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THREE NEW HEURISTICS FOR THE

STEINER PROBLEM IN GRAPHS

M. DIANÉ AND J. PLESNÍK

Abstract. Three practically successful heuristics are presented and analysed.
They include the known spanning tree heuristic (STH). One of the heuristics choo-
ses Steiner vertices by STH and the other two heuristics according to their sum of
all distances to the special vertices. The theoretical worst-case performance ratio
remains the same as for STH.

Given a connected graph G = (V,E) (undirected, without loops and multiple
edges) with positive edge costs (called also lengths) and a set Z ⊂ V of special
(distinguished) vertices, the Steiner problem on graphs (networks) asks for a mi-
nimum cost tree within G that spans all members of Z. If |Z| = 2 we have the
shortest path problem and if Z = V we get the minimum spanning tree problem,
which are well known problems solvable in polynomial time. The same is true
for any fixed cardinality p := |Z|. However, in general, the Steiner problem is
NP-hard. Nevertheless, a tree that is not more than 2− 2/p times as expensive as
an optimal tree can be computed in polynomial time. On the other hand no po-
lynomial time approximation algorithm is known to have worst-case performance
that is bounded by 2− ε times the cost of an optimal tree, for ε > 0. The Steiner
problem has an extensive literature and numerous applications, such as the design
of integrated circuits and telephone networks. For good surveys on the Steiner
problem see Hwang and Richards [3] and Winter [13].

Many exact and approximation methods have been developed for this NP-hard
problem. There are also several graph polynomial time heuristics for the Steiner
problem [13,3] and it is the purpose of this paper to present three new such
heuristics which practically compare favorably to several known ones (including
the spanning tree heuristic [1,6,9], the path heuristic [12] and the average distance
heuristic [10,11]) and have the same theoretical worst-case performance. First, in
Section 1 we give a heuristic based on the spanning tree heuristic. In Section 2
we present a heuristic which chooses vertices for a tree according to their sum
of all distances to the special vertices. Since a vertex with the minimum sum is
often called a median vertex, our heuristic is said to be median. The third heuristic
deletes vertices with largest sum of distances and is called an antimedian heuristic.
It is presented in Section 3.
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We now introduce some notation and terminology. Put n : =|V |, m : =|E| and
p : =|Z|. A Z-vertex is a vertex of Z. The cost of an edge e = ij is denoted by
c(e) or cij. The cost of a subgraph is the sum of all its edge costs. The distance of
two vertices u and v is denoted by d(u, v) where the lengths of edges are equal to
their costs. (For standard graph algorithms see e.g. Lawler [7] or Even [2].) Given
a subset B ⊂ V , by K(B) we denote the complete graph on B where the cost of
an edge ij is equal to the distance d(i, j) measured in G. Further let T (B) denote
any minimum cost spanning tree of K(B).

Given a Steiner tree T , i.e. a tree spanning Z, we can sometimes prune it and
thus obtain a better Steiner tree. By pruning T we mean deleting all leaves of T
(i.e. vertices of degree one) which are not Z-vertices (one at a time). In the sequel
we use the following known spanning tree heuristic (STH) for the Steiner problem
[6]: Find a minimum cost spanning tree T of K(Z), then replace each its edge by
a corresponding shortest path in G, then in the resulting graph G′ find a minimum
cost spanning tree T ′ and finally prune T ′. The resulting tree is the output.

For each our heuristic H we shall prove:

Theorem A. For any instance of the Steiner problem we have

c(TH) ≤ (2− 2/p)c∗,

where TH is a tree produced by H and c∗ is the cost of an optimal solution. Mo-
reover, for any real δ > 0 there is an instance such that

c(TH) > (2− δ)c∗.

In all our heuristics we have included STH, hence c(TH) ≤ c(T (Z)). Thus the
first inequality of Theorem A is implied by a result on STH [1,6] and the crucial
problem is to find a bad example for proving the latter inequality.

1. Multiple spanning tree heuristic (MSTH).
Recall that any nonspecial vertex of a Steiner tree is called a Steiner vertex.

It is well known (see e.g. [4]) that the number of Steiner vertices in a Steiner
minimum tree does not exceed p− 2 whenever G is a complete graph whose edge
costs form a metric (p is the number of special vertices).

In the following heuristic, we select at most p − 2 candidates for the Steiner
vertices. More precisely, as there are at most n− p nonspecial vertices, we select
q : = min{p− 2, n− p} candidates. In detail, this works as follows.

