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HARDY’S AND RELATED INEQUALITIES IN QUOTIENTS

S. IQBAL, K. KRULIĆ HIMMELREICH and J. PEČARIĆ

Abstract. The main purpose of this paper is to give the well-known Hardy, Pólya-Knopp, Hardy-
Hilbert, Hardy-Littlewood-Pólya and Hilbert-Hardy-type inequalities in quotients. We apply our result

on multidimensional setting to obtain new results.

1. Introduction

We recall some well-known integral inequalities. First inequality is classical Hardy’s inequality

(1.1)

∞∫
0

( 1

x

x∫
0

f(t)dt
)p

dx ≤
( p

p− 1

)p ∞∫
0

fp(x) dx,

where 1 < p < ∞, R+ = (0,∞), and f ∈ Lp(R+) is a non-negative function. By rewriting (1.1)

with the function f
1
p instead of f and then by letting limit p → ∞, we get the limiting case of

Hardy’s inequality known as Pólya-Knopp’s inequality, that is.
∞∫

0

exp
( 1

x

x∫
0

ln f(t)dt
)

dx ≤ e

∞∫
0

f(x) dx
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which holds for all positive functions f ∈ L1(R+). Two important inequalities related to (1.1) are
Hardy-Hilbert’s inequality

∞∫
0

( ∞∫
0

f(x)

(x+ y)
dx
)p

dy ≤
( π

sin π
p

)p ∞∫
0

fp(x) dx

and the Hardy-Littlewood-Pólya inequality

∞∫
0

( ∞∫
0

f(y)

max{x, y}
dx
)p

dy ≤
(
pp′
)p ∞∫

0

fp(y) dy,

which holds for 1 < p < ∞, p′ is the conjugate exponent of p, that is, p′ = p
p−1 and non-negative

f ∈ Lp(R+). The constants
(

p
p−1

)p
, e,

(
π

sin π
p

)p
, (pp′)

p
in the above inequalities are the best

possible constants. For further details we refer [1]–[5], [11], [13] and the references therein.
Godunova in [7] (see also [14]) proved the following inequality∫

Rn+

Φ
( 1

x1, . . . xn

∫
Rn+

l
( y1

x1
, . . . ,

yn
xn

)
f(y) dy

) dx

x1, . . . xn
≤
∫
Rn+

Φ(f(y))

x1, . . . , xn
dx(1.2)

which holds for all non-negative measurable functions l : Rn+ → R+ such that
∫
Rn+
l(x)dx = 1,

convex function Φ: [0,∞)→ [0,∞), and a non-negative function f on Rn+, such that the function

x→
∫
Rn+

Φ(f(x))
x1,...,xn

is integrable on Rn+.
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Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with positive σ-finite measures, k : Ω1×Ω2 →
R be a measurable and non-negative kernel, and

0 < K(x) =

∫
Ω2

k(x, y) dµ2(y) <∞, x ∈ Ω1.(1.3)

Let U(k) denote the class of measurable functions g : Ω1 → R with the representation

g(x) =

∫
Ω2

k(x, y)f(y)dµ2(y), x ∈ Ω1,(1.4)

where f : Ω2 → R is a measurable function.
In [12] (see also [6]) K. Krulić et al. studied some new weighted Hardy-type inequalities on

(Ω1,Σ1, µ1), (Ω2,Σ2, µ2), measure spaces with σ-finite measures by taking an integral operator Ak
defined by

Akf(x) :=
1

K(x)

∫
Ω2

k(x, y)f(y) dµ2(y),(1.5)

where f : Ω2 → R is a measurable function, K is defined by (1.3). They proved the following
theorem.

Theorem 1.1. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with σ-finite measures, u be
a weight function on Ω1, k be a non-negative measurable function on Ω1×Ω2 and K be defined on

Ω1 by (1.3). Suppose that the function x 7→ u(x)k(x,y)
K(x) is integrable on Ω1 for each fixed y ∈ Ω2,

and v is defined on Ω2 by

v(y) :=

∫
Ω1

u(x)k(x, y)

K(x)
dµ1(x) <∞.
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If Φ is convex on the interval I ⊆ R, then the inequality∫
Ω1

u(x)Φ
(
Akf(x)

)
dµ1(x) ≤

∫
Ω2

v(y)Φ
(
f(y)

)
dµ2(y)

holds for all measurable functions f : Ω2 → R such that Im f ⊆ I, where Ak is defined by (1.5).

