

PSEUDO-UMBILICAL CR-SUBMANIFOLD OF AN ALMOST HERMITIAN MANIFOLD

XIE LI AND WAN YONG

ABSTRACT. In this paper, we firstly study differentiable functions on M, where M is a pseudo-umbilical CR-submanifold of an almost Hermitian manifold, then give a theorem which concerns the geodesic character of M, and extend Bejancu and Chen B. Y.'s conclusions.

1. Introduction

Let \overline{M} be a real differentiable manifold. An almost complex structure on \overline{M} is a tensor field J of type (1, 1) on \overline{M} such that at every point $x \in \overline{M}$ we have $J^2 = -I$, where I denotes the identify transformation of $T_x\overline{M}$. A manifold \overline{M} endowed with an almost complex structure is called an almost complex manifold.

A Hermitian metric on an almost complex manifold \overline{M} is a Riemannian metric g satisfying

$$(1.1) g(JX, JY) = g(X, Y)$$

for any $X, Y \in \Gamma(T\overline{M})$.

An almost Hermitian manifold \overline{M} with Levi-Civita connection $\overline{\nabla}$ is called a Kaehlerian manifold if we have $\overline{\nabla}_X J = 0$ for any $X \in \Gamma(T\overline{M})$.

Received October 28, 2013.

2010 Mathematics Subject Classification. Primary 53C25, 58A30.

Key words and phrases. almost Hermitian manifold; CR-submanifold; distribution; connection; pseudo-umbilical. Supported by Foundation of Department of Science and Technology of Hunan Province (No. 2010SK3023).

Go back

Full Screen

Close

Let M be an m-dimensional Riemannian submanifold of an n-dimensional Riemannian manifold \overline{M} . We denote by TM^{\perp} the normal bundle to M and by g both metric on M and \overline{M} . Also, by $\overline{\nabla}$ we denote the Levi-Civita connection on \overline{M} , by ∇ denote the induced connection on M, by ∇^{\perp} and denote the induced normal connection on M.

Then, for any $X, Y \in \Gamma(TM)$, we have

$$(1.2) \overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

where $h: \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM^{\perp})$ is a normal bundle valued symmetric bilinear form on $\Gamma(TM)$. The equation (1.2) is called the Gauss formula and h is called the second fundamental form of M.

Now, for any $X \in \Gamma(TM)$ and $V \in \Gamma(TM^{\perp})$ by $-A_V X$ and $\nabla_X^{\perp} V$ we denote the tangent part and normal part of $\overline{\nabla}_X V$, respectively. Then we have

$$(1.3) \overline{\nabla}_X V = -A_V X + \nabla_X^{\perp} V.$$

Thus, for any $V \in \Gamma(TM^{\perp})$, we have a linear operator, satisfying

(1.4)
$$g(A_V X, Y) = g(X, A_V Y) = g(h(X, Y), V).$$

The equation (1.3) is called the Weingarten formula.

Definition 1.1 ([1]). Let \overline{M} be a real n-dimensional almost Hermitian manifold with almost complex structure J and with Hermitian metric g. Let M be a real m-dimensional Riemannian manifold isometrically immersed in \overline{M} . Then M is called a CR-submanifold of \overline{M} if there exists a differentiable distribution $D: x \to D_x \subset T_xM$, on M satisfying the following conditions:

- (1) D is holomorphic, that is, $J(D_x) = D_x$ for each $x \in M$,
- (2) the complementary orthogonal distribution $D^{\perp}: x \to D_x^{\perp} \subset T_x M$, is anti-invariant, that is, $J(D_x^{\perp}) \subset T_x M^{\perp}$ for each $x \in M$.

Go back

Full Screen

Close

Let M be a CR-submanifold of an almost Hermitian manifold \overline{M} , then we have the orthogonal decomposition

$$(1.5) TM^{\perp} = JD^{\perp} \oplus \nu.$$

By r denote the complex dimension of $\nu_x(x \in M)$, Since ν is a holomorphic vector bundle, we can take a local field of orthonormal frames on TM^{\perp}

$$\{JE_1, JE_2, \cdots, JE_q, V_1, V_2, \cdots, V_r, V_{r+1} = JV_1, V_{r+2} = JV_2, \cdots, V_{2r} = JV_r\}$$

where $\{E_1, E_2, \cdots, E_q\}$ is a local field of orthonormal frames on D^{\perp} . Then we let

$$A_i = A_{JE_i}, \quad A_{\alpha} = A_{V_{\alpha}}, \quad A_{\alpha^*} = A_{V_{\alpha^*}},$$

where

$$i, j, k, \dots = 1, \dots, q; \alpha, \beta, \gamma, \dots = 1, \dots, r; \alpha^*, \beta^*, \gamma^* \dots = r + 1, \dots, 2r.$$