Step 1: Find a minimum spanning tree T (Z).

Step 2: For every v ∈ V − Z construct a minimum spanning tree T (Z ∪ {v}).
Select q : = min{p−2, n−p} cheapest trees and set them in order according
to the costs. Thus under a proper labelling we have: c(T (Z ∪ {v1})) ≤
c(T (Z ∪ {v2})) ≤ · · · ≤ c(T (Z ∪ {vq})).

Step 3: Construct minimum spanning trees
T (Z ∪ {v1, v2}), . . . , T (Z ∪ {v1, v2, . . . , vq}). Then, among the trees
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T (Z), T (Z ∪ {v1}), T (Z ∪ {v1, v2}), . . . , T (Z ∪{v1, v2, . . . , vq}), choose one

of the smallest cost and denote it by T̂ .

Step 4: Construct a subgraph H of G by replacing each edge in T̂ by the corres-
ponding shortest path in G (ties are broken arbitrarily).

Step 5: Determine a minimum spanning tree T ′ of H.

Step 6: Prune T ′ by deleting all Steiner vertices of degree one (one at a time). The
resulting tree, denoted by TMSTH, is the solution. STOP.

The algorithm is explained by the following example.

Example 1. Let G be the graph in Fig. 1(a) with edge costs as labelled, and
Z = {1, 2, 3, 4} (Z-vertices are depicted by squares).

Figure 1
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Fig. 1(b) shows T (Z) obtained in Step 1. Its cost c(T (Z)) = 77. In accordance
with Step 2 we obtain 3 trees with costs: c(T (Z ∪{5})) = c(T (Z ∪{6})) = 69 and
c(T (Z ∪ {7})) = 78. Since q = min{p− 2, n− p} = 2, we shall consider only the
first two of them. In Step 3 we deal with T (Z) (see Fig. 1(b)), T (Z ∪ {5}) (see

Fig. 1(c)) and T (Z ∪ {5, 6}) (see Fig. 1(d)). Thus T̂ = T (Z ∪ {5, 6}), of cost 60.
Further we see that H = T ′ = TMSTH (cf. Steps 4 to 6) which is the tree from
Fig. 1(e). Even in this case TMSTH is an optimal solution.

To estimate the complexity of our heuristic we may suppose that at first K(V ),
or equivalently, the distance matrix is computed. This can be done in O(n3) time.
Using Prim’s algorithm of complexity O(n2) we can find the required spanning
trees in Step 1, 2, 3 and 5 in total time [1 + (n− p) + (q − 1) + 1]O(n2), i.e. in
O(n3) time. Since all other operations can be done in a smaller amount of time,
the total time complexity of MSTH is O(n3).

Note, however, that the spanning tree heuristic of Kou, Markowski and Berman
[6] can be implemented to run in O(m+n logn) time (see Kou and Makki [5] and
Melhorn [8]). This means that our heuristic MSTH can be implemennted to run
in O(mn+ n2 logn) time.

We have seen (Example 1) that MSTH can give an optimal solution. Now we
are going to show that there are examples of the Steiner problem where MSTH
gives a weak approximation. More precisely, we show that c(TMSTH)/c∗ can tend
to 2.

Let us consider the construction illustrated in Fig. 2, where “the upper part”
of G is a binary tree of depth k = 2t+ 1 with t ≥ 1. Each of its 2k+1 − 2 edges is
of cost 1. Its leaves form the set Z with p = |Z| = 2k.

In accordance with Fig. 2, the root of the binary tree forms a level set W 0, its
two sons form a level set W 1, etc. Finally W k = Z. Further with each vertex
v ∈ W t+1 the subtree lying under it is associated and called an envelope. Each
envelope is a binary tree of depth t and contains 2t special vertices. In each
envelope we choose one Z-vertex (in Fig. 2 the leftmost vertex in an envelope) and
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joint it to vertices u1, . . . , up−2 by edges of cost 2t+ 1/2 each. This is “the lower
part” of G. Finally we add 2k − 1 edges forming a path P on set Z and joining
the first Z-vertex and the last Z-vertex. The cost of such an edge (i, i+1) is equal
to the distance between i and i + 1 in the binary tree minus ε, where ε > 0 is
sufficiently small. If a vertex v belongs to W k−j we say that v is of altitude j.

