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A HAMILTONIAN PROPERTY OF CONNECTED

SETS IN THE ALTERNATIVE SET THEORY

P. ZLATOŠ

Abstract. The representation of indiscernibility phenomena by π-equivalences
and of accessibility phenomena by σ-equivalences enables a graph-theoretical formu-
lation of topological notions in the alternative set theory. Generalizing the notion
of Hamiltonian graph we will introduce the notion of Hamiltonian embedding and
prove that for any finite graph without isolated vertices there is a Hamiltonian em-
bedding into any infinite set connected with respect to some π- or σ-equivalence.
Roughly speaking, in some sense this means that each such an infinite connected
set, (in particular, each connected set in a complete metrizable topological space),
contains each finite graph inside, and even is exhausted by the images of its edges.
Moreover, the main Theorem 3, dealing with the so called deeply connected sets, is
in fact a theorem of nonstandard arithmetic.

1. A Brief Outline of Alternative Set Theory

The alternative set theory (AST), similarly as nonstandard analysis, enables to

treat the infinity phenomenon emerging on formally finite collections of objects.

The basic collections of objects, considered itselves as selfstanding objects, AST

deals with, are called classes. Sharp classes with definite boundaries are called

sets. From the point of view of classical set theory, all the sets in AST are finite,

as they are subject to the axiom scheme of induction for set-theoretical formulas.

Enormously large “finite” sets, however, will be called infinite. In AST we define

a class to be finite if each its subclass is a set. Every finite class obviously is a set,

but not vice versa. Accepting the existence of infinite sets, we accept henceforth

the existence of proper semisets, i.e., of proper classes which are subclasses of

(formally finite!) sets. Thus we can see that, in contradistinction to proper classes

in, e.g., Gödel-Bernays set theory, proper classes in AST need not be “larger”

then sets. Proper semisets rather arise as mathematical counterparts of nonsharp

collections without definite boundaries.

Small characters always denote sets, capital ones are used for classes. When a

capital letter denotes a set, it will explicitly be pointed out.
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Natural numbers in AST are introduced, following von Neumann, as sets of

smaller natural numbers. The class of all natural numbers is denoted by N; the

class of all finite natural numbers (i.e. of elements of N which are finite sets) is

denoted by FN. Both N and FN with canonically defined operations are models

of Peano arithmetic. However N satisfies the induction scheme only for properties

expressable by formulas of the language of PA (or, which turns out to be equivalent,

by set-theoretical formulas), whereas FN satisfies the second order induction, i.e.

the induction for arbitrary properties.

Every set A is equivalent through a set-function to a unique natural number

denoted by |A|, and A is finite iff |A| ∈ FN. On the other hand, as a consequence

of the axiom of two cardinalities, any two infinite sets are equivalent through some

class-function.

For the basic axiomatic system of AST, as well as for further notions, conven-

tions and results we refer to Vopěnka’s book [V 1979]. More detailed exposition

can be found in [V 1989]. Nevertheless, for the reader not acquainted with AST,

we will list some few facts which could help understanding the paper.

Let us begin reviewing some notation. For any class X, relations (i.e. classes of

ordered pairs) R, S, and n ∈N we put

[X]n = {s ⊆ X; |s| = n},

dom(R) = {x; (∃ y) y Rx}, rng(R) = {y; (∃x) y Rx},

R”X = {y; (∃x ∈ X) y Rx}, R|X = {(y, x) ∈ R; x ∈ X},

R ◦ S = {(x, y); (∃ z)(xR z & z S y)},

R2 = R ◦R, R3 = R ◦R ◦R, etc.

Perhaps the most important and typical axiom of AST is the following:

Axiom of Prolongation. Every class-function G with domain FN is of the

form G = g|FN for some set-function g.

As a consequence we have:

Overspill Principle. Let {ϕk(x); k ∈ FN} be a sequence of set-theoretical

formulas and G be a function with domain FN such that ϕk(G|n) holds for all

k, n ∈ FN. Then there is an infinite natural number ν and a set-function g with

domain ν+ 1 = {0, 1, . . . , ν}, such that G = g|FN and ϕk(g|n) holds for all n ≤ ν
and k ∈ FN.

A reflexive and symmetric relation on a classX will simply be called a symmetry

on X.

A class X will be called a π-class (σ-class, respectively) provided there is a

sequence {ϕk(x); k ∈ FN} of set-theoretical formulas such that

X = {x; (∀ k ∈ FN) ϕk(x)}
(
X = {x; (∃ k ∈ FN) ϕk(x)}, resp.

)
.
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Terms like π-equivalence, σ-symmetry, set-symmetry etc., are selfexplanatory.

