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COMPARISON RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS

INVOLVING A FINSLER-LAPLACIAN

JAROSLAV JAROŠ

Abstract. Picone identity for a Finsler-Lapace operator is established and comparison theorems of
the Leighton type for a pair of nonlinear elliptic equations involving such operators are obtained with
the help of this new formula.

1. Introduction

The purpose of this paper is to present an identity of the Picone type for the operator of the form

∆H,Av := div
(
A(x)H(∇v)∇ξH(∇v)

)
(1.1)

where A ∈ C1(Ω) with A(x) > 0 on Ω for some bounded domain in Rn, n ≥ 2, with a piecewise
smooth boundary ∂Ω, H : Rn → [0,+∞) is a convex function of the class C1(Rn r {0}) which
is positively homogeneous of degree 1, and ∇ and ∇ξ stand for usual gradient operators with
respect to the variables x and ξ, respectively. We refer to the operator ∆H,A as the (weighted)
Finsler-Laplacian. An example of H satisfying the above conditions is the lr-norm

H(ξ) = ‖ξ‖r =

( n∑
i=1

|ξi|r
)1/r

, r > 1,(1.2)
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for which the operator ∆H,A has the form

∆H,Av = div
(
A(x)‖∇v‖2−rr ∇rv

)
where

∇rv :=

(∣∣∣∣ ∂v∂x1

∣∣∣∣r−2
∂v

∂x1
, . . . ,

∣∣∣∣ ∂v∂xn
∣∣∣∣r−2

∂v

∂xn

)
.(1.3)

Note that ∆H,A is a nonlinear operator unless r = 2 when it reduces to the usual weighted Laplacian
div(A∇v). Various elliptic problems involving the Finsler-Laplacian ∆H,A with A ≡ 1 have been
recently studied by several authors including [3]–[5], [8]–[9], [12], [17]–[19].

In the case of the Euclidean norm H(ξ) = ‖ξ‖2, ξ ∈ Rn, the following simple formula (that
became known as Picone’s identity) holds true (see [14]).

Lemma 1.1. If u, v and A∇v are differentiable in a given domain Ω ⊂ Rn and v(x) 6= 0 in Ω,
then

div

(
u2

v
A(x)∇v

)
=
u2

v
div (A(x)∇v) +A(x)‖∇u‖22 −A(x)‖∇u− u

v
∇v‖22.

(1.4)

Because of its simplicity and wide applicability, the identity (1.4) has become one of the most
popular tools of the qualitative and comparison theory of linear differential equations and continues
to be the topic of various extensions and generalizations; see, for example, [1]–[2], [6]–[7], [10]–[11],
[13], [16], [20].

One of typical results that can easily be obtained by integrating (1.4) over Ω and using the

divergence theorem asserts that if the equation div(A∇v) +Cv = 0 where C ∈ C(Ω) has solutions
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satisfying v(x) 6= 0 in Ω, then

J [u; Ω] :=

∫
Ω

[
A(x)‖∇u‖22 − C(x)u2

]
dx > 0(1.5)

for all u ∈W 1,2
0 (Ω) r {0}.

An extended version of formula (1.4) which is sometimes called the “second Picone’s identity”
says that if a satisfies the same conditions as A and u, v, a∇u and A∇v are differentiable in Ω with
v(x) 6= 0, then

div

(
ua(x)∇u− u2

v
A(x)∇v

)
= udiv(a(x)∇u)− u2

v
div(A(x)∇v)

+
(
a(x)−A(x)

)
‖∇u‖22

+A(x)‖∇u− u

v
∇v‖22.

(1.6)

Formula (1.6) provides a tool for simple proofs of comparison theorems concerning a pair of elliptic
equations involving the weighted Laplacians div(a∇u) and div(A∇v), respectively. An example of
such results is the Leighton-type integral comparison theorem which asserts that if

V [u; Ω] :=

∫
Ω

[(
a(x)−A(x)

)
‖∇u‖22 +

(
(C(x)− c(x)

)
u2
]
dx ≥ 0(1.7)

for some nontrivial solution u of div(a∇u) + cu = 0 satisfying u = 0 on ∂Ω, then any solution
v of the equation div (A∇v) + Cv = 0 either has a zero in Ω or it is a constant multiple of u.
In particular, if a(x) ≥ A(x) and C(x) ≥ c(x) for all x ∈ Ω, then the condition (1.7) is clearly
satisfied and from the above result we get the classical Sturm-Picone comparison theorem.