Computing tree T (Z) by Kruskal’s algorithm we include 2k−i edges of cost
2i− ε for each i with 1 ≤ i ≤ k − 1 and one edge of cost 2k − 1. Note that edge
(p/2, p/2 + 1) of cost 2k − ε is not used in T (Z) because there is an edge of cost
2k − 1. Thus

(1) c(T (Z)) =
k−1∑
i=1

(2i− ε)2k−i + 2k − 1.

Now we consider trees T (Z ∪ {v}) where v ∈ W k−j , 1 ≤ j ≤ k. Instead of
calculating their costs we are going to give the cost differences against the path
P . Clearly,

(2) c(P ) = c(T (Z)) + 1− ε.

Let S(i, j) denote the number of edges of cost 2i− ε under a vertex of altitude
j in the binary tree. Let v ∈ W k−j (1 ≤ j ≤ k). Then instead of an edge with
cost 2i− ε taken for P we use in T (Z ∪ {v}) an edge of K(V ) with cost:

a) j if 2i− ε > j. There are S(i, j) = 2j−i such edges.
b) 2r + j if 2i− ε > 2r+ j. There are dS(i, r + j)/2e = 2r+j−i−1 such edges

for every r with 1 ≤ r ≤ k − j.

Thus (by a)) the edges under v which are used in P but not in T (Z ∪{v}) have
total cost

(3) c1(j) : =

j∑
i=1

2i−ε>j

(2i− ε)2j−i =

j∑
i=bj/2c+1

(2i− ε)2j−i

Instead of these edges we have in T (Z ∪ {v}) other edges of total cost

(4) c2(j) : = j +

j∑
i=1

2i−ε>j

j2j−i = j

1 +

j∑
i=bj/2c+1

2j−i



Using b) we see that those edges which are not under v and belong to P but do
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not belong to T (Z ∪ {v}) have total cost

c′1(j) : =

k−j∑
r=1

2(r + j)− ε+

r+j−1∑
i=1

2i−ε>2r+j

(2i− ε)2r+j−i−1


= 2

k−j∑
r=1

r + j +

r+j−1∑
i=r+bj/2c+1

i2r+j−i−1


− ε

k−j∑
r=1

1 +

r+j−1∑
i=r+bj/2c+1

2r+j−i−1

 .
(5)

Instead of these edges T (Z ∪ {v}) uses other edges of total cost

c′2(j) : =

k−j∑
r=1

(2r + j)

1 +

r+j−1∑
i=1

2i−ε>2r+j

2r+j−i−1


=

k−j∑
r=1

(2r + j)

1 +

r+j−1∑
i=r+bj/2c+1

2r+j−i−1

 .
(6)

Since

(7) c(P )− c(T (Z ∪ {v})) = c1(j)− c2(j) + c′1(j)− c′2(j)

estimating the right hand side from above we obtain a lower bound on c(T (Z ∪
{v})). Before calculating the bound, we handle the trees T (Z∪{uj}), j = 1, 2, . . . ,
p − 2. One can easily verify that every such a tree contains 2t−i edges of cost
2i− ε each, i = 1, 2, . . . , t in every envelope. There are 2t+1 envelopes and one
(the leftmost) vertex in each enevelope is joined to vertex uj by an edge of cost
2t+ 1/2. Hence

c(T (Z ∪ {uj})) =

[
t∑
i=1

(2i− ε)2t−i + 2t+
1

2

]
2t+1

=

[
4

t∑
i=1

i2t−i + 4t+ 1

]
2t − ε

t∑
i=1

22t+1−i.

(8)

The following lemma is well known in difference calculus and the reader may
prove it by the induction.

Lemma 1. For any integers a, b with 0 ≤ a ≤ b we have

b∑
i=a

2i = 2b+1 − 2a,
b∑
i=a

2−i =
1

2a−1
−

1

2b
,

b∑
i=a

i2i = (b− 1)2b+1 − (a− 2)2a,
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and
b∑
i=a

i2−i =
a+ 1

2a−1
−
b+ 2

2b
.

Lemma 2. For every j, 1 ≤ j ≤ k, and very small ε > 0 we have

(c1(j)− c2(j)) + (c′1(j)− c′2(j)) < 7 · 2t − 4t− 7− ε(2t+1 − 2).