In what follows we will utilize the fact that every π-symmetry (σ-symmetry,

respectively) R on a set X can be written in the form

R =
⋂

n∈FN

Sn

(
R =

⋃
n∈FN

Sn, resp.
)

where {Sn; n ∈ FN} is a sequence of set-symmetries on X, such that

Sn+1 ⊆ Sn (Sn ⊆ Sn+1, resp.)

for each n. Moreover, R is a π-equivalence (σ-equivalence, respectively) iff the

sequence {Sn; n ∈ FN} can be chosen in such a way that even

Sn+1 ◦ Sn+1 ⊆ Sn (Sn ◦ Sn ⊆ Sn+1, resp.)

holds for each n. In any of the above cases {Sn; n ∈ FN} will be called a generating

sequence of R.

According to the basic ideas of the alternative set theory, one could expect

that the discrete combinatorial notions, methods and results of finitary mathe-

matics will play an important role in mathematics based on AST, even in areas

traditonally dominated by infinitary “continuous” mathematics.

So far the most developed topic which can serve as an example is the topology

(see e.g. [V 1979], [V 1989], [G–Z 1985a], [G–Z 1985b] and the survey article

[Z 1989]). In most cases a topological space can be represented in AST as a pair

(X,R) where X is a set and R is a π-equivalence on X, serving as mathematization

of the phenomena of indiscernibility and continuity. Such pairs correspond, in some

sense which can be made fully precise, to complete metrizable spaces in classical

topology, and all the common topological notions can be introduced in terms of

the relation R. E.g., a class K ⊆ X is called open in (X,R) if for each x ∈ K
there is a set Y such that R”{x} ⊆ Y ⊆ K. However, by such an attempt one

should be aware of the fact that the mathematical models of geometrical points

are the monads R”{x} and not the single elements x ∈ X.

As R in general is a proper semiset, set-functions f : ν + 1 −→ X, such that

ν ∈N and f(n)Rf(n+1) for each n < ν, can be used to represent the phenomenon

of continuous motion of point in the spirit of Poincaré (see [P 1902], [P 1905]).

Indeed, given such a function f , the conclusion f(0)Rf(ν) can be proved only for

ν ∈ FN. For ν infinite, though R is an equivalence, (f(0), f(ν)) /∈ R may well

happen.

The notion of σ-equivalence was introduced in [G–Z 1985a] (see also [G–

Z 1985b] and [Z 1989]) in order to enrich the domain of topology by simultaneous

study of indiscernibility and accessibility phenomena, the latter of which can be

faithfully represented by σ-equivalences.
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On the other hand, every pair (X,R) where R is an arbitrary symmetry on the

class X, can be viewed as a “graph” (X, R̂) where

R̂ =
{
{x, y}; x 6= y & xR y

}
.

Hence all usual graph-theoretical notions and the corresponding results can di-

rectly be transfered into the AST version of topology. In particular, this applies

to the notions of path and connectedness.

2. Deep Connectedness and Hamiltonian Embeddings

Under the term “graph” always a nonoriented graph without loops and multiple

edges will be understood. However, as our underlying set theory is the AST now,

we accept the following definition.

A graph is a pair of classes (X,E) such that X 6= ∅ and E ⊆ [X]2. As usual,

the elements of X will be called vertices and the elements of E edges. A vertex

x is called isolated (in (X,E)) if it belongs to no edge p ∈ E. If (X,E), (Y, F )

are graphs then (X,E) is called a subgraph of (Y, F ), notation (X,E) ⊆ (Y, F ), if

X ⊆ Y and E ⊆ F . A graph (X,E) will be called a set-graph if both X and E

are sets; it will be called finite if X (hence E, as well) is finite. Obviously, every

finite graph is a set-graph.

Similarly as each symmetry R on X yields a graph (X, R̂), every graph (X,E)

induces a symmetry

Ĕ =
{

(x, y); x = y ∨ {x, y} ∈ E
}

on X. Thus there is a natural one-to-one correspondence between symmetries and

graph structures on any nonempty class X.

Let (X,E) be a graph. A path in (X,E), briefly an E-path, is an injective

set-function f : ν + 1 −→ X such that ν ∈ N and {f(n), f(n + 1)} ∈ E for each

n < ν. We put

f̈ = {f(0), f(ν)}

for any set-function f such that dom(f) = ν+1, ν ∈N. Two paths f , g are called

internally disjoint if

rng(f) ∩ rng(g) ⊆ f̈ ∩ g̈.

If R is a symmetry on X, then an R-path simply means a path in the graph

(X, R̂), i.e. an R̂-path.

Let (X,E) be a graph. A set A ⊆ X will be called connected (in (X,E)) if for

every nonempty proper subset B of A there exist elements x ∈ B, y ∈ A \B such

that {x, y} ∈ E. Similarly, if R is a symmetry on X, then a set A ⊆ X is called

R-connected iff it is connected in the graph (X, R̂).

