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MAPS OF THE INTERVAL LJAPUNOV STABLE

ON THE SET OF NONWANDERING POINTS

V. V. FEDORENKO AND J. SMÍTAL

Abstract. Any dynamical system generated by a continuous map of the compact
unit interval I, is Ljapunov stable on the set of ω-limit points iff it is Ljapunov
stable on the set of non-wandering points. This and recent known results imply
that Ljapunov stability on the set of non-wandering points characterizes maps non-
chaotic in the sense of Li and Yorke.

We consider the class C(I, I) of continuous maps I → I, where I is a compact
real interval. For any f ∈ C(I, I) and any x ∈ I, {fn(x)}∞n=0 is the trajectory
of x, ωf (x) is its ω-limit set, and ω(f) = ∪{ωf (x);x ∈ I}. We use symbols
Per(f),Ω(f) and CR(f) for the set of periodic points, non-wandering points, and
chain recurrent points, respectively. Clearly,

(1) Per(f) ⊆ ω(f) ⊆ Ω(f) ⊆ CR(f)

Recall that a map f is Ljapunov stable on a set A if for any x ∈ A and any ε > 0
there is a neighbourhood U(x) of x such that |f i(x) − f i(y)| < ε whenever i ≥ 0
and y ∈ U(x) ∩A.

Our main result reads as follows.

Theorem 1. Let f ∈ C(I, I). Then f |ω(f) is Ljapunov stable iff f |Ω(f) is
Ljapunov stable.

Since Ljapunov stability of f |ω(f) characterizes maps f non-chaotic in the sense
of Li and Yorke [FŠS], we get the following

Corollary. A map f ∈ C(I, I) is chaotic in the sense of Li and Yorke iff
f |Ω(f) is Ljapunov unstable.

Other conditions equivalent to the Ljapunov stability of f |ω(f) can be found
in [FŠS]. Recall that a map f is chaotic in the sense of Li and Yorke [S] iff, e.g.,
there is an ε > 0 and a perfect set S 6= ∅ such that, for any x, y ∈ S, x 6= y,
lim sup |fn(x) − fn(y)| > ε and lim inf |fn(x) − fn(y)| = 0, for n→∞.

Proof of the theorem is divided into a sequence of lemmas, and is based on the
following few known facts:
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If f is Ljapunov stable on some of the sets from (1) then the topological entropy
h(f) of f is zero (or equivalently, any periodic orbit of f has period 2n, for some n).
To see this note that if h(f) > 0 then for some integer n > 0, fn is topologically
semiconjugated to the shift τ on the space X of sequences of binary symbols 0 and
1 [B], and clearly, τ |Per (τ) is unstable. Therefore, in the sequel we will consider
only maps f with zero topological entropy.

If ωf (x) is infinite then for any integer n > 0 there is a compact periodic interval
In of period 2n (i.e., f i(In) ∩ In = ∅ for 0 < i < 2n, and f i(In) = In for i = 2n)
such that In ⊃ In+1 and ωf (x) ⊂ Orb (In). Denote Mf (x) = ∩∞n=0Orb (In).

If ωf (x) is finite, and hence a periodic orbit, let Mf (x) = ω(f). Clearly,
f(Mf (x)) = Mf(x) is invariant, and it turns out that

(2) CR(f) = ∪{Mf(x);x ∈ I}.

Consequently, by (1), Ω(f) = ∪{Ωf (x);x ∈ I} where Ωf (x) = Ω(f) ∩Mf (x). For

more details see [FŠS] or [ŠKSF] (cf. also [S]).

Lemma 1 (cf. [Š1]). Let a ∈ Ω(f) \ω(f). Then a is an isolated point of Ω(f).

Lemma 2. Every a ∈ Ω(f) \ ω(f) is an end-point of a compact wandering
interval Ja, which is a connected component of some Mf(x).

Proof. By (1) and (2), a ∈ Ja, where Ja is a connected component of some
Mf (x). Since Ja is wandering (for any integers i, j, n with 0 < i < j < 2n, f i(Ja)
and f j(Ja) lie in disjoint intervals from Orb (In)), a /∈ int (Ja). �

Lemma 3. Let f |ω(f) be Ljapunov stable. Let a ∈ Ωf (x) \ ω(f) and let In be
a compact periodic interval of period 2n, with a ∈ In+1 ⊂ In for every n. Then a
is an end-point of some Im.

Proof. Assume the contrary. For simplicity, let Ja = [b, a] (cf. Lemma 2).
Since Ja = ∩∞n=1In and a is isolated (cf. Lemma 1) there is an m such that
Im = [u, v] , a < v, and (a, v]∩Ω(f) = ∅. Let U be a neighbourhood of a, U ⊂ Im.
Then for some r > 0, fr(U) ∩ U 6= ∅. By the periodicity of Im, fr(U) ⊂ Im.
Since Ja ∩ fr(Ja) = ∅ and fr(a) ∈ fr(Ω(f)) ⊂ Ω(f), we have fr(a) < b and
fr(U) ⊃ [fr(a), b]. Since Ja = ∩In, there is k > m such that Ik ⊂ [fr(a), v]. Now