Proof. Using Lemma 1 in (3) to (6) our task reduces to prove that

(2bj/2c − j + 4)(2 + k − j)2j−bj/2c−1− 2(k + 2)− ε
[
2j−bj/2c−1(2 + k − j)− 1

]
< 7 · 2t − 4t− 7− ε

[
2t+1 − 2

]
,

where k = 2t+ 1.
It is sufficient to prove that

(2bj/2c − j + 4)(2 + k − j)2j−bj/2c−1 − 2(k + 2) < 7 · 2t − 4t− 7

which is equivalent to

(9) (2bj/2c − j + 4)(2 + k − j)2j−bj/2c−1 < 7 · 2t − 1

To prove (9) we distinguish two cases.
Case 1: j is even. Then bj/2c = j/2 and (9) reduces to

(10) 2(2t+ 3− j)2j/2 < 7 · 2t − 1.

Introducing the function

f(j) : = (2t− j + 3)2j/2

we see that its derivative

f ′(j) = − 2j/2 + (2t− j + 3)2j/2 loge 2

= [(2t− j + 3) loge 2− 1] 2j/2 > 0

whenever 1 ≤ j ≤ 2t. Hence f(j) is an increasing function and it suffices to verify
(10) for j = 2t, which is easy.
Case 2: j is odd. Then bj/2c = (j − 1)/2 and (9) reduces to

(11) 3(2t+ 3− j)2(j−1)/2 < 7 · 2t − 1.

Since f and thus also the left hand side in (11) is increasing whenever 1 ≤ j ≤ 2t,
it suffices to verify (11) for j = 2t− 1 and j = 2t+ 1, which is immediate. �
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Lemma 3. For any j with 1 ≤ j ≤ k and any vertex v ∈W k−j we have

c(T (Z ∪ {v})) > c(T (Z))− 7 · 2t + 4t+ 8− ε(2t+1 − 1).

Proof. By (2), (7) and Lemma 1. �
Lemma 4. For any j with 1 ≤ j ≤ p− 2 we have

c(T (Z ∪ {uj})) = 8 · 22t − 7 · 2t − ε(22t+1 − 2t+1).

Proof. Immediately by (8) and Lemma 1. �
Lemma 5.

c(T (Z)) = 8 · 22t − 4t− 7− ε(22t+1 − 2).

Proof. By (1) and Lemma 1. �
Lemma 6. For any vertex v ∈ V −Z−{u1, . . . , up−2} and uj with 1 ≤ j ≤ p−2

we have
c(T (Z ∪ {uj})) < c(T (Z))

and
c(T (Z ∪ {uj})) < c(T (Z ∪ {v})).

Proof. The first inequality is implied by Lemmas 4 and 5. The second follows
from Lemmas 3 and 4. �

Now we see that in Step 3 of MSTH we choose T̂ as a cheapest tree among trees
T (Z), T (Z ∪ {u1}), T (Z ∪ {u1, u2}), . . . , T (Z ∪ {u1, u2, . . . , up−2}). It is a matter

of routine to verify that T̂ = T (Z ∪ {u1}) and that TMSTH = T̂ . Hence we have

Theorem 1. For every real ε > 0 and integer t ≥ 1 there exists an instance of
the Steiner problem such that an optimal solution T ∗ is of cost

c(T ∗) ≤ 22t+2 − 2

whereas heuristic MSTH produces a tree TMSTH of cost

c(TMSTH) = 22t+3 − 7 · 2t − ε
[
22t+1 − 2t+1

]
.

As a consequence we see that Theorem A holds for MSTH.

2. The median heuristic (MH).
One can observe that a minimum cost tree spanning Z often involves a vertex

with minimum sum of distances from the vertices of Z, i.e., a median vertex. The
following heuristic finds a median vertex among nonspecial vertices only, whereas
a search among special vertices is substituted by STH [6]. This ensures a good
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practical and theoretical performance and consumes only small amount of time.
In detail, the heuristic works as follows.

Step 1: For each vertex u ∈ V − Z calculate

(12) µ(u) : =
∑
v∈Z

d(u, v)

(by Dijkstra’s algorithm) and then find a vertex u0 ∈ V − Z which mini-
mizes µ(u). Let T 0 be a tree consisting of shortest u0 – v paths, v ∈ Z
(provided by Dijkstra’s algorithm).

Step 2: Determine a minimum cost spanning tree in the induced subgraph
G(V (T 0)) and prune it. Denote the resulting tree by T 1.

Step 3: Determine a tree T 2 spanning Z in G by the spanning tree heuristic.

Step 4: The cheapest of trees T 1 and T 2 is the solution TMH. STOP.