The following theorem already belongs to the folklore of AST.
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Theorem 1. Let R be a π- or a σ-symmetry on a class X and A ⊆ X be a

set. Then the following conditions are equivalent:

(a) A is R-connected.

(b) For all x, y ∈ A there is an R-path f such that

rng(f) ⊆ A and f̈ = {x, y}.

(c) There is a ν ∈ N and a surjective set-function f : ν + 1 −→ A such that

f(n)Rf(n+ 1) for each n < ν.

In the original version of the manuscript of [V 1989] it was asserted that for a

π-equivalence R the conditions (b) and (c) can be put together, i.e., that for an

R-connected set A the R-path f from (b) can be required to satisfy additionally

rng(f) = A as in (c). But the presented proof was not correct. Within short

A. Vencovská and the author of this article independently have shown that this

common “Hamiltonian” strengthening of (b) and (c) is still true. However, as

communicated to the author by P. Vopěnka, the proof by Vencovská made use of

some higher axioms of AST, namely of the axiom of choice and the axiom of two

cardinalities.

The proof we are going to present here is rather an elementary one, and relies

on some well known results of graph theory. But this will be only a very particular

case of an (at least for the author) unexpected result with both graph-theoretical

and topological flavour announced in the Abstract, with a connection, though

rather a loose one, to space filling curves.

Let R be a symmetry on a class X. A set A ⊆ X will be called deeply R-

connected if there is a set-symmetry S ⊆ R such that A is S-connected. Obviously,

if A is deeply R-connected, then it is R-connected. However, for some symmetries

also the converse is true.

Proposition. Let R be a π- or a σ-symmetry on a class X. Then every R-

connected set A ⊆ X is deeply R-connected.

Proof. Let A ⊆ X be R-connected and {Sn; n ∈ FN} be a generating sequence

of R.

(a) If R is a π-symmetry, then, as R ⊆ Sn, A is Sn-connected for each n ∈ FN.

As this property can be expressed by a set-theoretical formula, using the overspill

principle one can find a set-symmetry S ⊆ R such that A is S-connected.

(b) If R is a σ-symmetry, then A already is Sn-connected for some n ∈ FN.

In the opposite case, using overspill again, one could find a set-symmetry S ⊇ R,

such that A is not S-connected — a contradiction. �

Remark. Notice that for any infinite ν ∈ N the equivalence

R = FN2 ∪ (ν \FN)2
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on the set ν is a union of a σ-class and of a π-class, and ν obviously is R-connected

(it even satisfies the mentioned common strengthening of (b) and (c) from Theo-

rem 1). However, as it can easily be seen, ν is not deeply R-connected.

Let us repeat once more that as far as dealing with sets and set-theoretical

formulas only, everything established in classical mathematics based on Cantor

set theory for finite sets using “standard” methods, as, e.g., the induction over the

number of elements, can directly be transferred to all sets in AST, no matter that

finite or infinite. In particular, this applies to the following theorem, contributiting

to the topic of Hamiltonian circles, which was proved by M. Sekanina [Sk 1963]

and J. Karaganis [Kr 1968]. We will formulate it in terms of symmetries rather

than graphs.

Theorem 2. Let R be a set-symmetry on X and A ⊆ X be an R-connected

set. Then for each pair of distinct vertices x, y ∈ A, there is an R3-path f such

that

rng(f) = A and f̈ = {x, y}.

Now, we have an immediate consequence.

Corollary. Let R be an arbitrary symmetry on X and A ⊆ X be a deeply R-

connected set. Then for each pair of distinct vertices x, y ∈ A there is an R3-path

f such that

rng(f) = A and f̈ = {x, y}.

Obviously, the above f is an R-path if R is an equivalence. Also, choosing x, y

in such a way that {x, y} ∈ R̂, f can immediately be extended to a Hamiltonian

circle.

In the following definition, for a function θ, as its values will be functions again,

we put θp = θ(p) for p ∈ dom(θ).

Definition. Let (X,E) be a set-graph without isolated vertices and R be an

arbitrary symmetry on a set A. A pair (h, θ) will be called a Hamiltonian embed-

ding of (X,E) into (A,R) provided the following conditions are satisfied:

(a) h : X −→ A is an injective set-function.

(b) θ is a set-function, such that dom(θ) = E and for each edge p = {x, y} ∈ E,

θp is an R-path satisfying

θ̈p = {h(x), h(y)}.

(c) For distinct edges p, q ∈ E the paths θp, θq are internally disjoint.

(d) Each point a ∈ A lies on the image of some edge, i.e.,

A =
⋃
p∈E

rng(θp).
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Remark. Obviously, a finite graph (Y, F ) is Hamiltonian iff there is a Hamil-

tonian embedding of the cycle of length three (or more) into (Y, F̆ ).