For a survey of other applications of identities (1.4) and (1.6), see [16].
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The purpose of this paper is to generalize identity (1.4) to the case where the Euclidean norm
‖.‖2 is replaced by an arbitrary norm H(.) in Rn and to obtain the Leighton-type comparison
result concerning a pair of nonlinear degenerate elliptic equations of the form

div
(
a(x)H(∇u)∇ξH(∇u)

)
+ c(x)u = 0(1.8)

and

div
(
A(x)H(∇v)∇ξH(∇v)

)
+ C(x)v = 0(1.9)

where a, c, A,C and H are as above.
The paper is organized as follows. In Section 2 we survey basic properties of general norms

in Rn. Section 3 contains an extension of Picone’s identity to the Finsler-Laplace operator and
comparison results for nonlinear elliptic equations obtained with the help of this new identity. In
Section 4 we show how the comparison principle developed in the preceding section yields the
nonexistence of positive solutions in exterior domains for a class of equations of the form (1.9).

2. Preliminaries

In this section we recall some of elementary properties of general norms in Rn which are needed
in the sequel. For the proofs see, for instance, [3] or [8].

Let H be an arbitrary norm in Rn, i.e., a convex function H : Rn → [0,∞) satisfying H(ξ) > 0
for all ξ 6= 0 which is positively homogeneous of degree 1, so that

H(tξ) = |t|H(ξ) for all ξ ∈ Rn and t ∈ R.(2.1)

Since all norms in Rn are equivalent, for H there exist positive constants α and β such that

α‖ξ‖2 ≤ H(ξ) ≤ β‖ξ‖2
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for all ξ ∈ Rn. Let 〈, 〉 denote the usual inner product in Rn and define the dual norm H0 of H by

H0(x) = sup
ξ 6=0

〈x, ξ〉
H(ξ)

for x ∈ Rn.(2.2)

The set WH := {x ∈ Rn : H0(x) < 1} is sometimes called the Wulff shape (or equilibrium crystal
shape) of H.

If we assume that H ∈ C1(Rn r {0}), then from (2.1) it follows that

∇ξH(tξ) = sgn t ∇ξH(ξ) for all ξ 6= 0 and t 6= 0(2.3)

and

〈ξ,∇ξH(ξ)〉 = H(ξ) for all ξ ∈ Rn(2.4)

where the left-hand side is defined to be 0 if ξ = 0. Moreover,

H0(∇ξH(ξ)) = 1 for all ξ ∈ Rn r {0}.(2.5)

Similarly, if H0 is of class C1 for x 6= 0, then

H(∇H0(x)) = 1 for all x ∈ Rn r {0}.(2.6)

Also, the identities

H
[
H0(x)∇H0(x)

]
∇ξH

[
H0(x)∇H0(x)

]
= x,(2.7)

and

H0

[
H(ξ)∇ξH(ξ)

]
∇H0

[
H(ξ)∇ξH(ξ)

]
= ξ,(2.8)

hold for all x, ξ ∈ Rn, where H(0)∇ξH(0) and H0(0)∇H0(0) are defined to be 0.
From the definition (2.2) we easily obtain the Hölder-type inequality

〈x, ξ〉 ≤ H(ξ)H0(x) for all x, ξ ∈ Rn(2.9)
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with equality holding if and only if

x = H(ξ)∇ξH(ξ).(2.10)

In the proof of our main result we will need the following simple lemma which is a consequence of
the well-know result from the convex analysis asserting that a continuously differentiable function
F defined in an open convex subset of Rn is strictly convex there if and only if

F (y)− F (x)−
〈
∇F (x), y − x

〉
> 0(2.11)

for all x 6= y.

Lemma 2.1. Let H be a norm in Rn such that H ∈ C1(Rn r {0}) and H2 is strictly convex.
If

H(x)2 − 2
〈
x,H(y)∇H(y))

〉
+H(y)2 = 0(2.12)

for some x, y ∈ Rn, y 6= 0, and H(x) = H(y), then x = y.

