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TRACKING INVARIANT MANIFOLDS
WITHOUT DIFFERENTIAL FORMS

P. BRUNOVSKY

Abstract. We present a dierknt proof of a result of Jones et al. [3] concerning
the inclination of invariant manifolds of singularly perturbed di[erkntial equations
at exit points from neighborhoods of the “slow manifolds” of such systems.

A frequently studied problem of geometric singular perturbation theory consists
in establishing the presence of trajectories of certain types (homoclinic, hetero-
clinic, satisfying given boundary conditions, etc.) approximating singular ones for
the unperturbed problem. A useful tool for this problem has been established in
Jones et al. [2] and called “Exchange Lemma” by the authors. It resembles the
well known A-lemma (Palis et al. [4]) with critical elements of a dynamical system
replaced by “slow manifolds” of a singularly perturbed di Lerential equation. The
degeneration of transversality in the unperturbed equation in important applica-
tions lead the authors of Jones et al. [3] establish a more precise version of the
Exchange Lemma.

The proof of the Exchange Lemma of Jones et al. [2], [3] involves di [erential
equations for the evolution of dilerkntial forms of tangent vectors along trajec-
tories. The purpose of this paper is to present an alternative proof which avoids
di Lerential forms. We believe that, except of being more elementary, it provides
additional insight into the geometry of the problem.

We refer the reader to Jones et al. [2], [3] for the motivation and the application
of the Exchange Lemma. In order to facilitate the comparison of our result to Jones
et al. [2], [3] we use freely their notation whenever possible.

As in Jones et al. [2], [3] we consider a singularly perturbed system

(D) ex =f(x,y,¢€)
y=9(X,y,¢)

with x CR™, y [RI", 0 <& [Iand f,g being C2. As usual, by a change of the
time scale we can transform the system (1) into the regularly perturbed system

(2 x"=f(x,y,€)
yr=eg(x,y,€), O=<e 11
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We assume that Sg is a normally hyperbolic connected manifold of stationa-
ry points of the system (2) for € = 0, i.e. f(x,y,0) = 0 for (x,y,0) [J, and
Dxf (X, y,0) does not have eigenvalues on the imaginary axis. As argued in Jones
et al. [3], for 0 < ¢ [Tthere is a family of normally hyperbolic manifolds
Se approaching Sp for € — 0 in a C* way. Using the “Fenichel coordinates”
(Fenichel [1]), in a su Cciehtly small neighbourhood of S¢ the system can be trans-
formed to the form

a"=A(a,b,y, e)a, dima =k
©) b"=Tr(a,b,y, )b, dimb =1
y“=€[m(y,€) + h(a,b,y,e)ab],  dimy =n

for z := (a,b,y) CQa := {|a] CA |b] CA} n Q, where A and € are su Lciehtly
small, Q is a fixed compact region,

ReA > A >0, for A Cspectrum of A(a,b,y, €)
Rey <yo <0, for y [Cspectrum of '(a,b,y, €)

and h(z(t),€)(:, ) is a bilinear form.

In these coordinates S; is represented by the plane a =0, b =0, k, | are the di-
mensions of the invariant subspaces of Dxf(X,y, 0) at (X,y,0) S} corresponding
to the part of the spectrum right resp. left to the imaginary axis (note that due
to normal hyperbolicity they have to be the same over Sp and we have k+1 = m).

Note that in Jones et al. [2], the factor b does not appear in the second term of
the third equation of (3). The possibility to reduce this term to become bilinear
in a,b allowed the authors of Jones et al. [3] to improve the estimates of Jones et
al. [2].

As in Jones et al. [2], [3] we write z = (a,b,y). We understand the norms
lal, |bl, ly| to be Euclidean and define

1z| = la] + [b] + |y|.

We assume that m(y, €) is parallelizable over So n Q to U = (1,0,---,0). We

can now formulate the

Exchange lemma (Jones et al. [3]). Let {M.}, 0 < € [Ibe a family of
(k + 1)-dimensional invariant manifolds of (3) intersecting the subspace a = 0
transversally at p. = (0,58,)78) of Qa where pe - po for € — 0 Assume that for
€ - 0 the transversality has the following asymptotics:

There is a neighborhood V of po such that, for each p CMmnV, ToMgontains a
subspace E—of codimension 1 transversal to (at/'b5'yY such that for (3a, 8b, dy) [CH—
one has

(4) |ob] + [dy| = O(e™")Ida]

uniformly in p CM¢ nV for some r > 0.
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Fix | >0 and let p = (3, b, y) [M¢ nV be a point whose trajectory z(t) stays in
the set Q n {Ja] < A} for time T = I/e. Then, Mg is uniformly O(s~"/¢) C*-close
to the manifold b =0, y; =¥; for i > 1 at q = z(T) for some p > 0.