From Theorem 1.1, we can easily obtain Hardy’s inequality, Hardy-Hilbert’s inequality and
Godunova’s inequality and it also covers general situation that is a multidimensional case.

Before presenting the results for multidimensional setting, it is necessary to introduce some
further notations. For uuu,vvv ∈ Rn+, uuu = (u1, u2, . . . , un), vvv = (v1, v2, . . . , vn), let

uuu

vvv
=
(u1

v1
,
u2

v2
, . . . ,

un
vn

)
and uuuvvv = uv11 u

v2
2 . . . uvnn .

In particular, uuu1 =
∏n
i=1 ui, uuu

2 =
(∏n

i=1 ui

)2

and uuu−1 =
(∏n

i=1 ui

)−1

, wherennn = (n, n, . . . , n).

We write uuu < vvv if componentwise ui < vi, i = 1, . . . , n. Relations ≤, >, and ≥ are defined analo-
gously.

Applying Theorem 1.1 with Ω1 = Ω2 = Rn+, the Lebesgue measure dµ1(xxx) = dxxx and dµ2(yyy) =

dyyy, and the kernel k : Rn+×Rn+ → R of the form k(xxx,yyy) = l
(
yyy
xxx

)
, where l : Rn+ → R is a non-negative

measurable function, the following corollary is obtained in [12].

Corollary 1.2. Let l and u be non-negative measurable functions on Rn+ such that 0 < L(xxx) =

xxx1
∫
Rn+
l(yyy) dyyy < ∞ for all xxx ∈ Rn+ and the function xxx 7→ u(xxx)

l(yyyxxx )
L(xxx) is integrable on Rn+ for each
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fixed yyy ∈ Rn+. Let the function v be defined on Rn+ by

v(yyy) =

∫
Rn+

u(xxx)
l
(
yyy
xxx

)
L(xxx)

dxxx.

If Φ is a convex function on an interval I ⊆ R, then the inequality∫
Rn+

u(xxx)Φ
( 1

L(xxx)

∫
Rn+

l
(yyy
xxx

)
f(yyy)dyyy

)
dxxx ≤

∫
Rn+

v(yyy)Φ(f(yyy))dyyy(1.6)

holds for all measurable functions f : Rn+ → R such that Im f ⊆ I.

Example 1.3. Especially, for
∫
Rn+
l(ttt)dttt = 1 and u(xxx) = xxx−1, Corollary 1.2 reduces to Go-

dunova’s inequality (1.2). This shows that Corollary 1.2 is a genuine generalization of the Go-
dunova inequality (1.2).

Next theorem is the generalized form of the Theorem 1.1 given in [12].

Theorem 1.4. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with σ-finite measures, u be
a weight function on Ω1, k be a non-negative measurable function on Ω1 × Ω2 and K be defined

on Ω1 by (1.3). Let 0 < p ≤ q <∞, the function x 7→ u(x)
(
k(x,y)
K(x)

) q
p

be integrable on Ω1 for each

fixed y ∈ Ω2 and v be defined on Ω2 by

v(y) :=
(∫

Ω1

u(x)
(k(x, y)

K(x)

) q
p

dµ1(x)
) p
q

<∞.(1.7)
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If Φ is a positive convex function on the interval I ⊆ R, then the inequality(∫
Ω1

u(x)[Φ
(
Akf(x)

)
]
q
p dµ1(x)

) 1
q ≤

(∫
Ω2

v(y)Φ
(
f(y)

)
dµ2(y)

) 1
p

(1.8)

holds for all measurable functions f : Ω2 → R such that Im f ⊆ I, where Ak is defined by (1.5).

For the case p = q, we obtain Theorem 1.1 and as expected by applying Theorem 1.4 we obtain
the following further generalization of the Godunova result.

Corollary 1.5. Let 0 < p ≤ q < ∞ and the assumptions in the Corollary 1.2 be satisfied with
v defined by

v(yyy) =

∫
Rn+

u(xxx)

(
l
(
yyy
xxx

)
L(xxx)

) q
p

dxxx


p
q

.

