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ON THE MINIMAL REDUCTION AND

MULTIPLICITY OF (Xm, Y n,XkY l,XrY s)

E. BOĎA, D. ORSZÁGHOVÁ and Š. SOLČAN

Abstract. An explicite formula to calculate the multiplicity of the ideal
(Xm, Y n, XkY l,XrY s) ·A in A = K[X,Y ](X,Y ) is given.

Let K[X,Y ] be a polynomial ring over a field K, A = K[X,Y ](X,Y ) be a local

ring with the maximal ideal M = (X,Y ) · A and Q be an M -primary ideal in A.

The multiplicity e0(Q,A) of Q in A is defined to be the leading coefficient of the

Hilbert-Samuel polynomial LA(A/Qt), t � 0 (see e.g. [Z–S, Vol. II, Chap. VIII,

§10]).

Our main result is the following theorem.

Theorem. Let Q = (Xm, Y n,XkY l,XrY s) · A be an ideal in the local ring

A = K[X,Y ](X,Y ). Then

e0(Q,A) = min{mn,ml+ nk,ms+ nr,ml+ nr + ks− lr} .

(assuming m ≥ n, m > k > r and n > s > l, without loss of generality).

The idea of counting the multiplicity e0(Q,A) is based on the notions “minimal

reduction” and “analytic spread” introduced by Northcott and Rees, see [N–R].

Recall that an ideal J ⊆ I of A is called a reduction of I, if J · It−1 = It for

an integer t > 1. If J is a reduction of I and dim(I) = 0 then dim(J) = 0

and e0(J,A) = e0(I,A). If Q is an M -primary ideal in a local ring (A,M), then

there exists an M -primary ideal Q′ ⊆ Q which is a reduction of Q such that Q′ is

generated by a system of parameters (see [N–R, §6, Theorem 2]).

In the following we show how to construct such a parametrical ideal Q′.

Let Q = (Xm, Y n,XkY l,XrY s) · A in A = K[X,Y ](X,Y ) and

A[Xmt, Y nt,XkY lt,XrY st] = RA(Q) be the Rees ring of A with respect to the
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ideal Q, RA(Q) = ⊕
N≥0

QN tN . Let a, b, c, d be independent indeterminates over

K and

ϕ : A[a, b, c, d]� A[Xmt, Y nt,XkY lt,XrY st] = RA(Q)

be the natural epimorphism which sends a, b, c, d onto Xmt, Y nt, XkY lt, XrY st

respectively.

Let J be an ideal contained in Ker ϕ, J ⊆ Ker ϕ. Then there is an epimorphism

ϕ∗ : A[a, b, c, d]/J � A[Xmt, Y nt,XkY lt,XrY st]

and an epimorphism

ϕ′ : A[a, b, c, d]/(J +M)� RA(Q)/M ·RA(Q)

of factor rings A[a, b, c, d]/(J +M) = K[a, b, c, d]/J ′ with J ′ = (J +M)/M and

RA(Q)/M ·RA(Q) = ⊕
N≥0

QN/M ·QN .

Let ’s take J such that dim(J ′) = 2. This is always possible for

dim(RA(Q)/M ·RA(Q)) = l(Q) = 2

(by l(Q) we denote the analytic spread of Q).

Let {α, β} be a system of parameters for K[a, b, c, d]/J ′, i.e.

dim(K[a, b, c, d]/(J ′, α, β)) = 0 .

Then there exists an epimorphism Φ induced by ϕ′

Φ: K[a, b, c, d]/(J ′, α, β)� RA(Q)/(M,αt, βt) ·RA(Q) ,

with ϕ(α) = αt, and ϕ(β) = βt. Then the ring

RA(Q)/(M,αt, βt) ·RA(Q) = ⊕ QN/(M ·QN , (α, β) ·QN−1)

is 0-dimensional. For (J ′, α, β) is (a, b, c, d)-primary and Φ is an epimorphism of

graded rings, it follows that there is an integer N0 > 0 such that for all N > N0

it is QN/(M ·QN , (α, β) ·QN−1) = 0, i.e.

