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PREDICTIONS IN NONLINEAR REGRESSION MODELS

F. ŠTULAJTER

Abstract. Different predictors and their approximators in nonlinear prediction
regression models are studied. The minimal value of the mean squared error (MSE)
is derived. Some approximate formulae for the MSE of ordinary and weighted least
squares predictors are given.

1. Introduction

Theory of prediction is usually considered in linear regression models and there

exist a lot of literature dealing with these problems, a.g. Journel (1977), Journel

and Huijbregts (1978), Harville (1990) and others.

An open problem in this topic of prediction is the problem of finding an exact

expression for the mean squared error of prediction in the case when the covariance

characteristics of the prediction model are unknown and must be estimated from

the data. Some approximate formulae for this case are given in Harville (1990),

Harville and Jeske (1992), Bhansali (1981) and others.

In this time there is a lack of knowledge on methods of prediction and their

properties in nonlinear regression models. The main reason for this fact probably

is that the theory of parameter estimation in nonlinear regression models was

developed mainly for uncorrelated errors. Some results of the author and others,

see Štulajter (1992), Gallant (1987), Pázman (1993) show that the usual least

squares estimators of regression parameters behave well (under some conditions

similar to those known for uncorrelated errors) also for correlated errors, at least

asymptotically. This is the reason for using these estimates also in problems of

prediction.

These problems will be studied under the assumption that the covariance pa-

rameters of the prediction model are known. Althought there are some results

about estimation of covariance parameters in nonlinear regression models, see

Štulajter (1994), the problems of prediction with estimated covariance parame-

ters are not solved even in linear regression models and thus we’ll not study these

problems in nonlinear regression models.
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72 F. ŠTULAJTER

The main effort of this article is to give (approximate) expressions for a class

of predictors of a special type in a nonlinear regression model.

Let us consider the following prediction problem. Let us assume that observed

random variables X(t); t = 1, 2, . . . , n follow the model

(1) X(t) = f(t, θ) + ε(t); t = 1, 2, . . . , n

where f is a known function, θ is an unknown regression parameter, θ ∈ Θ where Θ

is an open subset of Ek and ε(·) are (random) errors with E[ε(t)] = 0, E[ε(s)ε(t)] =

R(s, t); s, t = 1, 2, . . . , n, where R(·, ·) is a known covariance function of X =

{X(t); t = 1, 2, . . . }. Let U be an unobservable random variable withEθ[U ] = g(θ);

θ ∈ Θ , where g is a known function and let r(t) = Cov (U ;X(t)); t = 1, 2, . . . , n

be also known.

The problem is, on the base of X(1), . . . ,X(n) to predict the unknown random

variable U and to find the mean squared error of prediction Eθ[U − Ũ ]2 of some

predictor Ũ .

Let us denote by X the random vector X = (X(1), . . . ,X(n))′, let f(θ) =

(f(1, θ), . . . , f(n, θ))′; θ ∈ Θ, ε = (ε(1), . . . , ε(n))′ and r = (r(1), . . . , r(n))′.

Then the prediction regression model (PRM) can be written as

X = f(θ) + ε; E[ε] = O, E[εε′] = Σ,

U = g(θ) + κ; Cov (ε;κ) = Cov (X;U) = r; θ ∈ Θ
(2)

where Σs,t = R(s, t); s, t = 1, 2, . . . , n. Let us assume that Σ is a positive definite

matrix.

Definition. We call the prediction regression model linear if

(3) f(θ) = Fθ and g(θ) = Gθ; θ ∈ Θ

where F is an n×k and G an 1×k known matrix. If the PRM is not linear we call

it nonlinear. We call the PRM Gaussian if (X′, U)′ is a Gaussian random vector.

In the sequel we’ll investigate properties of predictors Ũ which are given by

(4) Ũ(θ̃) = g(θ̃) + r′Σ−1(X− f(θ̃))

where θ̃ are some estimators of θ in the prediction regression model (2).