Proof. Let x, y ∈ Rn with y 6= 0 satisfy H(x) = H(y) and (2.12). Adding and subtracting
2〈y,H(y)∇H(y)〉 in (2.12) and using (2.4), we obtain

0 = 2H(y)2 − 2
〈
y,H(y)∇H(y)

〉
+ 2
〈
y − x,H(y)∇H(y)

〉
= 2H(y)2 − 2H(y)〈y,∇H(y)〉+ 2

〈
y − x,H(y)∇H(y)

〉
= 2
〈
y − x,H(y)∇H(y)

〉
.

(2.13)

Notice that 2H(y)∇H(y) = ∇
(
H(y)

)2 6= 0. Indeed, if ∇
(
H(y)

)2
were the zero vector for some

y ∈ Rn, i.e., even strictly convex function H(y)2 attained its global minimum at y, then y would
necessarily be equal to 0, a contradiction. Therefore, by strict convexity of H2, x = y, and the
proof is complete. �
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Another elementary inequality that will be needed in the sequel is an immediate consequence
of the property |H(y)−H(x)| ≤ H(y − x) which holds for each x, y ∈ Rn and any norm H.

Lemma 2.2. If H is an arbitrary norm in Rn, then

|H(y)2 −H(x)2| ≤
[
H(x) +H(y)

]
H(y − x)(2.14)

for any x, y ∈ Rn.

3. Basic identity and comparison theorems

Let Ω ⊂ Rn be a bounded domain with a piecewise boundary. The following is an extension of
Picone’s identity (1.4) to the Finsler-Laplace operator ∆H,A given by (1.1).

Theorem 3.1 (Finsler-Picone identity). Let H be an arbitrary norm in Rn which is of class
C1 for x 6= 0. If u, v and AH(∇v)∇ξH(∇v) are differentiable in a given domain Ω and v(x) 6= 0
in Ω, then

div

(
u2

v
A(x)H(∇v)∇ξH(∇v)

)
=
u2

v
∆H,Av +A(x)H(∇u)2

−A(x)

{
H(∇u)2 − 2

u

v

〈
∇u,H(∇v)∇ξH(∇v)

〉
+
u2

v2
H(∇v)2

}
.

(3.1)

Moreover, the bracketed expression in (3.1), denoted by Φ(u, v), is nonnegative in Ω. If, in addition,
H2 is strictly convex in Rn, then Φ(u, v) = 0 in Ω if and only if u is a constant multiple of v in
each component of Ω.
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Proof. The relation (3.1) can be easily verified by a direct computation. To prove that Φ(u, v) ≥
0, notice that it can be rewritten as Φ(u, v) = Φ1(u, v) + Φ2(u, v), where

Φ1(u, v) = H(∇u)2 − 2H(∇u)H
(u
v
∇v
)

+H
(u
v
∇v
)2

=

[
H(∇u)−H

(u
v
∇v
)]2

and

Φ2(u, v) = 2
{
H(∇u)H

(u
v
∇v
)
−
〈
∇u,H

(u
v
∇v
)
∇ξH

(u
v
∇v
)〉}

.

Clearly, Φ1(u, v) ≥ 0 in Ω. The nonnegativity of Φ2(u, v) follows from the Hölder inequality (2.9).
Finally, the equality case in Φ(u, v) ≥ 0 can occur only if both Φ1(u, v) = 0 and Φ2(u, v) = 0 in

Ω. The first condition is satisfied if and only if

H(∇u) = H
(u
v
∇v
)

in Ω.(3.2)

If
(
u∇v/v

)
(x0) 6= 0 for some x0 ∈ S, then by Lemma 2.1, we have ∇u = u∇v/v at x0, or

equivalently, ∇(u/v)(x0) = 0. On the other hand, if u∇v/v = 0, then from (3.2), we get ∇u = 0
which again implies ∇(u/v) = 0. Summarizing the above observations we get ∇(u/v) = 0 in Ω
which forces u/v to be constant in each component of Ω. �

In the special case when H(ξ) is an r-norm (1.2), the identity (3.1) becomes

div

(
u2

v
‖∇v‖2−rr ∇rv

)
=
u2

v
div
(
‖∇v‖2−rr ∇rv

)
+ ‖∇u‖2r

−
{
‖∇u‖r2 − 2

u

v

〈
‖∇v‖2−rr ∇rv,∇u

〉
+
u2

v2
‖∇v‖2r

}
,(3.3)

where ∇rv is defined by (1.3).