If Φ is a positive convex function on an interval I ⊆ R, then the inequality( ∫
Rn+

u(xxx)
[
Φ
( 1

L(xxx)

∫
Rn+

l
(yyy
xxx

)
f(yyy)dyyy

)] q
p

dxxx
) 1
q ≤

( ∫
Rn+

v(yyy)Φ(f(yyy))dyyy
) 1
p

(1.9)

holds for all measurable functions f : Rn+ → R such that Im f ⊆ I.

S. Iqbal et al. in their recent paper [9] proved an inequality for an arbitrary convex and increasing
function with some applications for different kinds of fractional integrals and fractional derivatives.
The main purpose of this paper is to give the Hardy’s and related inequalities in quotients.

Throughout this paper, all measures are assumed to be positive, all functions are assumed to
be positive and measurable, and expressions of the form 0 · ∞, ∞∞ and 0

0 are taken to be equal to
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zero. By a weight function (shortly: a weight) we mean a non-negative measurable function on
the actual set. B( · , · ) denotes the standard Beta function defined by

B(a, b) =

1∫
0

ta−1(1− t)b−1 dt, a, b > 0.

The rest of the paper is organized in the following way. In Section 2, we give the well-known
Hardy, Pólya-Knopp, Hardy-Hilbert, Hardy-Littlewood-Pólya and Hilbert-Hardy-type inequalities
in quotients. We consider some particular weight functions to give the related examples. We
conclude this paper by providing the new results for multidimensional setting.

2. Results

First we obtain our central result using a particular substitution, that is, if we substitute k(x, y) by
k(x, y)f2(y) and f by f1/f2, where fi : Ω2 → R, (i = 1, 2) are measurable functions in Theorem 1.4,
we obtain the following result.

Theorem 2.1. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with σ-finite measures, u be a
weight function on Ω1 and k be a non-negative measurable function on Ω1×Ω2. Let 0 < p ≤ q <∞,

the function x 7→ u(x)
(
k(x,y)f2(y)

g2(x)

) q
p

be integrable on Ω1 for each fixed y ∈ Ω2 and v be defined on

Ω2 by

v(y) := f2(y)

(∫
Ω1

u(x)
(k(x, y)

g2(x)

) q
p

dµ1(x)

) p
q

<∞, g2(x) 6= 0.(2.1)
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If Φ is a positive convex function on the interval I ⊆ R, then the following inequality(∫
Ω1

u(x)
[
Φ
(g1(x)

g2(x)

)] q
p

dµ1(x)

) 1
q

≤

(∫
Ω2

v(y)Φ
(f1(y)

f2(y)

)
dµ2(y)

) 1
p

(2.2)

holds for all measurable functions fi : Ω2 → R, (i = 1, 2), such that f1(y)
f2(y) ∈ I and

gi(x) =

∫
Ω2

k(x, y)fi(y) dy, (i = 1, 2).(2.3)

As a special case of Theorem 2.1 for p = q, we obtain the upcoming corollary. Also note that
the function Φ need not to be positive.

Corollary 2.2. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with σ-finite measures, u
be a weight function on Ω1 and k be a non-negative measurable function on Ω1×Ω2. Suppose that

the function x 7→ u(x)k(x,y)f2(y)
g2(x) is integrable on Ω1 for each fixed y ∈ Ω2 and v is defined on Ω2

by

v(y) := f2(y)

∫
Ω1

u(x)
k(x, y)

g2(x)
dµ1(x) <∞, g2(x) 6= 0.(2.4)

If Φ is a convex function on the interval I ⊆ R, then the inequality∫
Ω1

u(x)Φ
(g1(x)

g2(x)

)
dµ1(x) ≤

∫
Ω2

v(y)Φ
(f1(y)

f2(y)

)
dµ2(y)(2.5)

holds for all measurable functions fi : Ω2 → R, (i = 1, 2), such that f1(y)
f2(y) ∈ I and gi is defined by

(2.3)
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Remark 2.3. If we take p = q, Ω1 = Ω2 = (a, b), dµ1(x) = dx and dµ2(y) = dy in Theorem 2.1,
we obtain the result given in [8, Theorem 2.1]. So Theorem 2.1 is the generalized version of [8,
Theorem 2.1].

Although the inequality (2.2) holds for all positive convex functions, some choices of Φ are of
our particular interest. Let the function Φ: R+ → R be defined by Φ(x) = xp, so Φ is convex for
p ∈ R r [0, 1), concave for p ∈ (0, 1], and affine, that is, both convex and concave for p = 1. In
upcoming results we apply our results to power functions.

