n-TRANSITIVITY OF CERTAIN DIFFEOMORPHISM GROUPS

P. W. MICHOR AND C. VIZMAN

ABSTRACT. It is shown that some groups of diffeomorphisms of a manifold act n-transitively for each finite n.

Let M be a connected smooth manifold of dimension $\dim M \geq 2$. We say that a subgroup G of the group $\mathrm{Diff}(M)$ of all smooth diffeomorphisms acts n-transitively on M, if for any two ordered sets of n different points (x_1, \ldots, x_n) and (y_1, \ldots, y_n) in M there is a smooth diffeomorphism $f \in G$ such that $f(x_i) = y_i$ for each i.

Theorem. Let M be a connected smooth (or real analytic) manifold of dimension dim $M \geq 2$. Then the following subgroups of the group Diff(M) of all smooth diffeomorphisms with compact support act n-transitively on M, for each finite n:

- (1) The group $\operatorname{Diff}_c(M)$ of all smooth diffeomorphisms with compact support.
- (2) The group $Diff^{\omega}(M)$ of all real analytic diffeomorphisms.
- (3) If (M, σ) is a symplectic manifold, the group $\operatorname{Diff}_c(M, \sigma)$ of all symplectic diffeomorphisms with compact support, and even the subgroup of all globally Hamiltonian symplectomorphisms.
- (4) If (M, σ) is a real analytic symplectic manifold, the group $\mathrm{Diff}^{\omega}(M, \sigma)$ of all real analytic symplectic diffeomorphisms, and even the subgroup of all globally Hamiltonian real analytic symplectomorphisms.
- (5) If (M, μ) is a manifold with a smooth volume density, the group $\operatorname{Diff}_c(M, \mu)$ of all volume preserving diffeomorphisms with compact support.
- (6) If (M, μ) is a manifold with a real analytic volume density, the group $\operatorname{Diff}^{\omega}(M, \mu)$ of all real analytic volume preserving diffeomorphisms.
- (7) If (M, α) is a contact manifold, the group $\operatorname{Diff}_c(M, \alpha)$ of all contact diffeomorphisms with compact support.
- (8) If (M, α) is a real analytic contact manifold, the group $\mathrm{Diff}^{\omega}(M, \alpha)$ of all real analytic contact diffeomorphisms.

Received September 22, 1994.

1980 Mathematics Subject Classification (1991 Revision). Primary 58D05, 58F05. Key words and phrases. Diffeomorphisms, n-transitivity.

Result (1) is folklore, the first trace is in [8]. The results (3), (5), and (7) are due to [3] for 1-transitivity, and to [1] in the general case. Result (2) is from [7]. We shall give here a short uniform proof, following an argument from [7]. That this argument suffices to prove all results was noted by the referee, many thanks to him.

Proof. Let us fix a finite $n \in \mathbb{N}$. Let $M^{(n)}$ denote the open submanifold of all n-tuples $(x_1, \ldots, x_n) \in M^n$ of pairwise distinct points. Since M is connected and of dimension ≥ 2 , each $M^{(n)}$ is connected.

The group $\operatorname{Diff}(M)$ acts on $M^{(n)}$ by the diagonal action, and we have to show, that any of the subgroups G described above acts transitively. We shall show below that for each G the G-orbit through any n-tuple $(x_1, \ldots, x_n) \in M^{(n)}$ contains an open neighborhood of (x_1, \ldots, x_n) in $M^{(n)}$, thus any orbit is open; since $M^{(n)}$ is connected, there can then be only one orbit.

Lemma. Let M be a real analytic manifold. Then for any real analytic vector bundle $E \to M$ the space $C^{\omega}(E)$ of real analytic sections of E is dense in the space $C^{\infty}(E)$ of smooth sections. In particular the space $\mathfrak{X}^{\omega}(M)$ of real analytic vector fields is dense in the space $\mathfrak{X}(M)$ of smooth vector fields, in the Whitney C^{∞} -topology.

Proof. For functions instead of sections this is [2, Proposition 8]. Using results from [2] it can easily be extended to sections, as is done in [6, 7.5].