To illustrate MH we Consider the following instance of the Steiner problem.

Example 2. Let G be the graph in Fig 3 with the edge costs as shown and
with 4 special vertices depicted as squares.

Figure 3.

One sees that µ(5) = 64 and µ(6) = µ(7) = 60. Thus we can take u0 = 6 and
we find T 1 in G({1, 2, 3, 4, 6, 7}). Clearly, T 1 is the tree depicted by heavy lines
in Fig. 3 and c(T 1) = 40. Step 3 results in tree T 2 of cost 9 + 29 + 9 = 47 > 40.
Thus TMH = T 1 which is also an optimal solution.
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Let us estimate the time complexity of MH. Step 1 can be done in O((n−p)n2)
time (n−p applications of Dijkstra’s algorithm). Using Prim’s agorithm to obtain
T 1 in Step 2 we see that Step 2 requires no more than O(n2) time. The original
implementation of Step 3 ran in O(pn2) time [6], but there are also ones of O(m+
n logn) time [5,8]. Thus the overall worst-case time complexity of MH is O(n3).

Now we are going to present a bad example for MH. Let us consider a binary
tree B of depth k = 2t+ 1 (see “the upper part” of Fig. 4), where each edge is of
cost 1. Let the levels W i (i = 0, 1, . . . , k) denote the sets of vertices at distance i
from the root. The tree has 2k leaves and we define them to be the special vertices.
Further there are also edges forming a path P on vertices W k. Each edge (j, j+1)
of P has cost equal to the distance between j and j + 1 in the binary tree minus
ε, where ε > 0 is sufficiently small. Finally our graph G has a vertex u∗ which is
joined to every special vertex by an edge of cost k− ε. We say that the vertices v
of the binary subtree of B with root u lie under u (v 6= u).

In accordance with Step 1 of MH we calculate µ(u) for every u ∈ V − Z.
First, let uj ∈W k−j and Zj denote the set of special vertices which lie under uj,
1 ≤ j ≤ k.

µ(uj) =
∑
v∈Zj

d(uj , v) +
∑

v∈Z−Zj

d(uj , v)

= j2j +

k−j∑
r=1

(2r + j)2r+j−1.

Using Lemma 1 we get

(13) µ(uj) = (2k − j − 2)2k + 2j+1, 1 ≤ j ≤ k

Evidently, we can write

(14) µ(u∗) = (k − ε)2k.

Now we assert that

Lemma 7. For every j with o ≤ j ≤ k we have

µ(uj) > µ(u∗).

Proof. Introducing the function

f(j) : =µ(uj)− µ(u∗)

(see (13) and (14)) we have to prove that

(15) f(j) > 0 1 ≤ j ≤ k.
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Since f(k) > 0 it remains to prove (15) when 1 ≤ j ≤ k − 1. As 0 < loge 2 < 1,
derivative

f ′(j) = −2k + 2j+1 loge 2 ≤ 2k(−1 + loge 2) < 0, 1 ≤ j ≤ k.

Thus it suffices to verify (15) when j = k − 1, which is immediate. �
Hence in Step 1 of MH we choose u0 = u∗. One can easily see that V (T 0) =

Z ∪ {u∗} and that T 1 is a tree consisting of some edges iu∗ with i ∈ Z and those
edges of path P whose cost is less than k − ε. More precisely, T 1 contains 2k−i

edges of cost 2i− ε each, i = 1, 2, . . . , t and 2k −
∑t
i=1 2k−i edges of cost k − ε

each. Thus

c(T 2) =
t∑
i=1

(2i− ε)2k−i + (k − ε)

[
2k −

t∑
i=1

2k−i

]
= 22t+3 − 3 · 2t+1 − ε · 22t+1,

(16)

where Lemma 1 was used (recall that k = 2t+ 1).
Further one sees that in accordance with Step 3 we get T 2 which differs from

path P only in one edge. Namely, instead of (the most expensive) edge, say v1v2,
with cost 2k− ε lying in P , the tree T 2 contains two edges v1u

∗ and u∗v2 of total
cost 2k − 2ε. Since

c(P ) =
k∑
i=1

(2i− ε)2k−i = 2k+2 − 2(k + 2)− 2kε+ ε,

c(T 4) = 2k+2 − 2(k + 2)− 2kε.