In next theorem, we give a general result for Hardy’s inequality in quotient.

Theorem 2.4. Let 0 < p ≤ q <∞ and u be a weight function defined on (0,∞). Define v on
(0,∞) by

v(y) = f2(y)
( ∞∫
y

( x∫
0

f2(y) dy
)− qp

u(x) dx
) p
q

<∞.(2.6)

If Φ is a positive convex function on the interval I ⊆ R, then the following inequality

( ∞∫
0

u(x)

[
Φ

( x∫
0

f1(y) dy

x∫
0

f2(y) dy

)] q
p

dx

) 1
q

≤

( ∞∫
0

v(y)Φ

(
f1(y)

f2(y)

)
dy

) 1
p

(2.7)

holds for all measurable functions fi : (0,∞)→ R, (i = 1, 2), such that f1(y)
f2(y) ∈ I.



JJ J I II

Go back

Full Screen

Close

Quit

Proof. Rewrite the inequality (2.2) with Ω1 = Ω2 = R+, dµ1(x) = dx, dµ2(y) = dy. Let us
define the kernel k : R2

+ → R by

k(x, y) =

{
1, 0 < y ≤ x;
0, y > x,

(2.8)

then gi defined in (2.3) takes the form

gi(x) =

x∫
0

fi(y) dy.(2.9)

Substituting gi(x), (i = 1, 2), in (2.2), we get (2.7). �

Example 2.5. If we take Φ(x) = xp, p ≥ 1 and a particular weight function

u(x) = 1
x2

( x∫
0

f2(y) dy
) q
p

, x ∈ (0,∞) in (2.6), we obtain v(y) = y−
p
q f2(y) and the inequality

(2.7) becomes

( ∞∫
0

( x∫
0

f1(y) dy
)q( x∫

0

f2(y) dy
)q( 1

p−1) dx

x2

) 1
q

≤
( ∞∫

0

y−
p
q fp1 (y)f1−p

2 (y) dy
) 1
p

.

(2.10)
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For q = p, the inequality (2.10) reduces to

∞∫
0

( x∫
0

f1(y) dy
)p( x∫

0

f2(y) dy
)1−p dx

x2
≤
∞∫

0

fp1 (y)f1−p
2 (y)

dy

y
.(2.11)

If we take f2(y) = 1 in (2.11), we obtain the following inequality (for details see [10] and [12])

∞∫
0

( 1

x

x∫
0

f1(y) dy
)p dx

x
≤
∞∫

0

fp1 (y)
dy

y
.(2.12)

On the other hand, for the convex function Φ: R → R defined by Φ(x) = ex, we can give the
general form of Pólya-Knopp’s inequality in quotients.

Corollary 2.6. Let 0 < p ≤ q < ∞ and u be a weight function defined on (0,∞). Defining v
on (0,∞) by

v(y) = ln f2(y)
( ∞∫
y

( x∫
0

ln f2(y) dy
)− qp

u(x) dx
) p
q

<∞,

the following inequality

( ∞∫
0

u(x)

[
exp

( x∫
0

ln f1(y) dy

x∫
0

ln f2(y) dy

)] q
p

dx

) 1
q

≤

( ∞∫
0

v(y) exp

(
ln f1(y)

ln f2(y)

)
dy

) 1
p

(2.13)

holds for all positive measurable functions fi : (0,∞)→ R, (i = 1, 2).
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Proof. Rewrite the inequality (2.2) with Ω1 = Ω2 = R+, dµ1(x) = dx, dµ2(y) = dy and
Φ: R+ → R defined by Φ(x) = ex. We obtain( ∞∫

0

u(x)
[

exp
(g1(x)

g2(x)

)] q
p

dx
) 1
q ≤

( ∞∫
0

v(y) exp
(f1(y)

f2(y)

)
dy
) 1
p

.(2.14)

Define k(x, y) as in the proof of Theorem 2.4. Substituting gi(x), (i = 1, 2), defined by (2.9) in
(2.14), we get

( ∞∫
0

u(x)

[
exp

( x∫
0

f1(y) dy

x∫
0

f2(y) dy

)] q
p

dx

) 1
q

≤

( ∞∫
0

v(y) exp

(
f1(y)

f2(y)

)
dy

) 1
p

.(2.15)