The cases (2) and (1). We choose a complete Riemannian metric g on M and we let $(Y_{ij})_{j=1}^m$ be an orthonormal basis of $T_{x_i}M$ with respect to g, for all i. Then we choose real analytic vector fields X_k for $1 \le k \le N = nm$ which satisfy the following conditions:

$$|X_k(x_i) - Y_{ij}|_g < \varepsilon \quad \text{ for } k = (i-1)m + j,$$

$$|X_k(x_i)|_g < \varepsilon \quad \text{ for all } k \notin [(i-1)m + 1, im],$$

$$|X_k(x)|_g < 2 \quad \text{ for all } x \in M \text{ and all } k.$$

Since these conditions describe a Whitney C^0 open set, such vector fields exist by the lemma. The fields are bounded with respect to a complete Riemannian metric, so they have complete real analytic flows Fl^{X_k} , see e.g. [4]. We consider the real analytic mapping

$$f \colon \mathbb{R}^N \to M^{(n)}$$

$$f(t_1, \dots, t_N) := \begin{pmatrix} (\operatorname{Fl}_{t_1}^{X_1} \circ \dots \circ \operatorname{Fl}_{t_N}^{X_N})(x_1) \\ \dots \\ (\operatorname{Fl}_{t_1}^{X_1} \circ \dots \circ \operatorname{Fl}_{t_N}^{X_N})(x_n) \end{pmatrix}$$

which has values in the $\mathrm{Diff}^{\omega}(M)$ -orbit through (x_1,\ldots,x_n) . To get the tangent mapping at 0 of f we consider the partial derivatives

$$\frac{\partial}{\partial t_k}\Big|_0 f(0,\ldots,0,t_k,0,\ldots,0) = (X_k(x_1),\ldots,X_k(x_n)).$$

If $\varepsilon > 0$ is small enough, this is near an orthonormal basis of $T_{(x_1,\ldots,x_n)}M^{(n)}$ with respect to the product metric $g \times \ldots \times g$. So T_0f is invertible and the image of f contains thus an open subset.

In case (1), we can choose smooth vector fields X_k with compact support which satisfy conditions (9).

For the remaining cases we just indicate the changes which are necessary in this proof.

The cases (4) and (3). Let (M, σ) be a connected real analytic symplectic smooth manifold of dimension $m \geq 2$. We choose real analytic functions f_k for $1 \leq k \leq N = nm$ whose Hamiltonian vector fields $X_k = \operatorname{grad}^{\sigma}(f_k)$ satisfy conditions (9). Since these conditions describe Whitney C^1 open subsets, such functions exist by [2, Proposition 8]. Now we may finish the proof as above.

Contact manifolds.

Let M be a smooth manifold of dimension $m=2n+1\geq 3$. A **contact form** on M is a 1-form $\alpha\in\Omega^1(M)$ such that $\alpha\wedge(d\alpha)^n\in\Omega^{2n+1}(M)$ is nowhere zero. This is sometimes called an **exact** contact structure. The pair (M,α) is called a **contact manifold** (see [5]). The **contact vector field** $X_\alpha\in\mathfrak{X}(M)$ is the unique vector field satisfying $i_{X_\alpha}\alpha=1$ and $i_{X_\alpha}d\alpha=0$.

A diffeomorphism $f \in \text{Diff}(M)$ with $f^*\alpha = \lambda_f \cdot \alpha$ for a nowhere vanishing function $\lambda_f \in C^{\infty}(M, \mathbb{R} \setminus 0)$ is called a **contact diffeomorphism**. Note that then $\lambda_f = i_{X_{\alpha}}(\lambda_f \cdot \alpha) = i_{X_{\alpha}}f^*\alpha = f^*(i_{(f^{-1})^*X_{\alpha}}\alpha) = f^*(i_{f_*X_{\alpha}}\alpha)$. The group of all contact diffeomorphisms will be denoted by $\text{Diff}(M, \alpha)$.

A vector field $X \in \mathfrak{X}(M)$ is called a contact vector field if $\mathcal{L}_X \alpha = \mu_X \cdot \alpha$ for a smooth function $\mu_X \in C^\infty(M,\mathbb{R})$. The linear space of all contact vector fields will be denoted by $\mathfrak{X}_\alpha(M)$ and it is clearly a Lie algebra. Contraction with α is a linear mapping again denoted by $\alpha \colon \mathfrak{X}_\alpha(M) \to C^\infty(M,\mathbb{R})$. It is bijective since we may apply i_{X_α} to the equation $\mathcal{L}_X \alpha = i_X d\alpha + d\alpha(X) = \mu_X \cdot \alpha$ and get $0 + i_{X_\alpha} d\alpha(X) = \mu_X$; but the equation uniquely determines X from $\alpha(X)$ and μ_X . The inverse $f \mapsto \operatorname{grad}^\alpha(f)$ of $\alpha \colon \mathfrak{X}_\alpha(M) \to C^\infty(M,\mathbb{R})$ is a linear differential operator of order 1.

The cases (8) and (7). Let (M, α) be a connected real analytic contact manifold of dimension $m \geq 2$. We choose real analytic functions f_k for $1 \leq k \leq N = nm$ such that their contact vector fields $X_k = \operatorname{grad}^{\alpha}(f_k)$ satisfy conditions (9).