Definition 1.2 ([1]). The CR-submanifold M is said to be pseudo-umbilical if the fundamental tensors of Weingarten are given by

$$(1.6) A_i X = a_i X + b_i g(X, E_i) E_i,$$

(1.7)
$$A_{\alpha}X = a_{\alpha}X + \sum_{i=1}^{q} b_{\alpha}^{i} g(X, E_{i}) E_{i},$$

(1.8)
$$A_{\alpha^*}X = a_{\alpha^*}X + \sum_{i=1}^q b_{\alpha^*}^i g(X, E_i) E_i,$$

where $a_i, b_i, a_{\alpha}, a_{\alpha^*}, b_{\alpha}^i, b_{\alpha^*}^i$ are differential functions on M and $X \in \Gamma(TM)$.

Go back

Full Screen

Close

Now let M be an arbitrary Riemannian manifold isometrically immersed in an almost Hermitian manifold \overline{M} . For each vector field X tangent to M, we put

where ϕX and ωX are the tangent part and the normal part of JX, respectively. Also, for each vector field V normal to M, we put

where BV and CV are the tangent part and the normal part of JV, respectively. The covariant derivative of B, C, respectively, is defined by

$$(1.11) \qquad (\nabla_X B) V = \nabla_X^{\perp} B V - B \nabla_X^{\perp} V,$$

$$(1.12) \qquad (\nabla_X C)V = \nabla_X^{\perp} CV - C\nabla_X^{\perp} V$$

for all $X \in \Gamma(TM), V \in \Gamma(TM^{\perp})$.

A CR-submanifold M of an almost Hermitian manifold \overline{M} is D-geodesic if we have

$$(1.13) h(X,Y) = 0$$

for any $X, Y \in \Gamma(D)$. M is mixed geodesic if we have

$$(1.14) h(X,Y) = 0$$

for any $X \in \Gamma(D)$ and $Y \in \Gamma(D^{\perp})$.

Go back

Full Screen

Close

2. Main Results

Theorem 2.1 ([1]). Let M be a CR-submanifold of an almost Hermitian manifold \overline{M} , then M is mixed geodesic if and only if

$$A_V X \in \Gamma(D), \qquad A_V U \in \Gamma(D^{\perp})$$

for each $X \in \Gamma(D)$, $U \in \Gamma(D^{\perp})$, $V \in \Gamma(TM)$.

Theorem 2.2. Let M be a pseudo-umbilical CR-submanifold of an almost Hermitian manifold \overline{M} , then M is mixed geodesic.

Proof. For each $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$, according to the Definition 1.2 we get

$$A_iX = a_iX \in \Gamma(D), \qquad A_{\alpha}X = a_{\alpha}X \in \Gamma(D), \qquad A_{\alpha^*}X = a_{\alpha^*}X \in \Gamma(D)$$

and

$$A_iY = a_iY + b_ig(Y, E_i)E_i \in \Gamma(D^{\perp}),$$

$$A_{\alpha}Y = a_{\alpha}Y + \sum_{i=1}^q b_{\alpha}^i g(Y, E_i)E_i \in \Gamma(D^{\perp}),$$

$$A_{\alpha^*}Y = a_{\alpha^*}Y + \sum_{i=1}^q b_{\alpha^*}^i g(Y, E_i)E_i \in \Gamma(D^{\perp}).$$

The assertion follows from Theorem 2.1.

Since a Kaehlerian manifold is an almost Hermitian manifold, we obtain the following corollary.

Corollary 2.1 ([1]). Any pseudo-umbilical CR-submanifold of a Kaehlerian manifold is mixed geodesic.

Go back

Full Screen

Close

Lemma 2.1. Let M be a pseudo-umbilical CR-submanifold of an almost Hermitian manifold \overline{M} , then

(2.1)
$$g(A_{JV}X - JA_{V}X + (\overline{\nabla}_{X}J)V, Z) = 0$$

for all $X, Z \in \Gamma(D), V \in \Gamma(\nu)$.