Example. Let us consider a time series X = {X(t); t = 1, 2, . . .} with a mean

value function

mθ(t) =
l∑
i=1

αi cos(tγi + βi); t = 1, 2, . . .
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depending on the regression parameter θ = (α1, . . . , αl, β1, . . . , βl, γ1, . . . , γl)
′ and

with some known covariance function R(·, ·). Let X = (X(1), . . . ,X(n))′ be a

finite observation of X and let U = X(n + 1). The problem is to predict the

unknown future value of the time series X using the observation X . Then

f(t, θ) = mθ(t); t = 1, 2, . . . , n, g(θ) = mθ(n+ 1)

and, if X is covariance stationary with a covariance function R, Σs,t = R(s − t)
and r = (R(n), . . . , R(1))′.

The motivation for using the predictors Ũ given by (4) is in the next section.

2. Predictors in Prediction Regression Models

Let us consider the prediction regression model (2) with r and Σ known, Σ a

positive definite matrix. The dependence of f and g on θ can be linear or nonlinear.

Let Ũ be any, generally nonlinear, predictor of U . Then the mean squared error

of predictor is given by

MSEθ[Ũ ] = Eθ[U − Ũ ]2(5)

= D[U ] +Dθ[Ũ ] + (Eθ [U)−Eθ[Ũ ])2 − 2Cov (U ; Ũ); θ ∈ Θ.

The MSEθ[Ũ ] of a predictor Ũ does not depend on θ, the mean value parameter,

iff the variance of Ũ does not depend on θ and Ũ is an unbiased predictor that

means Ũ is such that

Eθ[Ũ ] = g(θ) for all θ ∈ Θ.

Now, let us consider a linear predictor Ũ of U of the form

Ũ(X) = a′X + b, where a ∈En, b ∈ E1.

Then we have

Eθ[Ũ ] = a′f(θ) + b; θ ∈ Θ

and the unbiasedness condition for Ũ is given by

(6) a′f(θ) + b = g(θ) for all θ ∈ Θ.

For a linear prediction regression model, with f and g given by (3), the unbiased-

ness condition (6) can be written as

a′Fθ + b = Gθ; θ ∈ Θ,

or equivalently as

F′a = G′, b = 0

and this condition can be always fulfilled if F has rank k.
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For given nonlinear regression functions f and g the condition (6) need not

be fulfilled (for all θ ∈ Θ) and thus for a nonlinear prediction regression model

unbiased estimator in general need not to exist.

Now, let θ0 be a fixed value of the parameter θ. Then there exists a class U0 of

linear locally (at θ0) unbiased predictors of U given by

U0 =
{
Ũ = a′X + b; b = g(θ0)− a′f(θ0); a ∈En

}
.

For a predictor Ũ ∈ U0 we have:

MSEθ0 [Ũ ] = D[U ] +D[Ũ ]− 2 Cov (U ; Ũ) = D[U ] + a′Σa− 2a′r

and this MSEθ0 [Ũ ] is minimized, with respect to a, by setting a = a∗ = Σ−1r. To

this a∗ we have the corresponding predictor U∗0 = (a∗)′X + g(θ0)− (a∗)′f(θ0).

Definition. The predictor U∗0 given by

(7) U∗0 = g(θ0) + r′Σ−1(X− f(θ0))

will be called the best linear locally (at θ0) unbiased predictor (BLLUP)

of U for which we have

(8) MSEθ0 [U∗0 ] = D[U ]− r′Σ−1r.

Remark. It is well known that if (X′, U)′ is a Gaussian random vector then

the linear predictor U∗0 is the best locally (at θ0) unbiased predictor minimizing

the MSEθ0 [Ũ ] among all, not only linear, locally (at θ0) unbiased predictors Ũ .

This predictor has the disadvantage that it depends on the value θ0 which is,

usually, unknown in practice and thus U∗0 can not be used in real situations, not

even in linear prediction regression models.