Note that our formulation of the lemma is somewhat di [erknt to Jones et al. [3].
We include the asymptotics of the transversality for € —» 0 (which in Jones et
al. [2], [3] appears in the comments only) explicitly into the formulation of the
lemma. Further, we correct an obvious misprint — the y;, i > 1, components of
the points of the manifold M at g are close to their initial values at p, not to 0.

Geometrically, assumption (4) means that the angle between T,Mand {a = 0}
is larger that C [MIfor some C > 0; note that

angle (T,M{a = 0}) = angle (Zn TpMm=Zn {a = 0}),

where > —jis the codimension 1 plane orthogonal to the 1-dimensional subspace
TpMrn {a = 0}. Most e Lciehtly, one can choose E—= Tp,Mrn E- More simply,
one can take Eas an intersection of T,Mwith some fixed codimesnion 1 subspace
transversal to the flow, e.g. the tangent plane to Mn {|b| = |EE|} if bo B 0.

The following simple lemma will be used several times in the proof of the the-
orem.

Lemma. Let a <0 < B, &, R. Assume that &(t) is nonnegative di [erkntiable
and satisfies

L1 1
g = o+gePCDE®M) &) +ge™

for0<t<T, >0 and

€(0) = &.
Then, for su Lciehtly large T and su Lciehtly small { > 0 we have
[ 2 [
F)=et &H-

Proof. Fix ¢, n > 0 and choose T so large that

= 2( - a
(5) 2Pt Mest g, — 3 <—3 forostsT.
While t = 0 is such that
B(t—T) 1
(6) a+ Ze E(t) < EG,

we have o
< EE + Zeot,
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Integrating this inequality, for such t we obtain

1 ) 1
™ f0 <ot g2

Because of (5) and (7), by contradiction it follows that (6) and, hence, also (7)
remains valid for all 0 <t < T which proves the lemma. 1

Proof of the Theorem. For the simpler C° part of the Exchange lemma we refer
the reader to Jones et al. [3, Lemma 3.1]. In particular, we note that from Jones
et al. [3, Lemma 3.1] it follows

@®) la(®)| = O(Ae* ) and |b(t)] = O(AeY).

To establish the C! extension we have to prove that the tangent plane of TqMe
tends to the subspace b = 0, y; = 0,i > 1 for € - 0 with rate e ?/¢, In other
WOde, 1 .,
[b] +  [8yi| = O(e™P"*)(|8al + |dy])

i>1
for all 3z = (da, b, dy) [ThM¢. The space TqMg is spanned by vectors 3z (T) such
that dz(t) = (da(t), 6b(t), dy(t)) are solutions of the linearized equation

sal= A(z(t), £)5a + D, A(z(t), £)dza(t)
) 8b™= I(z(t), £)3b + D, M (z(t), £)5zb(t)
3yP= e[h(z(t), £)3ab + h(z(t), £)adb + D,h(z(t), DBzab]

satisfying 6z(0) [CThMe.

The idea of the proof is simple. The vectors dz(T) with 6z(0) CHform a k-
dimensional subspace N¢ of TqM¢. Because of the estimate (4) and the exponential
stretching of da(t), the da-components of the vectors of N dominate the remaining
components by a factor proportional to e®’¢. Therefore, N¢ has a complement
vector in TqMg with da = 0. Integrating (9) backwards we see that for this vector
da(t) remains O(e~*/¢)-small compared to the remaining components of z(t) for
all 0 =t=<T. Integrating (9) once more forward we find that, if 5z CThM, and
da = 0 then dy; dominates the remaining components of 8z by a factor proportional
to eP’. A combination of this estimate with the estimate on the vectors of Ng
concludes the proof.