Proof. Let $X, Z \in \Gamma(D), V \in \Gamma(\nu)$. From Weingarten formula and (1.1), we get

(2.2)
$$g(A_{JV}X - JA_{V}X, Z) = g(-\overline{\nabla}_{X}JV, Z) + g(A_{V}X, JZ)$$
$$= -g(\overline{\nabla}_{X}JV, Z) + g(J\overline{\nabla}_{X}V, Z)$$
$$= -g((\overline{\nabla}_{X}J)V, Z).$$

The proof is now complete from (2.2).

Lemma 2.2. Let M be a CR-submanifold of an almost Hermitian manifold \overline{M} . Then we have

(2.3)
$$(\nabla_X B)V = \nabla_X BV - B\nabla_X^{\perp} V$$

$$= A_{CV} X - \phi A_V X + ((\overline{\nabla}_X J)V)^{\top}$$

for all $X \in \Gamma(TM)$, $V \in \Gamma(TM^{\perp})$.

Proof. Let $X \in \Gamma(TM), V \in \Gamma(TM^{\perp})$. From (1.10) and Weingarten formula, we obtain

(2.4)
$$(\overline{\nabla}_X J)V = \overline{\nabla}_X JV - J\overline{\nabla}_X$$

$$= \overline{\nabla}_X (BV + CV) + J(A_V X - \nabla_X^{\perp} V).$$

By using the Gauss formula, we get

(2.5)
$$\overline{\nabla}_X(BV + CV) = \nabla_X BV + h(X, BV) - A_{CV}X + \nabla_X^{\perp} CV.$$

Go back

Full Screen

Close

Taking account of (1.9) and (1.10), we have

(2.6)
$$J(A_V X - \nabla_X^{\perp} V) = \phi A_V X + \omega A_V X - B \nabla_X^{\perp} V - C \nabla_X^{\perp} V.$$

From (2.5), (2.6), (1.11) and (1.12), (2.4) can become

(2.7)
$$(\overline{\nabla}_X J)V = (\nabla_X B)V + h(X, BV) - A_{CV}X + (\nabla_X^{\perp} C)V + \phi A_V X + \omega A_V X$$

By comparing to the tangent part in (2.7), (2.3) is satisfied.

Theorem 2.3. Let M be a pseudo-umbilical proper CR-submanifold of an almost Hermitian manifold \overline{M} . If q > 1, then we have $A_j E_i = A_{\alpha} X = A_{\alpha^*} X = 0$ for all $X \in \Gamma(D)$, $i \neq j$.

Proof. From (1.4) and (1.6), we obtain

$$g(A_{JE_j}E_j, E_i) = g(A_{JE_j}E_i, E_j) = 0,$$

thus $A_{JE_j}E_i \in \Gamma(D)$. On the other hand, $A_{JE_j}E_i = a_jE_i + b_jg(E_i, E_j)E_j = a_jE_i \in \Gamma(D^{\perp})$, hence $A_iE_i = 0$.

For a unit vector $X \in \Gamma(D)$, by using (1.7), (1.1), (2.1) and (1.8) we have

$$(2.8) a_{\alpha} = g(a_{\alpha}X, X) = g(A_{\alpha}X, X)$$

$$= g(A_{\alpha^*}X + (\overline{\nabla}_X J)V_{\alpha}, JX)$$

$$= g(a_{\alpha^*}X + (\overline{\nabla}_X J)V_{\alpha}, JX)$$

$$= a_{\alpha^*}g(X, JX) + g((\overline{\nabla}_X J)V_{\alpha}, JX)$$

$$= g(((\overline{\nabla}_X J)V_{\alpha})^{\top}, JX).$$

$$(2.9) = g(X, JX) + g(X, JX$$

Go back

Full Screen

Close

Taking (2.3) into account, (2.9) can become

(2.10)
$$a_{\alpha} = g(-A_{CV_{\alpha}}X + \phi A_{V_{\alpha}}X, JX)$$
$$= g(-A_{\alpha^*}X, JX) + g(A_{\alpha}X, X).$$

From (2.8) and (2.10), we have

$$(2.11) g(-A_{\alpha^*}X, JX) = 0,$$

thus $A_{\alpha^*}X \in \Gamma(D^{\perp})$. On the other hand, $A_{\alpha^*}X = a_{\alpha^*}X + \sum_{i=1}^q b_{\alpha^*}^i g(X, E_i)E_i = a_{\alpha^*}X \in \Gamma(D)$, hence $A_{\alpha^*}X = 0$.