But, it is well known, see Journel (1977) or Harville (1990), that for a linear

prediction regression model there exists the (uniformly) best linear unbiased

predictor (BLUP) U∗ given by

(9) U∗ = g(θ∗) + r′Σ−1(X− f(θ∗)

where θ∗ = (F′Σ−1F)−1F′Σ−1X is the best linear unbiased estimator (BLUE)

of θ, for which

MSEθ[U
∗] = D[U ]− r′Σ−1r + ‖G′ − F′Σ−1r‖2Σθ∗

does not depend on θ. Here Σθ∗ = (F′Σ−1F)−1 denotes the covariance matrix of

θ∗ and the norm is defined by ‖a‖2Σθ∗ = a′Σθ∗a; a ∈Ek. We see that in linear

prediction models we get the BLUP from the BLLUP by substituting the BLUE

θ∗ for the unknown parameter θ0.

This result motivates us to use the predictors Ũ given by (4) also in nonlinear

prediction regression models. We’ll investigate their properties in the next section.
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3. Properties of Predictors in a PRM

Let us consider the (nonlinear) prediction regression model given by (2) and

let Ũ be the predictor given by (4) with a corresponding mean squared error

given by (5) . Since in nonliner regression models good estimators θ̃ of θ are

nonlinear, predictors Ũ are usually also nonlinear. As a rule, we do not have

an explicit expression for nonlinear estimators and their moments because they

are computed iteratively and thus we can not compute directly the mean squared

error of a nonlinear predictor. The problem is that in (5) the exact expressions

for expectation, variance and covariance of an predictor Ũ depend on θ (which is

unknown) and are unknown. We’ll give some approximations to these expressions

based on corresponding approximations for the functions f and g and for θ̃ which

enable us to give approximate expressions for the MSEθ[Ũ ].

We’ll turn our attention to the following two predictors.

Definition. Let θ̂ be the ordinary least squares estimator (LSE) of θ mini-

mizing ‖X − f(θ)‖2I . Then the predictor Û given by Û = Ũ(θ̂) will be called the

ordinary least squares predictor (OLSEP) of U . Let θ∗ be the weighted LSE

of θ minimizing ‖X − f(θ)‖2Σ−1 . Then the EP U∗ given by U∗ = Ũ(θ∗) will be

called the weighted least squares predictor (WELSEP) of U .

In the sequel we’ll consider the PRM given by (2) with such regression functions

f and g that for every θ ∈ Θ there exist ∂f(t,θ)
∂θ ; t = 1, 2, . . . , k and ∂g(θ)

∂θ .

Let F(θ) denotes the n × k matrix with F(θ)ti = ∂f(t,θ)
∂θi

and G(θ) the 1 × k

matrix with G(θ)1i = ∂g(θ)
∂θi

; t = 1, 2, . . . n; i = 1, 2, . . . k. Then we can, for every

fixed θ0, approximate any predictor Ũ given by (4) by

ŨL = g(θ0) + G0(θ̃ − θ0) + r′Σ−1(X− f(θ0)− F0(θ − θ0))

where G0 = G(θ0) and F0 = G(θ0) . Using the linear approximation θ̃L given by

θ̃L = θ0 + Ã0ε

(where the k × n matrix Ã0 depends on a type of the estimator θ̃ and on θ0) for

the estimator θ̃ we get the linear approximation ŨL,L of Ũ given by

(10) ŨL,L = g(θ0) + G0Ã0ε+ r′Σ−1M̃0ε

where M̃0 = I − P̃0 with P̃0 = F0Ã0.

ŨL,L, expressed in terms of the error vector ε, can be regarded as a local (at

θ = θ0) linear approximation of the predictor Ũ and can be used for computing

an approximate formula for the MSEθ0 [Ũ ] (for any θ0 ∈ Θ). We see from (10)

that ŨL,L is locally (at θ0) unbiased and it is easy to compute, using (5) and some

matrix algebra, that

(11) MSEθ0 [ŨL,L] = D[U ]− r′Σ−1r + ‖G′0 − F′0Σ−1r‖2
Ã0ΣÃ′0
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Now, let us consider the OLSEP Û and the WELSEP U∗. Then ÛL,L , the

linear approximation of Û , is given by (10) with Ã0 = Â0 = (F′0F0)−1F′0 (if we

suppose that F0 has rank k) and

(12) MSEθ0 [ÛL,L] = D[U ]− r′Σ−1r + ‖G′0 − F′0Σ−1r‖2Σθ̂L

where Σθ̂L = (F′0F0)−1F′0ΣF0(F′0F0)−1 is the covariance matrix of the linear

approximation θ̂L = (F′0F0)−1F′0ε of the LSE θ̂.