We now give the details of the proof. As indicated by its outline, unlike in Jones
et al. [2], [3], we will estimate uniformly the ratio of the norms of components of
individual tangent vectors from several linear subspaces of solutions of (9). In
order to facilitate these estimates we introduce a y-dependent norm of the a and
b components as follows:



TRACKING INVARIANT MANIFOLDS WITHOUT FORMS 27

We define

[
(10) Al = e P0t|eN0.0Y. 0y it

1>
M= e Yot e ©0Y.0%| gt

0

Because of the uniform convergence of the integrals the norm

[Z1Z (@l [T+ y|

depends smoothly on y and is uniformly equivalent to |z|.
For a solution 0z(t) = (6a(t),db(t),dy(t)) of (9) along the solution z(t) =
(a(t), b(t), y(v)) of (3) in Qa we have uniformly

(11) [BB(t+T) Lodrsry— [BB(L) Lidy = [BB(t+T) Ldey — [AB(t) gy +O(eT) [@B(L) Ly -
Further, we have (the arguments of (0, 0,y, 0) dropped)

(12)  [BB(t + 1) Gy — [BB(E) Ly
< [E1"8b(t) Gy — BB(E) ey + CT(T (2(1), €) — I) Ly BB(E) [T
+ T {z(t), €) LCIBA() Lydry + [AB(L) Lydy + 18y (H)[) (L) DH- o(T).

From (10)—(12) it follows
% LE0(T) Lydey <Y [AB(L) Ly + O(Ib (1)) (LEA(L) Ly + I8y (Dl ry)
where
(13) Yy =Yo+sup[|F(a,b,y,€) —T(0,0,y,0)| + O(A) [z, &) I3 0(g) < 0
[OFN

provided A and € are su [ciehtly small. Similarly one proves

(14) S BAOe = MWD g — OUaONIBHEO) [y + By(Dlyco)
(15)  SEDLL = AEOG, I Gk < VO

for ¥ < 0 possibly larger than in (13) and some A > 0.
Since we see no danger of confusion we drop the subscript of the norm [Iih
the sequel.

INote that by employing (15) the proof of the C°-exchange lemma ( Jones et al. [2, Propo-
sition 3.1], [3, Lemma 3.1]) can be slightly simplified as well.
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We continue the proof by two estimates on the vectors of ToMe. We assume that
A has been chosen so small that (12), (15) holds with y < 0 < A for su [ciehtly
small € > 0.

First, we prove

[eY

:OS_Zr_Z
Bal +oy] ~ O€ )

(16)

for each 0 8 6z = (8a, db, dy) [CT}hMe.
Each 6z [CHcan be written in the form

(17) 5z = ad+ pz”
with 82+ (JaIbl)—HHB such that 1 and zP= (a bty from (3). By

linearity, it su [ced to prove the result for thecase 0=a<1, B =1—a.
Since [#aE=311, by assumption we have

(18) |¥p<IKe™", [@BHx Ke™.
In addition, we have
(19) ke<|yf=Ke, |pf=K
and, by (8) and (9),
(20) &t = O(E) k& O V%)
for some K > 1> Kk.
Hence, we have
@] _ K(+e™")
Rar [oy| — D
with D = o + |ady—+41 — a)y— @H

If a=€"*2, (16) follows immediately from (20).
If a <e™2, from (18)-(20) it follows

1 1 _x
D= 1—¢™*2 ke—e™2Ke " —0(e %) = %ks —0(?).
Hence (16) holds in this case as well.
As the second initial estimate we prove that for each 8z = (da, db, dy) [ThM¢
such that

1) A= O(e™ = )([3b = [3y|)
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for some Ay (0, )_\) we have

 — i
(22) 8yi| = O(e™ =)Idy|

i>1

for some 0 < A, < Aq.
To carry out the proof we express 6z as

8z = 8z pz"”
with 8z21FEl;; z5from (3) and p CRL By (4) and (21) we have

o |d<lo(e™") e O(s_r)(E@E} lollah
< O(e")([@AF |p|O(e M%)
< O(e")O(e ™M ) (&b [ |3y + |pl)

< O(e™ /%) (e [t-+pl),

hence ] -
vt e |yl T— O(e™22/8) " O(e™2/%)|p| = O(e~*=/%)|p]|
for some 0 < Az < A;. Thus we have .

8y = py " dy=Lp U+ 0@ 7%)

which implies (22).

Using the lemma we now turn (14), (16) and (22) into estimates for the tangent
vectors along the trajectory of p and eventually for the vectors of TqMe.