In a similar way we get $A_{\alpha}X=0$.

For $E_i \in \Gamma(D^{\perp})$ and a unit vector field $X \in \Gamma(D)$, from $a_i = g(A_i E_j, E_j)$, $a_{\alpha^*} = g(A_{\alpha^*} X, X)$ and (2.8), according to the Theorem 2.3, we have the following theorem.

Theorem 2.4. Let M be a pseudo-umbilical proper CR-submanifold of an almost Hermitian manifold \overline{M} . If q > 1, then $a_i = a_{\alpha} = a_{\alpha^*} = 0$.

Since a Kaehlerian manifold is an almost Hermitian manifold, we obtain

Corollary 2.2 ([1]). Let M be a pseudo-umbilical proper CR-submanifold of a Kaehlerian manifold \overline{M} . If q > 1, then the functions a_j , a_{α} , a_{α^*} vanish identically on M.

Theorem 2.5. Let M be a pseudo-umbilical proper CR-submanifold of an almost Hermitian manifold \overline{M} . If q > 1, then M is D-geodesic.

Go back

Full Screen

Close

Proof. Taking account of Definition 1.2 and Theorem 2.4, we get

$$g(h(X,Y), \sum_{i=1}^{q} JE_i + \sum_{\alpha=1}^{r} V_{\alpha} + \sum_{\alpha^*=r+1}^{2r} V_{\alpha^*})$$

$$= \sum_{i=1}^{q} g(A_{JE_i}X, Y) + \sum_{\alpha=1}^{r} g(A_{V_{\alpha}}X, Y) + \sum_{\alpha^*=r+1}^{2r} g(A_{\alpha^*}X, Y)$$

$$= \sum_{i=1}^{q} b_i g(X, E_i) g(Y, E_i) + \sum_{\alpha=1}^{r} \sum_{i=1}^{q} b_{\alpha}^i g(X, E_i) g(Y, E_i)$$

$$+ \sum_{\alpha^*=r+1}^{2r} \sum_{i=1}^{q} b_{\alpha^*}^i g(X, E_i) g(Y, E_i)$$
(2.12)

for all $X, Y \in \Gamma(D)$. From (2.12), we have

$$g(h(X,Y), \sum_{i=1}^{q} JE_i + \sum_{\alpha=1}^{r} V_{\alpha} + \sum_{\alpha^*=r+1}^{2r} V_{\alpha^*}) = 0,$$

so h(X,Y) = 0, i.e., M is D-geodesic.

- 1. Bejancu A., Geometry of CR-submanifolds, Reide Publishing Company, USA 1985, 1–29.
- 2. Okumura M., Submanifolds of a Kaehlerian manifold and a Sasakian manifold, Lecture Notes, Michigan State Univ. 1971, 217–234.
- 3. Wan Yong and Donghe Pei, Integrability of distribution D^{\perp} on a nearly Sasakian manifold, Acta Math. Acad. Paedagog. Nyhazi 25 (2009), 271–276.

Go back

Full Screen

Close

- 4. Wan Yong, Integrability of distribution D ⊕ {ξ} on a nearly Sasakian manifold, Journal of Changsha Univ. of Science and Technology(NS) 4 (2007), 72–74.
- 5. Wan Yong and Gao Qiju, Integrability of distribution on a CR-submanifold of a quasi Kaehlerian manifold, Journal of Changsha Univ. of Electric Power(NS) 13 (1998), 7–15.
- 6. Chen B. Y., CR-submanifolds of a Kaehlerian manifold, Differential Geometry 16 (1981), 305–323.
- 7. _____, Totally umbilical submanifolds of Kaehler manifolds, Archiv der Mathematik 36 (1981), 83–91.

Xie Li, Dept.of Math.and Computing Science, Changsha University of Science and Technology, Changsha, Hunan, P. R. China, e-mail: lily_xieli@163.com

Wan Yong, Dept.of Math.and Computing Science, Changsha University of Science and Technology, Changsha, Hunan, P. R. China, e-mail: wanyong870901@foxmail.com