The WELSEP U∗ of U can be approximated by U∗L,L given by

U∗L,L = g(θ0) + G0A∗0ε+ r′Σ−1M∗
0ε

where

A∗0 = (F′0Σ−1F0)−1F′0Σ−1ε and M∗
0 = I −P∗0 = I − F0(F′0Σ−1F0)−1F′0Σ−1

with

(13) MSEθ0 [U∗L,L] = D[U ]− r′Σ−1r + ‖G′0 − F′0Σ−1r‖2Σθ∗
L

where Σθ∗L = (F′0Σ−1F)−1 is the covariance matrix of the linear approximation

θ∗L = (F′0Σ−1F0)−1F′0Σ−1ε of the weighted LSE θ∗. From the results mentioned

in Section 2 (for linear prediction regression models) we have:

Lemma 1. For the linear approximations ÛL,L and U∗L,L of the OLSEP and

of the WELSEP, respectively, we have the inequalities:

D[U ]− r′Σ−1r ≤ MSEθ[U
∗
L,L] ≤MSEθ[ÛL,L] for every θ ∈ Θ.

Remark. If the model (2) is a linear prediction regression model then Û and

U∗ are linear predictors and

MSEθ[Û ] = MSEθ[ÛL,L] and MSEθ[U
∗] = MSEθ[U

∗
L,L] for every θ ∈ Θ.

The preceding lemma does not tell us how good the approximations ÛL,L and

U∗L,L of Û and U∗, respectively, are. If the PRM is nonlinear, the mean squared er-

rors of these approximations can be substantially different from those of predictors

Û and U∗. In such models we have to use more accurate approximations.

Let us assume that for every θ0 ∈ Θ there exist a k × k Hessian matrix Hg

with the elements (Hg)ij = ∂2g(θ)
∂θi∂θj

|θ=θ0 and for every t = 1, 2, . . . , n the Hessian

matrices H(t) with the elements (H(t))ij = ∂2f(t,θ)
∂θi ∂θj

|θ=θ0 ; i, j = 1, 2, . . . , k.1

1For simplicity of notation we’ll not denote the dependence of the corresponding matrices on
θ0 in the sequel.
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Then we can write

g(θ̃) = g(θ0) + G(θ̃ − θ0) +
1

2
(θ̃ − θ0′)Hg(θ̃ − θ0)

f(θ̃) = f(θ0) + F(θ̃ − θ0) +
1

2

〈
(θ̃ − θ0′)H(t)(θ̃ − θ0)

〉
where 〈α′H(t)α〉; α ∈ Ek denotes the n × 1 vector with components α′H(t)α;

t = 1, 2, . . . , n. Using a linear approximation θ̃L = θ0+Ãε for θ̃ we get a quadratic-

linear approximation ŨQ,L of Ũ given by

ŨQ,L = g(θ0) + GÃε+
1

2
ε′Ã′HgÃε

+ r′Σ−1

(
X− f(θ0)− FÃε

1

2

〈
ε′Ã′H(t)Ãε

〉)
or

ŨQ,L = ŨL,L + Q̃1(14)

where Q̃1(ε) = 1
2 [ε′Ã′HgÃε − r′Σ−1

〈
ε′Ã′H(t)Ãε

〉
] is a linear combination of

quadratic (in ε) forms.