Replacing fi by ln fi, (i = 1, 2) in (2.15), we get (2.13). �

Remark 2.7. In particular, for the weight function u(x) = 1
x2

( x∫
0

ln f2(y) dy
) q
p

, x ∈ (0,∞) in

Corollary 2.6, we obtain v(y) = y−
p
q ln f2(y) and the inequality (2.13) becomes

( ∞∫
0

1

x2

( x∫
0

ln f2(y) dy

) q
p
[

exp

( x∫
0

ln f1(y) dy

x∫
0

ln f2(y) dy

)] q
p

dx

) 1
q

≤
( ∞∫

0

y−
p
q ln f2(y) exp

( ln f1(y)

ln f2(y)

)
dy
) 1
p

.

(2.16)
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If we put p = q and f2(y) = e in (2.16), we obtain the following inequality (for details see [10] and
[12])

∞∫
0

exp
( 1

x

x∫
0

ln f1(y) dy
) dx

x
≤
∞∫

0

f1(y)
dy

y
.

Our next general result is for Hardy-Hilbert’s inequality.

Theorem 2.8. Let 0 < p ≤ q <∞, s ∈ R and u be a weight function defined on (0,∞). Define
v on (0,∞) by

v(y) = f2(y)
( ∞∫

0

u(x)

(x+ y)
sq
p

( ∞∫
0

f2(y)

(x+ y)s
dy
)− qp

dx
) p
q

<∞.(2.17)

If Φ is a positive convex function on the interval I ⊆ R, then the following inequality

( ∞∫
0

u(x)

[
Φ

(∞∫
0

f1(y)
(x+y)s dy

∞∫
0

f2(y)
(x+y)s dy

)] q
p

dx

) 1
q

≤

( ∞∫
0

v(y)Φ

(
f1(y)

f2(y)

)
dy

) 1
p

(2.18)

holds for all measurable functions fi : (0,∞)→ R, (i = 1, 2), such that f1(y)
f2(y) ∈ I.

Proof. Rewrite the inequality (2.2) with Ω1 = Ω2 = R+, dµ1(x) = dx, dµ2(y) = dy. Let us
define the kernel k : R2

+ → R by

k(x, y) =
(y
x

) s−2
p

(x+ y)−s, p > 1.
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Then gi defined in (2.3) becomes

gi(x) =

∞∫
0

(y
x

) s−2
p

(x+ y)−sfi(y) dy = x
2−s
p

∞∫
0

y
s−2
p

fi(y)

(x+ y)s
dy.

Substituting gi(x), (i = 1, 2), in (2.2), we get

( ∞∫
0

u(x)

[
Φ

(∞∫
0

y
s−2
p

f1(y)
(x+y)s dy

∞∫
0

y
s−2
p

f2(y)
(x+y)s dy

)] q
p

dx

) 1
q

≤

( ∞∫
0

v(y)Φ

(
f1(y)

f2(y)

)
dy

) 1
p

.(2.19)

Writing fi(y) instead of fi(y)y
s−2
p in (2.19), we obtain (2.18). �

Example 2.9. For 0 < α < sq
p , taking the particular weight function u(x) = xα−1 ·( ∞∫

0

(x + y)−sf2(y) dy
) q
p

, x ∈ (0,∞), in (2.17), we obtain v(y) = y
αp
q −sf2(y)

(
B
(
α, sqp − α

)) p
q

,

where B is the usual beta function. Let p ≥ 1 and the function Φ: R+ → R be defined by
Φ(x) = xp, then the inequality (2.18) becomes( ∞∫

0

xα−1
( ∞∫

0

f1(y)

(x+ y)s
dy
)q( ∞∫

0

f2(y)

(x+ y)s
dy
)q( 1

p−1)
dx
) 1
q

≤
(
B
(
α,
sq

p
− α

)) 1
q
( ∞∫

0

y
αp
q −sfp1 (y)f1−p

2 (y) dy
) 1
p

.