Now, we are able to state and prove our main result.

Theorem 3. Let A be an infinite set and R be an arbitrary equivalence on

A. If A is deeply R-connected, then for each finite graph (X,E) without isolated

vertices and every injective function h : X −→ A, there is a set-function θ such

that the pair (h, θ) is a Hamiltonian embedding of (X,E) into (A,R).

Proof. We will proceed by the induction over the number of edges |E| ∈ FN.

The case |E| = 1 follows from the Corollary to Theorem 2. Let |E| > 1 and

p = {x, y} be an arbitrary edge in (X,E). Let f be an R-path, such that

rng(f) = A and f̈ = {h(x), h(y)},

garanteed by the same Corollary. Let us denote dom(f) = µ+ 1. We put

F = E \ {p}, Y = {z ∈ X; (∃ q ∈ F )(z ∈ q)}

and

a = {0, µ} ∪ {m ≤ µ; f(m) /∈ h”Y & m is even},

B = (A \ f”a) ∪ h”Y .

Then B ⊆ A obviously is a deeply R-connected set, (Y, F ) ⊆ (X,E) is a finite

graph without isolated vertices and |F | < |E|. Thus we can assume that there is a

θ such that (h|Y, θ) is a Hamiltonian embedding of (Y, F ) into (B,R ∩B2). Now,

one can enumerate the nonempty set a in its natural order a = {α0, . . . , ακ} and

put g(k) = f(αk) for k ≤ κ. As R is an equivalence and Y is finite, g is an R-path

and g̈ = {h(x), h(y)}. Then the set-function η, given by

ηq =

{
g for q = p,

θq for q ∈ F ,

raises to a Hamiltonian embedding (h, η) of (X,E) into (A,R). �

The Theorem just proved and the Proposition have the following consequence:

Corollary 1. Let R be a σ-equivalence on an infinite set A. If A is R-

connected, then for each finite graph (X,E) without isolated vertices and every

injecive function h : X −→ A, there is a set-function θ such that the pair (h, θ) is

a Hamiltonian embedding of (X,E) into (A,R).

This result can even be strengthened for π-equivalences.
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Corollary 2. Let R be a π-equivalence on an infinite set A. If A is R-

connected, then there is an infinite natural number ν, such that for each set-

graph (X,E) without isolated vertices, satisfying |X| ≤ ν, and every injective

set-function h : X −→ A there is a set-function θ such that the pair (h, θ) is a

Hamiltonian embedding of (X,E) into (A,R).

Proof. Let us denote M the class of all natural numbers n such that for each

set-graph (X,E), satisfying |X| ≤ n, and each injective set-function h : X −→ A,

there is a set-function θ such that the pair (h, θ) is a Hamiltonian embedding of

(X,E) into (A,R). Obviously, FN ⊆M . As R is a π-equivalence, M is a π-class,

as well. Since FN is not a π-class (see, e.g., [V 1979]), there has to be an infinite

element ν ∈M . �

Concluding remarks. (1) Under a slight and inessential modification of the

Definition, the notion of Hamiltonian embedding with (X,E) replaced by an ar-

bitrarry nonoriented set-graph (i.e. loops, multiple edges and isolated vertices are

allowed) can be introduced, and Theorem 3 and its Corrolaries still can be proved.

(2) Neither Theorem 3 nor its Corollaries assert that each finite graph can

be drawn in any connected metrizable topological space. In fact the notion of

topological representation of a graph (X,E) in (A,R) where R is a symmetry on

A would require the following modification of the Definition:

(a) h has to satisfy

x 6= y ⇒ (h(x), h(y)) /∈ R,

for all x, y ∈ X.

(b) The paths f = θp have to satisfy additionally

f(m)Rf(n) ⇒ (∀ k, l)
(
m ≤ k ≤ l ≤ n ⇒ f(k)Rf(l)

)
,

for m,n ∈ dom(f), m < n.

(c) Paths θp, θq corresponding to distinct edges p, q have to satisfy even

rng(θp) ∩R”rng(θq) ⊆ R”(θ̈p ∩ θ̈q).

(d) is omitted.

However, the corresponding restatements of the mentioned results are no way

true. In particular, this would imply the triviality of a great deal of topological

graph theory — a contradiction (cf. e.g. [Wh 1984]).

(3) The main Theorem 3 can also be regarded as a theorem of nonstandard

arithmetic. The Prolongation Axiom is used only in the proof of the Proposition,

verifying the applicability of the main Theorem to σ- and π-equivalences, needed

to obtain the Corrolaries 1 and 2.
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[P 1902] Poincaré H., La science et l’hypothese, Flammarion, Paris.
[P 1905] , La valeur de la science, Flammarion, Paris.
[Sk 1963] Sekanina M., On an ordering of the set of vertices of a graph, Časopis pro pěsto-
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