QN = M ·QN + (α, β) ·QN−1 .

Then QN/(α, β) ·QN−1 = M ·QN/(α, β) ·QN−1 = M · (QN/(α, β) ·QN−1). Using

Nakayama’s Lemma we get that QN = (α, β) ·QN−1.

Summarizing we can formulate a following result.
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Proposition. Let (A,M), Q, α, β be as above. Then the ideal (α, β) · A is a

reduction of Q and therefore e0(Q,A) = e0((α, β) ·A,A).

Before proving the Theorem we prove an easy but useful lemma.

Lemma. Let m ≥ n, m > k > r and n > s > l; all m, n, k, l, r, s are positive

integers. Then

(a) mn = min{mn,ml + nk,ms + nr,ml + nr + ks − lr} if and only if

mn = min{mn,ml+ nk,ms+ nr}.
(b) ml + nk = min{mn,ml + nk,ms + nr,ml + nr + ks − lr} if and only if

ml + nk = min{mn,ml+ nk,ml+ nr + ks− lr}.
(c) ml+ nr+ ks− lr = min{mn,ml+ nk,ms+ nr,ml+ nr+ ks− lr} if and

only if ml + nr + ks− lr = min{ml+ nk,ms+ nr,ml+ nr + ks− lr}.

Proof.

(a) It is enough to prove the following:

If mn ≤ ml + nk and mn ≤ ms+ nr, then mn ≤ ml + nr + ks− lr.
It is easy to see that the inequality mn ≤ ml + nk is equivalent to

(1)
m

n
(n− l) ≤ k

and mn ≤ ms+ nr to

(2)
n

m
(m− r) ≤ s

From (1) and (2) we get (n − l)(m − r) ≤ ks and mn ≤ ml + nr + ks − lr as

required.

(b) It is again enough to prove the implication:

If ml + nk ≤ mn and ml + nk ≤ ml+ nr + ks− lr, then ml+ nk ≤ ms+ nr.

The first inequality is equivalent to k
n−1 ≤

m
n

and the second one to k−r
s−l ≤

k
n−1 .

Then it follows k−r
s−l ≤

m
n

. But this is equivalent to ml+nk ≤ ms+nr as wanted.

(c) It is sufficient to prove thatml+nr+ks−lr ≤ ml+nk and ml+nr+ks−lr ≤
ms+ nr imply ml + nr + ks− lr ≤ mn.

The assumed inequalities are equivalent to

k ≤
(k − r)(n− l)

s− l
and s ≤

(m− r)(s − l)

k − r
.

Then ks ≤ (n− l)(m− r) and this is equivalent to ml + nr + ks− lr ≤ mn. The

proof of the lemma is complete. �

Now we are ready to prove the Theorem.

Proof of the Theorem. We will make it in 4 steps.
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Step 1. Let min{mn,ml+ nk,ms+ nr,ml+ nr + ks− lr} = mn.

By the previous lemma this is equivalent to mn ≤ ml + nk and mn ≤ ms + nr.

From the first inequality we get nk ≥ m(n− l) and

(XkY l)n ∈ ((Xm)n−l · (Y n)l) · A .

This implies that cn−an−lbl ∈ J ′ (if nk = m(n− k)) or cn ∈ J ′. From the second

inequality we have nr ≥ m(n− s) and

(XrY s)n ∈ ((Xm)n−s · (Y n)s) · A .

From this it follows that dn − an−sbs ∈ J ′ (if nr = m(n− s) or dn ∈ J ′.