For a solution 6z (t) = (da(t), db(t), dy(t)) of (9) with 0 8 6z(0) [CHwe denote

. [ab(t) L [3y (1)
u(t) = — mOO

We have

@) u= e (I oyl - p

< 2 [(7 + O(A) B [+ O(TEIUBHIH [oy) + O(THIYT [5a 1]
+ £ [O(IBTNUIBAH (B y]) + O(EDTBHIT
+ E%D?—X + O(A) BALH O[T dy| + 0T

< (a+ O([@DM) + O([BI}]

where a :=y — A+ 0O(A) < 0 for A su Lciehtly small.
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From (4), (8) and the Lemma we conclude

[aB(t) L+ |0y (1)

=O(s 'e?t <t<
a0 O(e "ez"), for0=st<T,

(24)
provided (da(0), db(0),dy(0) [CHand ¢ is su Lciehtly small (so T = /¢ is su =1
ciently large). In particular, we have

(3B T+ [oy|

(25) Gl

= 0(e™™%)
for some A4, > 0 and every (da,6b,dy) [N, where N—= {0z(T) : dz(t) is a
solution of (8) with z(0) [CH,

In a similar way, we estimate

[ab(t) [

Y0 = T Byl

for 3z(0) = (da(0), db(0), 6y(0)) CThMe. As for y, for v we obtain the di [erential
inequality (23). Applying the Lemma, from this inequality and (16) we obtain

)1 _ O(e~2~2¢5Y)

(26) a0 L By (D]

for0=st<T and
(27) BB = O(e™ /%) (da [+ |dy|)

for some As > 0 and all (3a, db, 8y) [T}hMe.
Since TqM¢ has dimension k + 1 and, because of (25), has a k-dimensional
subspace projecting to the subspace a = 0 isomorphically, there exists a nonzero

vector (0,3,n) CTHMe.
Using the Lemma backwards in a similar way as it was used forwards to obtain

(24) and (26) one concludes that if dz(t) = (da(t), db(t), dy(t)) is a solution with
3z(T) = (0,B,n) CI}M; then

(28) [(t) [= O(eP~T))([aB(t) L |8y (1)])

for some 3 > 0 and

GAO) ] _ o nusey

(29) [BB(0) L=+ [0y (0)]

for some A; > 0.
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By (22), for 3z(0) T} Mg satisfying (29) we have
1
(30) 18yi(0)] = O(e™/%) [8Y1(0) [
i>1
Further, for 4z(0) satisfying (29), from (27) it follows
[Ba(t) (= O(eP™ T))%Sﬁ(t) L 13y (D))
= 0(eP" 1) O(e™>%e2") (A (= [By (1)) + I5y(t)l

hence
(1 = r(t)) Ba(t) = O(eP*~ 1)) %(8‘2“26%5 + 1|:I|6y(t)l

where r(t) = O(eP®De2r~2e8%) < 1 for & su [ciehtly small (hence T = I/¢
large). Thus,

(31) [Ba(t) [(Z 0(eP+ D)3y (1)
for some B; > 0 and, by (24),

O . . .
(32) [BB(H) (= O(e>"2e2%) [oy(D)].

From (31), (32) we obtain

(33) loy|"= O(e)[%LbJL)ME O([al)lan [+ O(alhn)by|]
= 0(g) O(e")0(eP* ) + 0@ )02 2e%t)
]
+ 0(e")0E ™)) [oy|
= O(e/%)3y|

Since the integral of the square bracket of (33) is bounded on 0 <t <T indepen-
dently of € > 0, integrating we obtain

(34) 1oy ()] = O3y (0)])
Substituting (34) into (33) and integrating once more we conclude
By(T) = 8y(0)| = O(e™/*)|8y(0).

Therefore, we have
By(T) = (1+ O(e™%’¢))dy(0)

and by (30)

1 e
(35) [nil = OE™"""*)In1l

i>1
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for some A7 > 0. Summarizing, we conclude that any vector (da, db, dy) LTHM
satisfies

(36) [3h (= O(e /%) (A |3y[)
by (27) and can be written as

(37) (3a, b, 8y) = (da-8bL8)+g(0, B, n)
with ¢ CR, where (Ja- 3518 )HN, satisfies

(38) (a4 |dhy-=1o(e /%) (e
by (25) and n satisfies

—Az/
) il < O(e™"/)Inal.
i>1
Denote p = min {A4, As, A7}. From (37) and (38) it follows
(40) lan1| < |8y1| + |8¥+D |8y:| + O(e™*/F) !

= |3y1| + O(e™ /%) [Ba ]
Using (40), from (36)—(39) we obtain
1 I 1
BBCH  |dyi| < O(eF)Bar® IT#IIIQI il
i>1 i> i>

i 1 1
< O(e™™*)[[BALF [anal]
< O(e™™*)[[BA L |Bya].

This completes the proof. 1

Remark. After this paper was finished the author got acquainted with the
PhD. thesis of Tin [5] in which the Exchange Lemma is extended to manifolds
M¢ of dimension higher than k + 1. Our proof seems to extend to the latter case
without problems.
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