2, . . . , n, then Corollary 7 reduces to Theorem B due to Aziz
and Zargar [2]. If λ = 1 and βj = 0 for j = 0, 1, 2, . . . , n, then Corollary 7 reduces to Theorem A
due to Joyal [7]. And if λ = 1, α0 > 0 and βj = 0 for j = 0, 1, 2, . . . , n, then Corollary 7 reduces
to Enesrtöm–Kakeya theorem.



JJ J I II

Go back

Full Screen

Close

Quit

Finally, we prove the following generalization of Theorems H and I .

Theorem 4. Let p(z) = a0 +
∑n
i=µ aiz

i be a complex polynomial of degree n. If

(1.40) Rn−k
n∑

i=0,i6=j∈A

|ai| < |ak|,

for some k with ak 6= 0 and R ≥ 1, where A = {1, 2, . . . , µ− 1, k}, then p(z) has exact k zeros in
|z| < R.

Remark 6. If k = 0 and R = 1, then Theorem 4 reduces to Theorem H. Also, for k = n and
R = 1, Theorem 4 reduces to Theorem I.

If µ = k = R = 1, then we have the following result.

Corollary 8. If p(z) =
∑n
i=0 aiz

i is a polynomial of degree n and

(1.41)

n∑
i=0,i6=1

|ai| < |a1|,

then p(z) has exact one zeros in |z| < 1.

Remark 7. If we define

(1.42) λ1 =
a0
a1
, λ2 =

a2
a1
, λ3 =

a3
a1
, . . . , λn =

an
a1
,

then we have

(1.43)

n∑
i=1

|λi| =
1

|a1|

n∑
i=0,i6=1

|ai| < 1 (by (1.41)).
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So, by applying Theorem D, all the zeros of p(z) lie in annulus {z ∈ C : r3 ≤ |z| ≤ r4}, where

(1.44) r3 = min
1≤k≤n

∣∣λk a0
ak

∣∣ 1k , r4 = max
1≤k≤n

∣∣ 1

λk

an−k
an

∣∣ 1k .
By substituting λi in r3, we have

r3 = min
{∣∣a0
a1
· a0
a1

∣∣, ∣∣a2
a1
· a0
a2

∣∣ 12 , . . . , ∣∣an
a1
· a0
an

∣∣ 1n}
= min

{∣∣a0
a1

∣∣2, ∣∣a0
a1

∣∣ 12 , . . . , ∣∣a0
a1

∣∣ 1n}
=
∣∣a0
a1

∣∣2.
(1.45)

Therefore, we conclude the following result.

Corollary 9. If p(z) =
∑n
i=0 aiz

i is a polynomial of degree n and

(1.46)

n∑
i=0,i6=1

|ai| < |a1|,

then, p(z) does not vanish in |z| < |a0a1 |
2.

If µ = k ≥ 1 in Theorem 4, then we have the following result.

Corollary 10. Let

(1.47) p(z) = a0 +
n∑
i=µ

aiz
i,
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be a complex polynomial of degree n. If

(1.48) Rn−µ
n∑

i=0, i 6=j∈B

|ai| < |aµ|

where B = {1, 2, . . . , µ− 1}, then p(z) has exact µ zeros in |z| < R.

Remark 8. If we define

(1.49)

λ1 =
a0

Rn−µaµ
, λ2 = λ3 = · · · = λµ = 0, λµ+1 =

aµ+1

Rn−µaµ
,

. . . , λn =
an

Rn−µaµ
,

then by Theorem D, all the zeros of p(z) lie in annulus {z ∈ C : r5 ≤ |z| ≤ r6}, where

r5 = min
1≤k≤n

∣∣λk a0
ak

∣∣ 1k
= min

{∣∣ a0
Rn−µaµ

· a0
a1

∣∣, ∣∣ aµ+1

Rn−µaµ
· a0
aµ+1

∣∣ 1
µ+1 , . . . ,

∣∣ an
Rn−µaµ

· a0
an

∣∣ 1n}
= min

{
| a0
Rn−µaµ

.
a0
a1

∣∣, ∣∣ a0
Rn−µaµ

|
1

µ+1 , . . . ,
∣∣ ao
Rn−µaµ

∣∣ 1n}
= min{

∣∣ a20
Rn−µa1

∣∣, ∣∣ a0
Rn−µaµ

∣∣ 1
µ+1 }.