Now J ′ is the ideal generated by u1, v1, J ′ = (u1, v1), where u1 is one of the

elements cn or cn − an−lbl and v1 equals to either dn or dn − an−sbs. In all these

cases the ideal (J ′, a, b) is (a, b, c, d)-primary and by the Proposition the ideal

(Xm, Y n) ·A is a reduction of Q. Therefore e0(Q,A) = e0((Xm, Y n) ·A,A) = mn.

Step 2. Now let ml + nk = min{mn,ml+ nk,ms+ nr,ml+ nr + ks− lr}, i.e.

ml+nk ≤ mn and ml+nk ≤ ml+nr+ks−lr by lemma. Then it followsm(n−l) ≥
nk and (Xm)n−l ·(Y n)l ∈ ((XkY l)n) ·A. Therefore either an−lbl−cn ∈ J ′ (in case

of equality ml+nr+ks− lr = ml+nk) or an−lbl ∈ J ′ from the first inequality and

r(n − l) ≥ k(n − s), (XrY s)n−l ∈ ((Y n)s−l · (XkY l)n−s) · A and therefore either

dn−l− bs−lcn−s ∈ J ′ (if ml+nr+ks− lr = ml+nk) or dn−l ∈ J ′ from the second

one. If J ′ = (u2, v2), u2 ∈ {an−lbl−cn, cn}, v2 ∈ {dn−l−bs−lcn−s, dn−l}, the ideal

J ′ = (J, a+ b, c) is again (a, b, c, d)-primary and the ideal (Xm + Y n,XkY l) ·A is

a reduction of Q by the Proposition. Therefore

e0(Q,A) = e0((Xm + Y n,XkY l) ·A,A)

= e0((Xm + Y n,Xk) ·A,A) + e0((Xm + Y n, Y l) · A,A)

= nk +ml .

Step 3 is equivalent to the second one (changing the roles of ml + nk and

ms+ nr).

Step 4. Let ml+nr+ ks− lr = min{mn,ml+ nk,ms+ nr,ml+ nr+ ks− lr}.
This is again equivalent to

ml + nr + ks− lr = min{ml+ nk,ms+ nr,ml + nr + ks− lr} .

From ml+ nr + ks− lr ≤ ml+ nk one gets k(n− s) ≥ r(n − l). Then

(Y n)s−l · (XkY l)n−s ∈ ((XrY s)n−l) · A .
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This implies either bs−lcn−s − dn−l ∈ J ′ (in case ml+ nr + ks− lr = ml+ nk) or

bs−lcn−s ∈ J ′.
From ml+ nr + ks− lr ≤ ms+ nr we have s(m− k) ≥ l(m− r) and

(Xm)k−r · (XrY s)m−k ∈ ((XkY l)m−r) · A .

But this implies either ak−rdm−k − cm−r ∈ J ′ (if ml+ nr+ ks− lr = ms+nr) or

ak−rdm−k ∈ J ′.
Put J ′ = (u4, v4), with u4 ∈ {bs−lcn−s, bs−lcn−s − dn−l}, v4 ∈ {ak−rdm−k,

ak−rdm−k − cm−r}. If ml + nr + ks − lr = ml + nk = ms + nr then ml + nr +

ks− lr = mn by the lemma and e0(Q,A) = mn = ml + nr + ks− lr by the step

1. In the rested cases the ideal J ′ = (J, a + d, b + c) is (a, b, c, d)-primary, thus

(Xm +XrY s, Y n +XkY l) ·A is a reduction of Q.

Therefore

e0(Q,A) = e0((Xm +XrY s, Y n +XkY l) · A,A)

= e0((Xr, Y l) ·A,A) + e0((Xm−r + Y s, Y l) · A,A)

+ e0((Xr, Y n−l +Xk) · A,A) + e0((Xm−r + Y s, Y n−l +Xk) · A,A)

= rl + (m− r)l + r(n− l) + sk = ml+ nr + ks− lr

for (Xm−r + Y s, Y n−l +Xk) ·A = (Xk, Y s) · A.

The proof of the theorem is now complete. �
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