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A NOTE ON THE EQUIVALENCE OF MOTZKIN’S MAXIMAL DENSITY

AND RUZSA’S MEASURES OF INTERSECTIVITY

R. K. PANDEY

Abstract. In this short note, we see the equivalence of Motzkin’s maximal density of integral sets

whose no two elements are allowed to differ by an element of a given set M of positive integers and the
measures of difference intersectivity defined by Ruzsa. Further more, the maximal density µ(M) has
been determined for some infinite sets M and in a specific case of generalized arithmetic progression
of dimension two a lower bound has been given for µ(M).

1. Introduction and the Equivalence

In an unpublished problem collection Motzkin [12] posed the problem of maximal density of integral
sets defined as follows

Let S be a set of nonnegative integers and let S(x) be the number of elements n ∈ S such that
n ≤ x, x ∈ R. The upper and lower densities of S (denoted by d̄(S) and d(S), respectively) are
defined as follows

d̄(S) := lim sup
x→∞

S(x)

x
, d(S) := lim inf

x→∞

S(x)

x
.

If d̄(S) = d(S), we denote the common value by d(S), and say that S has density d(S). Let M be
a given set of positive integers. S is said to be an M -set if a ∈ S, b ∈ S ⇒ a − b /∈ M. Motzkin
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asks to determine the maximal density µ(M) of M -sets, given by

µ(M) := sup
S
d̄(S),

where supremum is taken over all M -sets S. Almost all sets M for which µ(M) is determined
exactly or the bounds of µ(M) have been obtained up to now are finite. For the complete survey
on the problem see ([1], [8], [7], [6], [10], [11], [13], [14], [15]). Before we obtain µ(M) for some
infinite sets M in the next section, we mention Ruzsa’s “measures of intersectivity” below.

Define S − S := {a− b : a, b ∈ S} and S + a := {x+ a : x ∈ S}. A set M of positive integers is
called (difference) intersective if M ∩ (S −S) 6= φ, whenever S has positive upper density. Instead
of upper density one might equally write the lower density or just the natural density.

Define

δ1(M) := sup{d(S) : M ∩ (S − S) = φ},
where the supremum is taken over all sets S having the natural density d(S), and

δ2(M) := sup{d(S) : d(S ∩ (S + a)) = 0 for all a ∈M}.

Clearly, we have δ1(M) ≤ µ(M) ≤ δ2(M).
Putting

D(M,n) = max{|T | : T ⊂ [1, n], M ∩ (T − T ) = φ},
and defining

δ(M) := lim
n→∞

D(M,n)

n
= inf

D(M,n)

n
,

we have the following theorem.

Theorem A (Ruzsa, [17]). For each set M , δ1(M) = δ2(M) = δ(M).
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Consequently, Motzkin’s maximal density and Ruzsa’s measures of intersectivity are indeed the
same.

Almost all sets M for which µ(M) has been determined exactly or some bounds have been given
up to now are finite sets. The initial work on this problem was done by Cantor and Gordon [1],
where they showed the existence of µ(M) for each set M of positive integers, and also determined
µ(M) when M has one or two elements. They proved that if |M | = 1, then µ(M) = 1

2 and

if M = {a, b} with gcd(a, b) = 1, then µ(M) =
b a+b

2 c
a+b . By a result of Cantor and Gordon, it is

sufficient to consider the problem only for those sets M whose elements are relatively prime. Later,
Haralambis [8] gave some general estimates and expressions for µ(M) for most members of the
families {1, a, b} and {1, 2, a, b}. Gupta and Tripathi [7] obtained the value of µ(M), where M is
finite and the elements of M are in arithmetic progression. Liu and Zhu [10] computed the values
of µ(M) for M = {a, 2a, . . . , (m − 1)a, b} and M = {a, b, a + b}, and they gave some bounds of
µ(M) for M = {a, b, b− a, b+ a} using graph theoretic techniques. They further computed µ(M)
for M = [1, a]∪ [b,m+1], where a < b in [11] using fractional chromatic number of distance graphs
generated by the set M . Some more partial work on the problem can be found in ([16], [4], [5], [9],
[3]) but all in the case where the given set M is finite. The present author together with Tripathi
([13], [14],[15]) have discussed the problem for the families M = {a, b, c}, where a < b, c = nb
or na and M = {a, b, n(a + b)}, and for the sets related to finite arithmetic progressions. In the
next section, we obtain µ(M) for some infinite sets M out of which some sets are really interesting
which were already discussed by Sàrközy ([18], [19], [20]) and Ruzsa [17]. In section 3, we discuss
the maximal density of generalized arithmetic progression of dimension two in some specific cases
and give some problems on this.
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2. Maximal density of some infinite sets