Ik+1 ∪ f2k(Ik+1) ⊂ Ik and a ∈ Ik+1, so f2k(Ik+1) is to the left of Ik+1. Thus

f2k(Ik+1) ⊂ fr(U) and for i = r + 2k, f i(U) ⊃ Ik+1 is a neighbourhood of a.
By induction we can construct a sequence {Un}∞n=1 of compact neighbourhoods of
a with lim n→∞diamUn = 0, and a sequence {k(n)}∞n=1 of positive integers such
that fk(n)(Un) ⊃ Un+1 for any n. It is easy to see that for some y ∈ U1, a ∈ ωf (y)
– a contradiction. �

Lemma 4. Let f |ω(f) be Ljapunov stable, let {a, f(a)} ⊂ Ωf (x) \ ω(f), and
let U be a neighbourhood of a. Then f(U) ∪ Jf(a) is a neighbourhood of f(a).

Proof. By Lemmas 2 and 3 we may assume that U is an open interval containing
a and so small that U ∩Mf (x) ⊂ Ja and diam f(U) < diamJf(a). Let V = f(U)∪
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Jf(a) fail to be a neighbourhood of f(a). Since V is an interval, we have V = Jf(a),

and consequently, for any i > 0, f i(U) ∩ U ⊂ f i−1(Jf(a)) ∩ U ⊂ f i(Ja) ∩ Ja = ∅.
Thus, a /∈ Ω(f) – a contradiction. �

Lemma 5. Let f |ω(f) be Ljapunov stable. Then for no x ∈ I there is a
sequence {bn}∞n=0 of points from Ωf (x) \ ω(f) such that f(bn+1) = bn for any n.

Proof. Assume the contrary. Let for each n, In be a compact periodic intreval
of period 2n, with b0 ∈ In and Orb (In) ⊃ ωf(x). By Lemma 3, b0 is an end-
point of some Im. Clearly there is the least integer k > 0 such that, for some
j, bk ∈ int f j(Im). Then f j(Im) is a neighbourhood of bk, hence by Lemma 4,
Im ∪ Jb0 = Im = fk(f j(Im)) is a neighbourhood of b0 – a contradiction. �

Lemma 6. Let J = [u, v] be a periodic interval, and let u /∈ Per (f). Then
there is an ε > 0 such that (u− ε, u) ∩Ω(f) = ∅.

Proof. For simplicity we assume that f(J) = J . Then for i = 1 or 2, f i(u) ∈
intJ , hence for a small ε, f i(u− ε, u) ⊂ intJ , and so fn((u− ε, u))∩ (u− ε, u) = ∅
for any n > 0. (Note that if f(u) = v, then f(v) 6= v, cf., e.g, Lemma 3.5 in
[PS].) �

Proof of Theorem. Since ω(f) ⊂ Ω(f), we may assume that f |ω(f) is stable.
Let ε > 0 and a ∈ Ω(f). Then for some x, a ∈ Ωf (x). For any n and any
j = 1, . . . , 2n, let Jjn be the convex hull of f j(In) ∩ ω(f), where In is a compact
periodic interval of period 2n, with a ∈ In and Orb (In) ⊃ Mf (x). Choose n so
large that diamJjn < ε for every j. This is always possible since otherwise f |ω(f)
would not be stable.

By Lemma 2, A = Ωf (x) \ ∪{Jjn; j = 1, . . . , 2n} is a finite set. Let B be the
set of preimages of A in Ω(f). Clearly, B ⊂ Ωf (x). By Lemma 5, B is finite, and
since A is isolated in Ω(f) (cf. Lemma 1), B must be isolated in Ω(f), too. Thus
if a ∈ B then f |Ω(f) is stable at a. So let a /∈ B.

If a ∈ int In, let U ⊂ In be a neighbourhood of a with U ∩ B = ∅. Then
f i(U) ∩ Ω(f) ⊂ J in for any i ≥ 1 (mod 2n), and f |Ω(f) is stable at a since ε is
arbitrary.

If a is an end-point of In then we can apply Lemma 6. There is a neighbourhood
U of a such that U ∩ Ω(f) ⊂ In and again f |Ω(f) is stable at a. �

Remark. Assume that f |Ω(f) is Ljapunov stable. The above quoted results
enable to describe the dynamics of f on Ω(f). First, it is easy to see that f
restricted to any infinite ωf(x) acts as the well-known “adding machine”, and the
representation of points from ωf (x) by sequences of binary symbols 0 and 1 is one
to one, cf. [N], [S]. If A = Ω(f) \ ω(f) is non-empty, then for any a ∈ A put
Af (a) = Orb (a) ∩ Ω(f) \ ω(f). Since ω(f) is invariant and f(Ωf (x)) ⊂ Ωf (x)
for any x, Af (a) ⊂ Ωf (y) \ ω(f), for some y. Then either Af (a) is finite and
Af (a) = {a0, . . . , an} such that f(ai) = ai+1 for any i < n (and f(an) ∈ ω(f)),
or Af (a) is infinite and by Lemma 5, Af (a) = {ai}∞i=0 such that f(ai) = ai+1 for
any i. Both these types of behaviour are possible and corresponding examples can
be obtained by a slight modification of a map from [VŠ].
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