JJ J I II

Go back

Full Screen

Close

Quit

In what follows, we always assume that the norm H(ξ) is continuously differentiable for ξ 6= 0
and that H(ξ)2 is strictly convex in Rn.

As an immediate consequence of the Finsler-Picone identity (3.1) we get the following necessary
condition for the existence of zero-free solutions (in Ω) of the equation (1.9).

Theorem 3.2. If (1.9) possesses a solution v which satisfies v(x) 6= 0 in Ω, then

(3.4) JH [u; Ω] :=

∫
Ω

[
A(x)H(∇u)2 − C(x)u2

]
dx > 0,

for all 0 6≡ u ∈ D(Ω) := {φ ∈ C1(Ω) : u = 0 on ∂Ω}.

Proof. Integrating (3.1) over Ω and making use of the divergence theorem yields

JH [u; Ω] =

∫
Ω

A(x)Φ(u, v)dx ≥ 0.

Since A(x) > 0, v(x) 6= 0 in Ω and u = 0 on ∂Ω, equality JH [u; Ω] = 0 cannot occur and the proof
is complete. �

The above theorem can be reformulated as a criterion for the existence of zeros of solutions of
(1.9) in Ω. Such a result belongs to “weaker” Sturmian conlusions in the sense that it establishes
the existence of a zero in Ω ∪ ∂Ω rather than in Ω. Under the additional assumption that the
boundary of a domain Ω is smooth, we can prove the following stronger result.

Theorem 3.3. Let ∂Ω ∈ C1. Assume that there exists a nontrivial function u ∈ C1(Ω)
vanishing on ∂Ω and satisfying

JH [u; Ω] :=

∫
Ω

[
A(x)H(∇u)2 − C(x)u2

]
dx ≤ 0.(3.5)

Then every solution v of (1.9) must have a zero in Ω unless v is a constant multiple of u.
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Proof. Suppose that there exists a solution v of (1.9) such that v(x) 6= 0 in Ω. Let {uk} denote
a sequence of C∞0 (Ω) functions converging to u in the norm

‖w‖ :=

(∫
Ω

[
H(∇w)2 + w2

]
dx

) 1
2

.

First, an integration of the identity (3.1) with u = uk over Ω yields

JH [uk; Ω] =

∫
Ω

A(x)
[
H(∇uk)2 +H

(uk
v
∇v
)2

− 2
u2
k

v2

〈
H(∇v)∇ξH(∇v),∇uk

〉]
dx ≥ 0.

(3.6)

Next, we show that limk→∞ JH [uk; Ω] = JH [u; Ω] = 0. Since A and C are uniformly bounded,
there is a constant K1 > 0 such that∣∣JH [uk; Ω]− JH [u; Ω]

∣∣ ≤ K1

∫
Ω

|H(∇uk)2 −H(∇u)2|dx

+K1

∫
Ω

∣∣u2
k − u2

∣∣dx.(3.7)

Observing that ∣∣H(∇uk)2 −H(∇u)2
∣∣ ≤ [H(∇uk) +H(∇u)

]
H(∇(uk − u))(3.8)

(cf. (2.14)) and using the Cauchy-Schwartz inequality, we get∫
Ω

∣∣H(∇uk)2 −H(∇u)2
∣∣dx

≤
(∫

Ω

[
H(∇uk) +H(∇u)

]2
dx

) 1
2
(∫

Ω

H(∇(uk − u))2dx

) 1
2

.

(3.9)
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Similarly, ∫
Ω

∣∣u2
k − u2

∣∣dx ≤ (∫
Ω

(|uk|+ |u|)2dx

) 1
2
(∫

Ω

(uk − u)2dx

) 1
2

.(3.10)

Collecting (3.7), (3.9) and (3.10) yields∣∣JH [uk; Ω]− JH [u; Ω]
∣∣ ≤ K2

(
‖uk‖+ ‖u‖

)
‖uk − u‖

for some positive constant K2 which does not depend on k. It follows that limk→∞ JH [uk; Ω] =
JH [u; Ω]. From (3.6) we have JH [u; Ω] ≥ 0, which together with (3.5) implies that JH [u; Ω] = 0.

