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NUMERICAL SOLUTION OF NONLINEAR DIFFUSION

WITH FINITE EXTINCTION PHENOMENON

K. MIKULA

Abstract. The implementation of the numerical method of W. Jäger and J. Kačur
for solving the porous-medium type problems with strong absorption is disscussed.
The computed numerical results concerning the extinction of the solution in finite
time and the interface motions are presented.

1. Introduction

The aim of this paper is to present the numerical computations of the porous-

medium type problems with strong absorption by the approximation scheme sug-

gested by W. Jäger and J. Kačur in [JK1].

Let u be a function which satisfies the nonlinear partial differential equation

(1.1) ut = ∆um − cup in QT := I × Ω,

together with the following boundary and initial conditions

u|I×∂Ω = 0,(1.2)

u(0, x) = u0(x),(1.3)

where Ω ⊂ RN is a bounded domain, I = (0, T ), T < ∞ is a time interval, and

m ≥ 1, p > 0, and c ≥ 0 are real constants.

In case m > 1, the diffusion coefficient mum−1 vanishes at the points where u ≡
0 and the governing parabolic equation degenerates there. The set of such points

is called the interface. The equation (1.1) exhibits the finite speed of propagation

of initially compact support. If the absorption term cup is absent and if m > 1

the equation (1.1) is well-known as porous medium equation. In the presence of

this reaction term the equation (1.1) desribes the nonlinear fluid-transfer process

with an absorption. The influence of both absorption and degenerate diffusion

terms makes the dynamics of interfaces complicated and difficult to study from
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both theoretical and computational point of view ([HV], [CMM], [Ke], [RK],

[MNT], [N], [T], [TM]).

Let us consider the problem (1.1)–(1.3) with m > 1, c > 0 and a nonnegative

initial function u0(x) with the compact support S(0). For one dimensional case, the

qualitative behaviour of S(t) is classified into the following three cases depending

on the relation bettween m and p (see [HV], [N]):

(i) for p ≥ m, S(t) expands as t inscreases and S(t)→ R1 as t→∞,

(ii) for 1 ≤ p < m, S(t) also expands and there exists a bounded set B ⊂ R1

satisfying S(t) ⊂ B, for all t ≥ 0,

(iii) for 0 < p < 1, S(t) is a compact set in R1 and there exists a positive

number T ∗ <∞ such that S(t) 6= ∅ on [0, T ∗) and S(t) = ∅ on (T ∗,∞).

T ∗ is called an extinction time of a solution u and the behaviour, such

as (iii), is known as finite extinction phenomenon. There are several nu-

merical schemes treating this type of behaviour. Interface tracking scheme given

in [T], aproximation from [RK] and Nakaki’s scheme from [N] are successfull in

the case (iii), but its effectiveness is limited by N = 1. Our implementation of the

approximation scheme of W. Jäger and J. Kačur yealds the results of comparable

degree of accuracy in one dimensional case and we compute effectively the finite

extinction phenomenon also for higher dimensional problems.

2. Used Approximation Scheme

For numerical computations presented in part III we have used the approxima-

tion scheme suggested in [JK1] for solving general slow diffusion systems. This

scheme originates in the work [MNV] in which the nonlinear Chernoff formula

was used to treating the nonlinearity (see also [BBR]). The approximation has

been later addapted to solve Stefan-like problems ([KHK]), fast diffusion and de-

generate doubly-nonlinear problems ([JK2], [JK3]), and the convergence results,

concerning our problem, have been improved ([KHK]), too.

Let us denote

β(s) ≡ sm, f(s) ≡ s
p
m ,

γK(s) =

{
s, if 0 ≤ s ≤ K,

K, if s > K,
K ≡ const.

The approximation scheme from [JK1] is the following:

Let n ∈ N, τ = T
n

, ti = iτ for i = 0, . . . , n, u0 = u0(x), θ0 = β(u0) and

0 < α < 1. For i = 1, . . . , n we look for functions µi ∈ L∞(Ω) (0 < µi(x) ≤ K), θi
such that

(2.1) µi(θi − β(ui−1))− τ∆θi = τf(β(ui−1))
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satisfying the “convergence condition”

(2.2) |β(ui−1 + µi(θi − β(ui−1)))− β(ui−1)| < α|θi − β(ui−1)|.