(2.20)

In the upcoming theorem, we give the Hardy-Littlewood-Pólya inequality in quotient.
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Theorem 2.10. Let 0 < p ≤ q < ∞, s ∈ R and u be a weight function defined on (0,∞).
Define v on (0,∞) by

v(y) = f2(y)
( ∞∫

0

u(x)

max{x, y}
sq
p

( ∞∫
0

f2(y)

max{x, y}s
dy
)− qp

dx
) p
q

<∞.(2.21)

If Φ is a positive convex function on the interval I ⊆ R, then the following inequality

( ∞∫
0

u(x)

[
Φ

(∞∫
0

f1(y)
max{x,y}s dy

∞∫
0

f2(y)
max{x,y}s dy

)] q
p

dx

) 1
q

≤

( ∞∫
0

v(y)Φ

(
f1(y)

f2(y)

)
dy

) 1
p

(2.22)

holds for all measurable functions fi : (0,∞)→ R, (i = 1, 2), such that f1(y)
f2(y) ∈ I.

Proof. Rewrite the inequality (2.2) with Ω1 = Ω2 = R+, dµ1(x) = dx, dµ2(y) = dy. Let us
define the kernel k : R2

+ → R by

k(x, y) =
(y
x

) s−2
p

max{x, y}−s.

Then gi defined in (2.3) takes the form

gi(x) =

∞∫
0

(y
x

) s−2
p

max{x, y}−sfi(y) dy = x
2−s
p

∞∫
0

y
s−2
p

fi(y)

max{x, y}s
dy.
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Substituting gi(x), (i = 1, 2) in (2.2), we get

( ∞∫
0

u(x)

[
Φ

(∞∫
0

y
s−2
p

f1(y)
max{x,y}s dy

∞∫
0

y
s−2
p

f2(y)
max{x,y}s dy

)] q
p

dx

) 1
q

≤

( ∞∫
0

v(y)Φ

(
f1(y)

f2(y)

)
dy

) 1
p

.(2.23)

Writing fi(y) instead of fi(y)y
s−2
p in (2.23), we obtain (2.22). �

Example 2.11. For 0 < α < sq
p , taking the particular weight function

u(x) = xα−1
( ∞∫

0

f2(y)
max{x,y}s dy

) q
p

, x ∈ (0,∞) in (2.21), we obtain v(y) = y
αp
q −sf2(y)

×
(

sq
α(sq−αp)

) p
q

. Let p ≥ 1 and the function Φ: R+ → R be defined by Φ(x) = xp. Then the

inequality (2.22) becomes

( ∞∫
0

xα−1
( ∞∫

0

f1(y)

max{x, y}s
dy
)q( ∞∫

0

f2(y)

max{x, y}s
dy
)q( 1

p−1

)
dx
) 1
q

≤
( sq

α(sq − αp)

) 1
q
( ∞∫

0

y
αp
q −sfp1 (y)f1−p

2 (y) dy
) 1
p

.(2.24)

Now we give the result for Hardy-Hilbert-type inequality.
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Theorem 2.12. Let 0 < p ≤ q <∞ and u be a weight function defined on (0,∞). Define v on
(0,∞) by

v(y)=f2(y)
( ∞∫

0

u(x)
( ln y−lnx

y−x

) q
p
( ∞∫

0

ln y−lnx

y−x
f2(y) dy

)− qp
dx
) p
q

<∞.(2.25)

If Φ is a positive convex function on the interval I ⊆ R, then the following inequality

( ∞∫
0

u(x)

[
Φ

(∞∫
0

ln y−ln x
y−x f1(y) dy

∞∫
0

ln y−ln x
y−x f2(y) dy

)] q
p

dx
) 1
q ≤

( ∞∫
0

v(y)Φ

(
f1(y)

f2(y)

)
dy

) 1
p

(2.26)

holds for all measurable functions fi : (0,∞)→ R, (i = 1, 2), such that f1(y)
f2(y) ∈ I.

Proof. Rewrite the inequality (2.2) with Ω1 = Ω2 = R+, dµ1(x) = dx, dµ2(y) = dy. For
α ∈ (0, 1), we define the kernel k : R2

+ → R by

k(x, y) =
ln y − lnx

y − x

(x
y

)α
.