Let S be an arbitrary domain with S̄ ⊂ Ω. Then for sufficiently large k, the support of uk
contains S̄, so that

0 ≤
∫
S

A(x)Φ(uk, v)dx ≤
∫

Ω

A(x)Φ(uk, v)dx = JH [uk; Ω](3.11)

for all such k. Applying (3.8) and Hölder inequality, we can show analogously as in the first part
of the proof that ∫

S

A(x)Φ(uk, v)dx→
∫
S

A(x)Φ(u, v)dx as k →∞.

Letting k →∞ in (3.11), we obtain that∫
S

A(x)Φ(u, v)dx = 0.

Since A(x) > 0 in Ω, it follows that Φ(u, v) ≡ 0 identically in S. By the last assertion in Theo-
rem 3.1, v must be a constant multiple of u in S and thus in Ω. This completes the proof. �

Our next result is the Leighton-type integral comparison theorem.
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Theorem 3.4. Let ∂Ω ∈ C1. Assume that there exists a nontrivial solution u of (1.8) vanishing
on ∂Ω and satisfying

VH [u; Ω] :=

∫
Ω

[(
a(x)−A(x)

)
H(∇u)2 +

(
C(x)− c(x)

)
u2
]
dx ≥ 0.(3.12)

Then every solution v of (1.9) must have a zero in Ω unless v is a constant multiple of u.

Proof. If the function u is a nontrivial solution of Eq. (1.8) which satisfies u = 0 on ∂Ω, it
follows from the divergence theorem that

FH [u; Ω] :=

∫
Ω

[
a(x)H(∇u)2 − c(x)u2

]
dx = 0.(3.13)

Thus, the condition (3.12) implies

JH [u; Ω] = FH [u; Ω]− VH [u; Ω] ≤ 0,

and the assertion follows from Theorem 3.3. �

The pointwise comparison principle of the Sturm-Picone type for the pair of nonlinear elliptic
equations (1.8) and (1.9) with general norms in the principal differential operators is an immediate
consequence of Theorem 3.4.

Corollary 1. Assume that a(x) ≥ A(x) and C(x) ≥ c(x) in Ω and (1.8) has a nontrivial
solution u such that u = 0 on ∂Ω. Then any solution v of (1.9) is either zero at some point in Ω
or else v = ku for a nonzero constant k.
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4. Nonexistence of positive solutions in exterior domains

Let Ωr := {x ∈ Rn : H0(x) > r}, r ≥ r0 > 0, be the exterior of the H0-ball with radius r centered
at the origin. We apply Theorem 3.4 to demonstrate that the equation

div
(
A(x)H(∇v)∇ξH(∇v)

)
+ C(x)v = 0, x ∈ Ωr0 ,(4.1)

may have no positive solutions in Ωr for any r > r0. This is done by comparing (4.1) with another
equation of the same form which is H0-radially symmetric in the sense that its coefficients ã and
c̃ depend only on H0(x):

div
(
ã(H0(x))H(∇u)∇ξH(∇u)

)
+ c̃(H0(x))u = 0, x ∈ Ωr0 .(4.2)

If u = y(H0(x)) is an H0-radially symmetric solution of (4.2), then y(r) is easily seen to satisfy
the linear ODE (

rn−1ã(r)y′
)′

+ rn−1c̃(r)y = 0, r ≥ r0,(4.3)

where ′ = d/dr.

Theorem 4.1. Assume that there exist continuous real-valued functions ã and c̃ defined on
[r0,∞) with ã(r) > 0 in [r0,∞) such that (4.3) is oscillatory in the sense that any of its solutions
has a sequence of zeros clustering at infinity. Let

max
H0(x)=r

A(x) ≤ ã(r) and min
H0(x)=r

C(x) ≥ c̃(r), r ≥ r0 > 0.(4.4)

Then (4.2) cannot have solutions v such that v(x) 6= 0 in Ωr for any r ≥ r0.

Proof. Let y(r) be an oscillatory solution of (4.3) on [r0,∞) and {ri} be the sequence of its
consecutive zeros satisfying r0 ≤ r1 < . . . < ri < . . ., limi→∞ ri =∞. Then the function u defined
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by u(x) := y(H0(x)) is an H0-radially symmetric solution of (4.2) in Ωr0 such that u(x) = 0 on
Sri := {x ∈ Rn : H0(x) = ri}, i = 1, 2, . . .. Define

Ωri,ri+1
:= {x ∈ Rn : ri < H0(x) < ri+1}, i = 1, 2, . . . .