It is straightforward from the definition that if M1 ⊂ M2, then µ(M1) ≥ µ(M2). Therefore, we
have 0 ≤ µ(M) ≤ 1/2. Now a natural question arrives in whether that µ(M) can be zero for a
finite set M . The answer is NO. Indeed, let the largest element in M be n, then clearly M ⊂ [1, n],
and hence µ(M) ≥ µ([1, n]) = 1

n+1 > 0. So, we conclude that if µ(M) = 0, then M is an infinite

set. Below, we give some infinite sets M for which µ(M) = 0. All non trivial examples are given
by Sàrközy in a series of papers ([18], [19], [20]).

Example 1. If M+ = {p + 1 : p is a prime} and M− = {p − 1 : p is a prime} then µ(M+) =
0 = µ(M−).

Example 2. If M� = {n2 : n is a positive integer}, then µ(M�) = 0.

Example 3. If M�={n2+1:n is a positive integer} and M�={n2−1:n is a positive integer}.
then µ(M�) = 0 = µ(M�).

If µ(M) = 0, we can always find M -sets S which may or may not be finite. Ruzsa [17] proved
that there exists a set M for which µ(M) = 0, but there does not exist any infinite M -set S. More
generally, he proved the following theorem.

Theorem B. Let f be any positive-valued function on natural numbers such that limn→∞ f(n)=

∞, but limn→∞
f(n)
n = 0. There is a set M such that D(M,n) � f(n) and f(n) � D(M,n), but

there is no infinite set S for which M ∩ (S − S) = φ.

As an example take M = [a,∞), where a is any natural number. We have µ(M) = 0 for this
M and there does not exist any infinite set S for which M ∩ (S − S) = φ.

For all above infinite sets M given so far, we have µ(M) = 0. Below, we give some examples as
theorems for which |M | = ∞, but µ(M) 6= 0. We use the following result for the lower bound of
µ(M).
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Lemma 1 ([1]). Let M = {m1,m2,m3, . . .} and let c and m be positive integers such that
gcd(c,m) = 1. Then

µ(M) ≥ sup
gcd(c,m)=1

1

m
min
k
|cmk|m,

where |x|m denotes the absolute value of the absolutely least remainder of x(mod )m.

Theorem 1. Let M = {1, 3, 5, . . .}. Then µ(M) = 1
2 .

Proof. Any set S of positive integers which does not contain integers of both parities will be an
M -set. Clearly, for such a set S, d(S) ≤ 1/2. Now if the set S = {1, 3, 5, . . .}, then equality holds.
Therefore, µ(M) = 1/2. �

Theorem 2. Let M = {a, a+d, a+2d, . . .}, where a and d are positive integers with gcd(a, d) =
1. Then

µ(M) =

{
1
2 if d is even;

d−1
2d if d is odd.

Proof. If d is even, then a is odd because gcd(a, d) = 1. Hence, M ⊂ {1, 3, 5, . . .}. Therefore,
µ(M) ≥ µ({1, 3, 5, . . .}) = 1

2 . Conversely, we have M ⊃ {1} and hence µ(M) ≤ µ({1}) = 1
2 . Thus

µ(M) = 1
2 . Now suppose that d is odd. It is known by Gupta and Tripathi [7] that

lim
n→∞

µ({a, a+ d, a+ 2d, . . . , a+ (n− 1)d}) =
d− 1

2d
.

Therefore,

µ(M) ≤ d− 1

2d
.
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Next, choose x such that

ax ≡ d− 1

2
(mod d).

This gives

(a+ kd)x ≡ d− 1

2
(mod d)

for each k. Therefore, by the Lemma 1, we have

µ(M) ≥ d− 1

2d
.

This proves the theorem. �

Remark 1. If d = 1 in the above theorem, we get µ([a,∞)) = 0. On the other hand, if d 6= 1,
then µ(M) 6= 0.

Theorem 3. Let M = {1, r, r2, . . .}, r > 1. Then µ(M) =
b r+1

2 c
r + 1

.