(17)

Comparing (16) and (17) we get TMH = T 1.
To complete these considerations let us note that the binary tree B is an optimal

solution. However, we shall not prove this assertion, noting only that the cost of
an optimal tree T does not exceed the cost of B which is 22t+2−2. Hence we have

Theorem 2. For every integer t ≥ 1 and sufficiently small real number ε > 0
there exists an instance of the Steiner problem in graphs such that a minimum cost
Steiner tree T ∗ fulfils

c(T ∗) ≤ 22t+2 − 2

whereas heuristic MH produces a Steiner tree TMH with cost

c(TMH) = 22t+3 − 3 · 2t+1 − ε · 22t+1.

Consequently, Theorem A holds for heuristic MH.
We note that the Step 3 in MH is important for ensuring the first inequality

of Theorem A and therefore cannot be deleted. This can be seen with the aid of
Fig. 5 where we have a graph G consisting of p special vertices (squares) lying on
a path P and p other paths of length k joining root u0 with the special vertices.
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Figure 5
Here ε > 0 is sufficiently small. One can verify that µ(u0) is minimal when p is
sufficiently large and thus T 1 is a tree of cost pk, whereas the minimum cost of
a Steiner tree is equal to (p− 1)(1 + ε). Consequently, c(TMH)/c∗ can tend to k,
which can be arbitrarily large.

3. Antimedian heuristic (AMH).
A vertex u ∈ V −Z with the maximum sum µ(u) of distances to all vertices of

Z is called an antimedian vertex. The basic idea of AMH is that we successively
delete vertices with large µ(u) without violating the connectedness of the remai-
ning graph. Then the spanning tree heuristic (STH) is applied and the result is
compared with that of STH on Z only. We assume that Z 6= V .

Our heuristic AMH is simply the following:

Step 1: Put G′ : =G and i : =1. For each vertex u ∈ V − Z calculate

µ(u) : =
∑
v∈Z

d(u, v)

(by Dijkstra’s algorithm) and denote the vertices u ∈ V − Z such that

µ(u1) ≥ µ(u2) ≥ · · · ≥ µ(uq)
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where q : =|V − Z|.

Step 2: If Z is connected in G′ − ui, then put G′ : =G′ − ui. If i < q, then put
i : =i+ 1 and go to Step 2.

Step 3: Determine a minimum cost spanning tree in G′ and prune it. Denote the
resulting tree by T ′.

Step 4: Determine a tree T ′′ spanning Z in G by the spanning tree heuristic.

Step 5: The cheapest of trees T ′ and T ′′ is the solution TAMH. STOP.

The time complexity of Step 1 is O((n−p)n2). The connectedness can be tested
in O(m) time and thus Step 2 is of complexity O((n−p)m). Step 3 requires O(n2)
time and Step 4 O(pn2) [6] (or even only O(m + n logn) time [5,8]). Thus the
overall time complexity of heuristic AMH is O(n3).

To illustrate AMH let us consider the following example.

Example 3. Let G be the graph in Fig. 6 with edge costs as shown and the
set of special vertices Z = {1, 2, 3, 4} (in Fig. 6 depicted as squares).

Figure 6.

We see that µ(7) = µ(9) = 56, µ(5) = µ(6) = 54 and µ(8) = 48. Thus we successi-
vely delete vertices 7 and 9. Then neither 5 nor 6 can be deleted (connectedness!)
and thus 8 is deleted. The result G′ is even a tree T ′ (depicted by heavy lines in
Fig. 6). Step 4 provides a tree T ′′ of cost 48. Since c(T ′) = 45, we have TAMH = T ′,
which is even an optimal solution.

Now we present a bad example for AMH. Our graph G is a complete graph on
p+ 1 vertices as shown in Fig. 7.

Any edge joining two special vertices (squares) is of cost 2−ε and each edge incident
with vertex u is of cost 1. Clearly, AMH produces a tree of cost (p − 1)(2 − ε)
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Figure 7.

but the cost of the optimal tree is p. Consequently, Theorem A holds for heuristic
AMH.

Note that AMH without Step 4 does not imply the first inequality of Theorem
A as the instance from Fig. 8 shows.

Figure 8.

In “the upper part” each edge is of cost 1 and in “the lower part” each edge is of
cost k. It is a matter of routine to verify that in Step 2 of AMH all the “upper
vertices” are deleted whenever k is fixed and p is sufficiently large and thus AMH
wihout Step 4 provides a tree of cost pk. However, the cost of the optimal Steiner
tree is equal to 2(p− 1). Thus c(TAMH)/c∗ can tend to k/2.
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