Then the function ui is obtained by the algebraic correction

(2.3) ui := ui−1 + µi(θi − β(ui−1)).

The scheme in this form is implicit according to a couple θi, µi satisfying simul-

taneously (2.1) and (2.2). We seek them iteratively in a finite number of steps.

For this purpose, we use the following iterations suggested in [JK1]

(2.1′) µi,k−1(θi,k − β(ui−1))− τ∆θi,k = τf(β(ui−1)),

(2.2′) µi,k = γK

[
β−1(αθi,k + (1− α)β(ui−1))− ui−1

θi,k − β(ui−1)

]
,

starting with

(2.2′′) µi,0 = γK

[
1

β′(ui−1)

]
.

These iterations converge to the required couple — see [JK1] (in practice the

convergence is very fast); then we construct the Rothe functions

u(n)(t) = ui−1 + (t− ti−1)
ui − ui−1

τ
, for ti−1 ≤ t ≤ ti, i = 1, . . . ,

θ(n)(t) = θi−1 + (t− ti−1)
θi − θi−1

τ
, for ti−1 ≤ t ≤ ti, i = 1, . . . ,

for which it has been proved (see [JK1], [KHK])

u(n) → u in L2(I, L2), θ(n) → β(u) in L2(I, V )

where u is a weak solution of (1.1)–(1.3), and V is the corresponding Sobolev

space.

Starting with a nonnegative initial function, nonnegativeness of a solution of

(1.1) is conserved for all later time ([HV]). For expanding core region, the prop-

erty is guaranteed also in practical numerical computations (we don’t use any

supplementary meanings for this purpose). The situation is more difficult if c > 0

and the support of the solution is shrinking and the solution finally extincts in

a finite time. For shrinking interfaces the original scheme (2.1)–(2.3) yealds nu-

merical solutions which are slightly negative beyond the theoretical interfaces. In

that case we cut the solution and in each time step we use the “modified algebraic

correction”

(2.4) ui := [ui−1 + µi(θi − β(ui−1)]+.

After time semidiscretization, the scheme requires to solve a linear reaction-

diffusion equation (2.1′). At this point we can use the finite difference, finite

element or finite volume method for space discretization to obtain the correspond-

ing system of linear equations. We solve the arising system using direct linear

solvers or iteration techniques.
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3. Disscussion on Numerical Results

First we have applied the approximation scheme (2.1)–(2.4) to solve the problem

(1.1)–(1.3) with initial condition given by

u0(x) =

{
((m− 1)a)−1/(m−1)(1− x2)1/(m−1) , |x| < 1,

0 , |x| ≥ 0,

where the constant a is choosen such that u0(0) = 1. In case m+ p = 2, R. Ker-

sner found the exact solution of the previous problem in the explicit form ([Ke]).

Support of his solution is bounded during evolution, so we choose the domain

Ω = [−l, l] in that way to cover its maximal expansion.

Let us consider m = 1.5, p = 0.5, c = 5.0, l = 1.5 and use the method

parameters K = 1020, α = 0.999999, numerical time step τ = 0.001, spatial grid

step h = 0.01 (the classical three points approximation of second order derivative

is used) and 3 iterations (2.1′)–(2.2′). With these computational parameters we

obtain numerical extinction time T ∗N = 0.316, while the exact one is T ∗ = 0.31829.

The relative L1(I, L1) error of the solution was 0.2431 %.
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Figure 1. Comparison in x-t plane of the exact and numerical supports,

starting from special Kersner solution.
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Figure 1 shows the time evolution of the numerical and exact Kersner’s inter-

faces. Initially, the support of both solutions is interval [−1, 1], then supports

expand and after certain time moment both supports shrink to the extinction

point (numerical extinction is slightly faster).

In the repeated experiments with smaller time step τ = 0.0001 the numerical

extinction time T ∗N was 0.3179 and the relative L1(I, L1) error was 0.0261 % and

with τ = 0.00001 we obtain T ∗N = 0.31826 (very near to the exact one), the relative

L1(I, L1) error 0.0048 %.