Let v be a solution of (4.2) in Ωr for some r ≥ r0. Then Ωri,ri+1
⊂ Ωr for sufficiently large i and

VH [u; Ωri,ri+1
] =

∫
Ωri,ri+1

[(
A(x)− ã(H0(x)

)
H(∇u)2

−
(
C(x)− c̃(H0(x))

)
u2
]
dx ≤ 0

(4.5)

because of (4.4). Theorem 3.4 now implies that v must vanish at some points of Ωri,ri+1
for all i

large enough, and the proof is complete. �

An alternative way how to reduce the problem of the existence (nonexistence) of positive solu-
tions of the PDE (4.1) in exterior domains to the one-dimensional oscillation problem is to replace
ã(r) and c̃(r) in (4.3) by the spherical means ā(r) and c̄(r) of the coefficients A(x) and C(x) over
the Wulff sphere Sr := {x ∈ Rn : H0(x) = r}, respectively, defined by

ā(r) :=
1

αnrn−1

∫
Sr

A(x)dσ, c̄(r) :=
1

αnrn−1

∫
Sr

C(x)dσ,(4.6)

where αn is the surface area of the unit H0-sphere S1.

Theorem 4.2. If the linear ODE(
rn−1ā(r)y′

)′
+ rn−1c̄(r)y = 0, r ≥ r0 > 0,(4.7)

with ā and c̄ given by (4.6) is oscillatory, then the equation (4.2) cannot have positive (or negative)
solutions in Ωr for any r > r0.
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Proof. Let y(r) be an oscillatory solution of (4.7) and (r0 ≤) r1 < r2 < . . . ri < . . . be its
consecutive zeros with ri →∞ as t→∞. Integrating (4.7) from ri to ri+1 by parts, we have∫ ri+1

ri

rn−1
[
ā(r)y′(r)2 − c̄(r)y2

]
dr = 0, i = 1, 2, . . . .

Define the function u by u(x) := y(H0(x)). Then

JH [u; Ωri,ri+1 ] =

∫
Ωri,ri+1

[
A(x)H(∇u)2 − C(x)u2

]
dx

=

∫ ri+1

ri

[
y′(r)2

∫
Sr

A(x)dSr − y(r)2

∫
Sr

C(x)dSr
]
dr

= αn

∫ ri+1

ri

rn−1
[
ā(r)y′(r)2 − c̄(r)y(r)2

]
dr = 0.

Thus, the condition (3.5) of Theorem 3.3 is satisfied and consequently, any solution v of (4.1)
must have zero in Ωri,ri+1 which means that it cannot be positive (or negative) through Ωr for any
r ≥ r0. This completes the proof. �

There is a large body of literature on oscillation of the linear Sturm-Liouville equation(
p(t)y′

)′
+ q(t)y = 0(4.8)

where p and q are continuous functions on [t0,∞) with p(t) > 0 for t ≥ t0 (see, for instance, [15]
and references therein). Any of the available oscillation criteria for (4.8) when applied to (4.3)
or (4.7) yield the corresponding nonexistence result for the original PDE (4.1). For example, the
application of the well-known Leighton-Wintner criterion which says that the satisfaction of the
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conditions ∫ ∞
t0

[1/p(t)]dt = +∞,
∫ ∞
t0

q(t)dt = +∞(4.9)

implies oscillation of Eq.(4.8) gives the following result.

Corollary 2. Suppose that the continuous functions ã(r) and c̃(r) defined on [r0,∞) with
ã(r) > 0 in [r0,∞) satisfy (4.4), ∫ ∞

r0

r1−nã(r)−1dr =∞,(4.10)

and ∫ ∞
r0

rn−1c̃(r)dr =∞.(4.11)

Then (4.1) has no positive solutions in the domain Ωr for any r ≥ r0.
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18. Wang G. and Xia C., An optimal anisotropic Poincaré inequality for convex domains, Pac. J. Math. 258 (2012),

305–326.

19. Wang G. and Xia C., Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differential
Equations 252 (2012), 1668–1700.

20. Yoshida N., Oscillation Theory of Partial Differential Equations, World Scientific, Singapore, Hackensack,
London, 2008.
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