(1.50)

Hence, we get the following result.
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Corollary 11. If the condition of Corollary 9 holds, then p(z) does not vanish in {z ∈ C : |z| <
r5}, where

r5 = min
{∣∣ a20
Rn−µa1

∣∣, ∣∣ a0
Rn−µaµ

∣∣ 1
µ+1
}
.

2. Proofs of the Theorems

Proof of Theorem 1. For the zeros with |z| ≤ 1, we have nothing to prove. Assuming |z| > 1
and defining q(z) = (ai − anz)f(z), we obtain

q(z) = − a2nzn+1 + (aian − anan−1)zn + (aian−1 − anan−2)zn−1

+ · · ·+ (aia1 − ana0)z + aia0.
(2.1)

Or

(2.2)

|q(z)| ≥ |a2nzn+1| − {|aian − anan−1||z|n + |aian−1 − anan−2||z|n−1

+ · · ·+ |aia1 − ana0||z|+ |aia0|}

= |a2n||z|n+1

[
1−

n∑
j=0

∣∣∣∣aian−j − anan−j−1a2n

∣∣∣∣ 1

|z|j+1

]
.
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By using Holder’s inequality for p > 1, q > 1 with 1
p + 1

q = 1, we have for |z| > 1,

|q(z)| ≥ |a2n||z|n+1

(
1−

( n∑
j=0

∣∣∣∣aian−j − anan−j−1a2n

∣∣∣∣p) 1
p
( n∑
j=0

1

|z|q(j+1)

) 1
q

)

= |a2n||z|n+1

(
1−Ap,i

( n∑
j=0

1

|z|q(j+1)

) 1
q

)

> |a2n||z|n+1

(
1−Ap,i

( ∞∑
j=0

1

|z|q(j+1)

) 1
q

)

= |a2n||z|n+1

(
1−Ap,i

1

(|z|q − 1)
1
q

)
> 0

(2.3)

if |z| >
(
1 +Aqp,i

) 1
q .

Therefore, |q(z)| > 0 if |z| >
(
1 +Aqp,i

) 1
q . This shows that all the zeros of q(z) and hence, those

of f(z) lie in the closed disk K
(

0,
(
1 +Aqp

) 1
q

)
, where Ap = min−1≤i≤n{Ap,i}. �

Proof of Theorem 2. Consider the polynomial g(z) = znf(1/z). For the proof of this theo-

rem, it is sufficient that g(z) has all its zeros in the closed disk K
(

0,
(
1 +Bqp

) 1
q

)
, where Bp =

min−1≤i≤n{Bp,i}.
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For the zeros with |z| ≤ 1, we have nothing to prove. We assume that |z| > 1 and define

q(z) = (ai − a0z)g(z)

= − a20zn+1 + (aia0 − a0a1)zn + (aia1 − a0a2)zn−1

+ · · ·+ (aian−1 − a0an)z + aian.

(2.4)

Then we have

(2.5)

|q(z)| ≥ |a20zn+1| − {|aia0 − a0a1||z|n + |aia1 − a0a2||z|n−1

+ · · ·+ |aian−1 − a0an||z|+ |aian|}

= |a20||z|n+1

(
1−

n∑
j=0

∣∣∣∣aiaj − a0aj+1

a20

∣∣∣∣ 1

|z|j+1

)
.