In the next experiment for m = 1.9, p = 0.1, c = 0.5, l = 2, τ = 0.001 and with

the same other method parameters we obtain the numerical extinction time equal

to 1.194 while the exact one is 1.1939.
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Figure 2a. Time evolution of the special initial profile.

Figures 2a–b show another interesting behaviour — nonmonotonous splitting of

the support. This problem was studied theoretically e.g. in [CMM]. Let us choose

the initial condition as the highest profile in Figure 2a. So we have S(0) = [−2, 2]

and u0(x) has small positive values in the neighbourhood of 0. Then the number

of connected subregions of the support may change several times during evolution

(Figure 2b). First splitting appears in time 0.014, the support is again connected

at 0.094, the second splitting occurs in time moment 0.225. The solution finally

extincts at two points in different times. The copmputational parameters for this
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Figure 2b. Double splitting of the initially connected support

from Figure 2a, plotted in x-t plane.

experiment: m = 1.5, ν = 0.5, c = 1.4, l = 2.1; α = 0.999999, K = 1030, h = 0.01,

τ = 0.001, 5 iterations (2.1′)–(2.2′).

Let us consider the problem (1.1)–(1.3) in Ω ⊂ R2 (Ω be a square [−l, l]×[−l, l]).
Let m = 2, p = 0.5, c = 5, l = 1.2. Starting computation from initial function

given by

(3.5) u0(x) =

{
1 , x = 0, y = 0,

[1− (x2+y2)2

(x6+y6)1/2 ]+ , x 6= 0, y 6= 0,

(plotted in Figure 3a), we obtain evolution of the initial support graphically doc-

umented in Figure 3b. During small expansion the support is smoothed and then

successively decreases. Obtaining the circle shape, it eventually shrinks to the

central point. The computational parameters:α = 0.999999, K = 1025, 3 itera-

tions (2.1′)–(2.2′), τ = 0.001, h = 0.03 (we use five point scheme to approximate

Laplacian).

Choosing initial condition as in Figure 4a (four hills with nonequal heights),

the initially connected support successively separates to the several parts. Each of

them finally extincts in a finite time (Figure 4b). For this example m = 2, ν = 0.5,

c = 10, l = 2.8, τ = 0.002, h = 0.035 and other parameters are the same as in

previous one.
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Figure 3a. Initial profile.

t=0.12 t=0.18 t=0.22

t=0 t=0.02 t=0.06

Figure 3b. Support evalution of the numerical solution.
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Figure 4a. Initial profile.

t=0.07 t=0.09 t=0.11

t=0 t=0.03 t=0.05

Figure 4b. Support evalution of the numerical solution.
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Figure 5a. Initial profile.

t=0.04 t=0.05 t=0.052

t=0 t=0.005 t=0.02

Figure 5b. Support evalution of the numerical solution.



182 K. MIKULA

Figure 6a. Initial profile.

t=0.052 t=0.053 t=0.054

t=0 t=0.02 t=0.04

Figure 6b. Support evalution of the numerical solution.
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Figures 5a–6b show the interesting dynamics property computed by approxi-

mation scheme (2.1)–(2.4). If the solution starts from the special initial condition

such as in Figure 5a, the extinction set of its support is the circle. This process

can be seen in Figure 5b. On the other hand, if we make a small perturbation of

the initial condition such as in Figure 6a, the dynamics is different. Figure 6b in-

dicates that in this case the support shrinks to a point. The analytical conjecture

of H. Matano, that generically the point is an extinction set for arbitrary initial

condition, has been tested by these experiments. This effect is also a demonstra-

tion of the property of a finite speed of propagation of disturbances in the model

(1.1)–(1.3) (for m > 1). Because of this fact the perturbation has no influence to

certain part of the domain during evolution and there exists a time moment when

the numerical solution extincts locally in a part of the circle and then the rest

extincts in a point. In both experiments we have m = 2, ν = 0.5, c = 10, l = 2,

τ = 0.001, h = 0.025, K = 1025, α = 0.999999, 3 iterations (2.1′)–(2.2′). In the

first case the numerical extinction time was equal to 0.053, in the second case it

was 0.055.
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