Then gi defined in (2.3) takes the form

gi(x) =

∞∫
0

ln y − lnx

y − x

(x
y

)α
fi(y) dy = xα

∞∫
0

ln y − lnx

y − x
y−αfi(y) dy.
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Substituting gi(x), (i = 1, 2) in (2.2), we get

( ∞∫
0

u(x)

[
Φ

(∞∫
0

ln y−ln x
y−x y−αf1(y) dy

∞∫
0

ln y−ln x
y−x y−αf2(y) dy

)] q
p

dx

) 1
q

≤

( ∞∫
0

v(y)Φ

(
f1(y)

f2(y)

)
dy

) 1
p

.(2.27)

Writing fi(y) instead of y−αfi(y) in (2.27), we obtain (2.26). �

Example 2.13. For α ∈ (0, 1) and for the particular weight function

u(x) = x−α
( ∞∫

0

ln y−ln x
y−x f2(y) dy

) q
p

, x∈ (0,∞), in (2.25), we obtain v(y)=y(1−α) pq−1f2(y)C, where

C =
( ∞∫

0

z−α
(

ln z
z−1

) q
p

dz
) p
q

. Let p ≥ 1 and the function Φ: R+ → R be defined by Φ(x) = xp.

Then the inequality (2.26) becomes

( ∞∫
0

x−α
( ∞∫

0

ln y − lnx

y − x
f1(y) dy

)q( ∞∫
0

ln y − lnx

y − x
f2(y) dy

)q( 1
p−1

)
dx
) 1
q

≤
(
C

∞∫
0

y(1−α) pq−1fp1 (y)f1−p
2 (y) dy

) 1
p

.(2.28)

In the upcoming theorem we give the result for a multidimensional case.
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Theorem 2.14. Let 0 < p ≤ q < ∞, l and u be non-negative measurable functions on Rn+.
Suppose that the function

x→ u(x)
(
f2(y)l

(y
x

)( ∫
Rn+

l
(y
x

)
f2(y)dy

)−1) qp
is integrable on Rn+ for each fixed y ∈ Rn+. Let v be defined on Rn+ by

v(y) =
( ∫
Rn+

u(x)
(
f2(y)l

(y
x

)( ∫
Rn+

l
(y
x

)
f2(y)dy

)−1) qp
dx
) p
q

.(2.29)

If Φ is a positive convex function on the interval I ⊆ R, then the following inequality

(∫
Rn+

u(x)

[
Φ

( ∫
Rn+

l
(
y
x

)
f1(y)dy

∫
Rn+

l
(
y
x

)
f2(y)dy

)] qp
dx

) 1
q

≤

(∫
Rn+

v(y)Φ

(
f1(y)

f2(y)

)
dy

) 1
p

(2.30)

holds for all measurable functions fi : Rn+ → R, (i = 1, 2), such that
f1(y)
f2(y) ∈ I.

Proof. Apply Theorem 2.1 with Ω1 = Ω2 = Rn+, the Lebesgue measure dµ1(xxx) = dxxx, dµ2(yyy) =

dyyy, and the kernel k : Rn+×Rn+ → R of the form k(xxx,yyy) = l
(
yyy
xxx

)
, where l : Rn+ → R is a non-negative

measurable function. So gi(x) takes the form

gi(x) =

∫
Rn+

l
(y
x

)
fi(y)dy, (i = 1, 2),

and inequality (2.30) follows. �
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Applying Theorem 2.14 to the power function, we get the following corollary.

Corollary 2.15. Let p > 1 and suppose that the assumptions in Theorem 2.14 are satisfied.
Let v be defined by (2.29). Then the following inequality

(∫
Rn+

u(x)

( ∫
Rn+

l
(
y
x

)
f1(y)dy

∫
Rn+

l
(
y
x

)
f2(y)dy

)q
dx

) 1
q

≤

(∫
Rn+

v(y)

(
f1(y)

f2(y)

)p
dy

) 1
p

(2.31)

holds for all measurable functions fi : Rn+ → R, (i = 1, 2).

Remark 2.16. If we take f2 = 1 in Theorem 2.14, we obtain inequality (1.9) given in Corollary
1.5. So Theorem 2.14 is the quotient form of Corollary 1.5.

Remark 2.17. Particularly, if we take p = q in Theorem 2.4, Corollary 2.6, Theorem 2.8, The-
orem 2.10 and Theorem 2.12, we can obtain the corresponding results of Corollary 2.2 in quotients
for Hardy’s inequality, Pólya-Knopp’s inequality, Hardy-Hilbert’s inequality, Hardy-Littlewood-
Pólya inequality and Hardy-Hilbert-type inequality, respectively, but here we omit the details.
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Theory 125, (2003), 74–84.
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1967 54(1) (1967), 35–39 (in Russian).
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