By using Holder’s inequality for p > 1, q > 1 with 1
p + 1

q = 1, for |z| > 1, we have

|q(z)| ≥ |a20||z|n+1

(
1−

( n∑
j=0

∣∣∣∣aiaj − a0aj+1

a20

∣∣∣∣p) 1
p
( n∑
j=0

1

|z|q(j+1)

) 1
q

)

= |a20||z|n+1

(
1−Bp,i

( n∑
j=0

1

|z|q(j+1)

) 1
q

)

> |a20||z|n+1

(
1−Bp,i

( ∞∑
j=0

1

|z|q(j+1)

) 1
q

)

= |a20||z|n+1

(
1−Bp,i

1

(|z|q − 1)
1
q

)
> 0

(2.6)
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if |z| >
(
1 +Bqp,i

) 1
q .

Therefore, |q(z)| > 0 if |z| >
(
1 +Bqp,i

) 1
q . This completes the proving of Theorem 2. �

Proof of Theorem 3. Consider the following polynomial

(2.7)

q(z) = (1− z)f(z) = −anzn+1 + (an − an−1)zn + · · ·+ (a1 − a0)z + a0

= − anzn+1 + (αn − αn−1)zn + (αn−1 − αn−2)zn−1

+ · · ·+ (α1 − α0)z + α0

+ i
(
(βn − βn−1)zn + (βn−1 − βn−2)zn−1 + · · ·+ (β1 − β0)z + β0

)
= − anzn+1 − (λ− 1)αnz

n + (λαn − αn−1)zn + (αn−1 − αn−2)zn−1

+ · · ·+ (α1 − α0)z + α0

+ i
(
−(t− 1)βnz

n + (tβn − βn−1)zn + (βn−1 − βn−2)zn−1

+ · · ·+ (β1 − β0)z + β0
)
.

Hence, we have

|q(z)| ≥ |anzn+1 + (λ− 1)αnz
n + i(t− 1)βnz

n|
−
(
|λαn − αn−1||z|n + |αn−1 − αn−2||z|n−1

+ · · ·+ |α1 − α0||z|+ |α0|+ |tβn − βn−1||z|n + |βn−1 − βn−2||z|n−1

+ · · ·+ |β1 − β0||z|+ |β0|
)
.

(2.8)
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Now if |z| > 1, then by using hypothesis, we get

(2.9)

|q(z)| ≥ |anzn|×
(∣∣∣∣z +

(λ− 1)αn + (t− 1)βn i

|an|

∣∣∣∣
− λαn − α0 + |α0|+ tβn − β0 + |β0|

|an|

)
> 0

if

(2.10)

∣∣∣∣z +
(λ− 1)αn + (t− 1)βn i

an

∣∣∣∣ > λαn + tβn + |α0|+ |β0| − α0 − β0
|an|

.

Hence all the zeros of q(z) whose modulus is greater than one lie in the disk

(2.11)

∣∣∣∣z +
(λ− 1)αn + (t− 1)βn i

an

∣∣∣∣ ≤ λαn + tβn + |α0|+ |β0| − α0 − β0
|an|

.

But those zeros of q(z) whose modulus is less than or equal to one already satisfy the inequality
(2.11). Since all the zeros of f(z) are also zeros of q(z), the proving of Theorem 3 completes. �

Proof of Theorem 4. If we set A = {1, 2, . . . , µ− 1, k} and

(2.12) g(z) =
1

ak

n∑
i=0,i6=j∈A

aiz
i,
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then we have

(2.13)

|g(z)| = 1

|ak|
|

n∑
i=0, i 6=j∈A

aiz
i|

≤ 1

|ak|

n∑
i=0, i 6=j∈A

|ai||zi|

=
1

|ak|

n∑
i=0,i6=j∈A

|ai|Ri for |z| = R

< Rn
1

|ak|

n∑
i=0,i6=j∈A

|ai|

< Rk (by (1.40)).

Now, we have |g(z)| < |zk| = Rk for |z| = R. By Rouche’s theorem, g(z) + zk has exactly k zeros
in |z| < R. Hence, equation p(z) = 0 has exactly k solutions in |z| < R. And theorem proof is
obtained. �
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