Proof. Clearly, µ(M) ≤ µ({1, r}) =
b r+1

2 c
r+1 . If r is odd, then all integers in M are odd, and

hence by the same argument as in the Theorem 2 we get µ(M) = 1
2 =

b r+1
2 c

r+1 . If r is even, then
b r+1

2 c
r+1 = r

2(r+1) . Choose x such that

x ≡ r

2
(mod r + 1).

Then
rkx ≡ (−1)k

r

2
(mod r + 1)

for each k ≥ 0. Therefore, by Lemma 1, we have µ(M) ≥ r
2(r+1) and hence the theorem follows. �
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Corollary 1. Let M = {a, ar, ar2, . . .}, a ≥ 1, and r > 1. Then µ(M) =
b r+1

2 c
r+1 .

Proof. By a theorem of Cantor and Gordon [1], we have µ({a, ar, ar2, . . .}) = µ({1, r, r2, . . .}) =
b r+1

2 c
r+1 . �

3. Maximal density of some specific sets
of generalized arithmetic progression of dimension two

Theorem 4. Let M = {a+ x1d1 + x2d2 : 0 ≤ x1 ≤ t1, 0 ≤ x2 ≤ t2}, where a is an odd integer
and d1 is an even integer. Then µ(M) = 1/2 if d2 is even, and

µ(M) ≥ d(M) ≥ 2a+ t1d1 + t2d2 − t2(a+ t1d1)

2(2a+ t1d1 + t2d2)

if d2 is an odd integer.

Proof. If d2 is even, then all elements of M are odd. Hence, the proof is the same as that one
of the Theorem 1. So, assume that d2 is odd. Let m = 2a + t1d1 + t2d2. Clearly, m and t2 have
the same parity. Set x = m−t2

2 . Observe that for 0 ≤ k ≤ t1 and 0 ≤ l ≤ t2, we have

(a+ kd1 + ld2)x ≡ −
(
a+ (t1 − k)d1 + (t2 − l)d2

)
x (mod m).

So, in order to use Lemma 1, we only need to consider the first congruences for which 0 ≤ k ≤ t1
and 0 ≤ l ≤ b t22 c.
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Case I: (l is even). Clearly, a+ kd1 + ld2 is an odd integer. Hence, we have

(a+ kd1 + ld2)x ≡ m− t2(a+ kd1 + ld2)

2
(mod m)

=
m− t2(a+ kd1)− lt2d2

2

=
m− t2(a+ kd1)− l(m− 2a− t1d1)

2

≡ m− t2(a+ kd1) + l(2a+ t1d1)

2
(mod m).

Case II: (l is odd). Clearly, a+ kd1 + ld2 is an even integer. Hence, we have

(a+ kd1 + ld2)x ≡ − t2(a+ kd1 + ld2)

2
(mod m)

= − t2(a+ kd1)− lt2d2
2

= − t2(a+ kd1)− l(m− 2a− t1d1)

2

≡ m− t2(a+ kd1) + l(2a+ t1d1)

2
(mod m).

Therefore, using Lemma 1, we have

µ(M) ≥ d(M) ≥ m− t2(a+ t1d1)

2m
=

2a+ t1d1 + t2d2 − t2(a+ t1d1)

2(2a+ t1d1 + t2d2)
.

This completes the proof of the theorem. �
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Based on the numerous examples taken using computer programming, we have the following
conjecture for this particular case of two-dimensional arithmetic progression.

Conjecture 1. Let M = {a+ x1d1 + x2d2 : 0 ≤ x1 ≤ t1, 0 ≤ x2 ≤ t2}, where a and d2 are odd
integers and d1 is an even integer. Then, there exists a positive integer d0 such that for d2 ≥ d0,

d(M) =
2a+ t1d1 + t2d2 − t2(a+ t1d1)

2(2a+ t1d1 + t2d2)
.

In both Theorem 4 and Conjecture 1, we can interchange the roles of the positive integers d1 and
d2. We know from the definition of d(M) that the denominator of d(M) divides the sum of some
two elements of M . In particular, we believe the following for generalized arithmetic progression
of dimension two.

Conjecture 2. Let M = {a+ x1d1 + x2d2 : 0 ≤ x1 ≤ t1, 0 ≤ x2 ≤ t2}. Then, the denominator
of d(M) divides 2a+ t1d1 + t2d2.
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