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ACCRETIVE METRIC PROJECTIONS

L. VESELY

Abstract. In this note we prove that all metric projections onto closed subsets of
a normed linear space X are accretive if and only if X is an inner-product space.
Instead of all closed sets it su [ced to consider more special classes of sets in X.

Introduction. Let X be a real normed linear space and let 2X be the set
of all its subsets. A multivalued mapping A: X - 2% is termed accretive if
xFy+t(x—y) = Xy LwWhenever t > 0,x [CAl(x),y CA(y). Accretive mappings
have been intensively studied in connections with semi-groups of nonexpansive
mappings and with dilerential equations and inclusions in Banach spaces. In
Hilbert spaces, accretive operators coincide with monotone operators. We refer
the reader to [3], [4] for basic facts about accretive operators and their applications.

For a set F X we define Pe(x) = {X B : XI— X[ dist(x,F)}. The
mapping Pr: X - 2F [2K is called metric projection onto F. We put
PEl(y) ={x X :y [PE(x)} forany y [X.

If X is an inner product space, it is easy to prove that both Pg and PF_l are
accretive for any F [Xl. It is natural to ask whether this property extends to
more general spaces. H. Berens and U. Westphal [2] proved that the accretivity
of all PF_1 is equivalent to the existence of an inner product generating the norm
of X. Our aim is to prove that a similar situation appears for metric projections
themselves. Clearly we can confine ourselves to metric projections onto closed
sets, since P(X) [P (X) for any x X and any F [XI. We shall show that it
is possible to consider all two-points sets or, if dim(X) = 3, all lines only.

Results. We need two well-known characterizations of inner product spaces in
terms of orthogonality. For X,y [X let us write

x#y if X+y[ZF [XI-y[1(James orthogonality), and
x [y1 if XH+ty[= xXI1forany t LRI (Birkho CCarthogonality).

Theorem 1 (cf. [1, (4.1) and (12.11)]).
(a) If the implication x#y =L x1[ylholds in X, then X is an inner-product
space.
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(b) If dim(X) = 3 and the Birkho [Carthogonality is left-additive (i.e. (x +y) [1
whenever x [ylnd y V), then X is an inner-product space.

Theorem 2. For a normed linear space X the following assertions are equiv-
alent:

(i) X is an inner product space.
(ii) Pg is accretive for any closed F [XI.
(iii) Pgq is accretive for any Q = {a,b} Xl

Proof. (i) =C(). Let X [PE(X), y [CPE(y), t>0. Then XI- X[ XI-y[]
and ¥ y[Z [y X[ Hence XFy+t(X—y) P XFy[ZH2t<x—y,X—y> =
Xy 23 t( Xy (23 XX 23 [y X[23- [y Yy [2) = [XFy [2] The implication
(i) = () is obvious.

We shall use Theorem 1(a) for the proof of (iii) = (0 Let x,y [X, x#y,Q =
{—v.y}. Then Po(x) = Po(0) = Q. For any t > 0 the defintion of accretivity
implies X2ty (= [XI (because —y [Ph(x) andy [PL(0)) and XH2ty [ [XI 1
(because y [PL(x) and —y [PL(0)). Hence x [y hnd the proof is complete. 1

Now let us consider various classes of convex sets. We begin with hyperplanes.

Theorem 3. For a normed linear space X the following two assertions are
equivalent:

(i) X is strictly convex (i.e. the unit sphere does not contain any nontrivial
line segment).
(if) Py is accretive for any closed hyperplane H [XI.

Proof. (i) =L {(iL). Let X be strictly convex and H [Xlbe a closed hyperplane
containing the origin. Then either H is a Chebyshev hyperplane or P (x) = Cfbr
all x X\ H, and in both cases Py is singlevalued and linear on D(Pw) = {x [
XIPu(x) & 3 [5]. For any x,y [O(Pw) and any t > 0 we have

XI=y + t(PH(X) — Pr(y)) (& XI—y + tPy(x —y) ]
= (1+t) Xy [Tt —y)—Pu(xX—y) = (1+t) Xy [Tt —y)—-0[F Xty []

Consequently Py is accretive.

(in=C0)dLet x,v [X be such that IXI' & [X+v[=ZF [XHv[= 1. Take a nonzero
functional f X “3uch that f(x) = FI-and denote H = £~1(0). Thenv [CPH(X)
and 0 [Pl (x+vVv). Consequently v = [(X+V)—x[Zx [(X+Vv)—x+(0—Vv)[= 0,
since Py is accretive by (ii). This implies (i). 1

Corollary. Let dim(X) = 2. Then the following are equivalent:

(i) X is strictly convex.
(ii) Pw is accretive for any subspace M [X1.

The following theorem shows that for spaces of dimension greater than 2 the
Corollary does not hold.
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Theorem 4. Let X be a normed linear space with dim(X) = 3. Then the
following assertions are equivalent:

(i) X is an inner-product space.
(i) Pc is accretive for any closed convex C X1
(iii) Py is accretive for any closed subspace M [XI.
(iv) P_ is accretive for any 1-dimensional subspace L [XI.

Proof. (i) = (i) follows from Theorem 2. The implications (ii) = [(ii)= [{iv)
are obvious. We shall prove (iv) = [{i)_lising Theorem 1(b).
Let x,y,v [X,x [vland y [ If v = 0 then (x +y) [dholds trivially. Let
v 8 0, L = span{v}. Then the definition of the Birkho [_drthogonality implies
0 A (—x) and tv A _(y +tv) for any t [R. The accretivity of P, implies
yl+ tv + x[£ [y+tv+x+stvlfor any t R and s > 0. Introducing the
substitution r = st we get

oyH (r/s)v + X[ yH (r/s)v +x+rv1l whenever r (Rl s> 0.

After passing s — oo we obtain (x +y) [vland the proof is complete by Theo-
rem 1(b). 1
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