Since these conditions describe Whitney C^1 open subsets, such functions exist by [2, Proposition 8]. Now we may finish the proof as above.

The cases (6) and (5). Let (M,μ) be a connected real analytic manifold of dimension $m \geq 2$ with a real analytic positive volume density. We can find a real analytic Riemannian metric γ on M whose volume form is μ . Then the divergence of a vector field $X \in \operatorname{Vect}(M)$ is $\operatorname{div} X = *d * X^{\flat}$, where $X^{\flat} = \gamma(X) \in \Omega^{1}(M)$ (here we view $\gamma \colon TM \to T^{*}M$) and * is the Hodge star operator of γ . We also choose a complete Riemannian metric g.

First we assume that M is orientable. We choose real analytic (m-2)-forms β_k for $1 \le k \le N = nm$ such that the vector fields $X_k = (-1)^{m+1} \gamma^{-1} * d\beta_k$ satisfy conditions (9). Since these conditions describe Whitney C^1 open subsets, such (m-2)-forms exist by the lemma. The real analytic vector fields X_k are then divergence free since $\operatorname{div} X_k = *d * \gamma X_k = *dd\beta_k = 0$ Now we may finish the proof as usual.

For non-orientable M, we let $\pi \colon \tilde{M} \to M$ be the real analytic connected oriented double cover of M, and let $\varphi \colon \tilde{M} \to \tilde{M}$ be the real analytic involutive covering map. We let $\pi^{-1}(x_i) = \{x_i^1, x_i^2\}$, and we pull back both metrics to \tilde{M} , so $\tilde{\gamma} := \pi^* \gamma$ and $\tilde{g} := \pi^* g$. We choose real analytic (m-2)-forms $\beta_k \in \Omega^{m-2}(\tilde{M})$ for $1 \le k \le N = nm$ whose vector fields $X_{\beta_k} = (-1)^{m+1} \tilde{\gamma}^{-1} * d\beta_k$ satisfy the following conditions, where we put $Y_{ij}^p := T_{x_{ij}^p} \pi^{-1} \cdot Y_{ij}$ for p = 1, 2:

$$|X_{\beta_k}(x_i^p) - Y_{ij}^p|_{\tilde{g}} < \varepsilon \quad \text{for } k = (i-1)m + j, p = 1, 2,$$

$$|X_{\beta_k}(x_i^p)|_{\tilde{g}} < \varepsilon \quad \text{for all } k \notin [(i-1)m + 1, im], p = 1, 2,$$

$$|X_{\beta_k}|_{\tilde{g}} < 2 \quad \text{for all } x \in \tilde{M} \text{ and all } k.$$

Since these conditions describe Whitney C^1 open subsets, such (m-2)-forms exist by the lemma. Then the vector fields $\frac{1}{2}(X_{\beta_k} + \varphi_* X_{\beta_k})$ still satisfy the conditions (10), are still divergence free and induce divergence free vector fields $Z_{\beta_k} \in \mathfrak{X}(M)$ which satisfy the conditions (9) on M as in the oriented case, and we may finish the proof as above.

References

- 1. Boothby W. M., The transitivity of the automorphisms of certain geometric structures, Trans. Amer. Math. Soc. 137 (1969), 93–100.
- Grauert H., On Levi's problem and the embedding of real analytic manifolds, Annals of Math. 68 (1958), 460–472.
- 3. Hatakeyama Y., Some notes on the groups of automorphisms of contact and symplectic structures, Tôhoku Math. J. 18 (1966), 338-347.
- 4. Hirsch M. W., Differential topology, GTM 33, Springer-Verlag, New York, 1976.
- Libermann P. and Marle C. M., Symplectic geometry and analytic mechanics, D. Reidel, 1987.

- Kriegl A. and Michor P. W., A convenient setting for real analytic mappings, Acta Mathematica 165 (1990), 105–159.
- 7. Michor P. W., Letter to Garth Warner, December 12, 1990.
- 8. Milnor J., Topology from the differentiable viewpoint, University Press of Virginia, Charlottesville, 1965.
- $\textbf{9.}\ \ \text{Morrow J.},\ The\ denseness\ of\ complete\ Riemannian\ metrics,\ J.\ Diff.\ Geo.\ \textbf{4}\ (1970),\ 225-226.$
- Nomizu K. and Ozeki H., The existence of complete Riemannian metrics, Proc. AMS 12 (1961), 889–891.
- P. Michor, Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria, e-mail: Peter.Michor@esi.ac.at
- C. Vizman, University of Timisoara, Mathematics Departement, Bul. V. Parvan 4, 1900-Timisoara, Romania