Using the expression E[ε′Bε] = tr (BΣ) which holds for every n× n symmetric

matrix B and for every n × 1 random vector ε with mean value zero and with a

covariance matrix Σ we get

(15) Eθ0 [ŨQ,L] = g(θ0) +
1

2

(
tr (Ã′HgÃΣ)− r′Σ−1

〈
tr Ã′H(t)ÃΣ)

〉)
We see that ŨQ,L is no more (locally) unbiased approximation of Ũ , its bias, as

it follows from (15) depends on θ0, on the approximation matrix Ã and on Hessian

matrices Hg and H(t), t = 1, 2, . . . , n. Of course, it depends also on covariance

parameters r and Σ of the PRM (2).

The MSEθ0 [ŨQ,L] can be computed using (5) and (14).

We get, after some computation

MSEθ0 [ŨQ,L] = MSEθ0 [ŨL,L] +Eθ0 [Q̃2
1] + 2Cov (ŨL,L; Q̃1)− 2Cov (U ; Q̃1).

From this expression we get the following lemma.

Lemma 2. Let the random errors ε and κ in the PRM (2) fulfills the equalities

E[κε′Bε] = E[εtε
′Bε] = 0 for every n × n symmetric matrix B and every t =

1, 2, . . . , n. Then

(16) MSEθ[ŨQ,L] = MSEθ[ŨL,L] +Eθ[Q̃
2
1]; θ ∈ Θ.

Remark. The conditions of Lemma 2 are fulfilled if the PRM (2) is Gaussian.

In this case we can use the equality

E[ε′Bεε′Cε] = 2tr (BΣCΣ) + tr (BΣ)tr (CΣ)

which holds, see Kubáček (1988), for any n × n symmetric matrices B and C.

Using this equality we get, after some computation the following theorem.
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Theorem 1. Let us suppose that the PRM (2) is Gaussian. Then

MSEθ[ŨQ,L] = MSEθ
[
ŨL,L] +

1

4
[2tr (BΣBΣ)

+ (tr (BΣ))2 + r′Σ−1 〈2tr (CsΣCtΣ) + tr (CsΣ)tr (CtΣ)〉Σ−1r

− 2r′Σ−1 〈2tr (CtΣBΣ) + tr (CtΣ)tr (BΣ)〉
]

≥ MSEθ[ŨL,L]

where B = Ã′HgÃ, Ct = Ã′H(t)Ã and 〈ast〉 denotes the n × n matrix with

elements ast; s, t = 1, 2, . . . , n.

Remark. Using the corresponding matrices Â and A∗ for Ã in (17) we get the

MSEθ[ÛQ,L] and MSE[U∗Q,L] of the approximations ÛQ,L = ŨQ,L(θ̂) and U∗Q,L =

ŨQ,L(θ∗) of U .

Till now we have used only linear approximation θ̃L = θ0 +Ãε for the nonlinear

estimator θ̃ of θ. But, as it was shown in Box (1971) and in a more convenient

form in Štulajter (1992), it is possible to use for θ̃ also a quadratic approximation

θ̃Q given by

(18) θ̃Q(ε) = θ0 + Ãε+ Q̃(ε)

where Q̃ is of the form

(19) Q̃(ε) = D̃

(〈
ε′Ñiε

〉
−

1

2
K̃
〈
ε′Ã′H(t)Ãε

〉)
where D̃ is a k× k matrix, Ñi; i = 1, 2, . . . , k are n×n matrices and K̃ is a k×n
matrix.

Thus, using the linear approximation for regression functions f and g and the

quadratic approximation θ̃Q given by (18), we obtain the approximation ŨL,Q of

Ũ given by

(20) ŨL,Q = ŨL,L + q′Q̃

where q is a k × 1 vector given by

(21) q = G′ − F′Σ−1r.

For computing the MSEθ[ŨL,Q] we can use again (5) and (20). We get after

some computation

MSEθ[ŨL,Q] = MSEθ[ŨL,L] +Eθ[(q
′Q̃)2] + 2Cov (ŨL,L; q′Q̃)− 2Cov (U ; q′Q̃).

Comparing ŨL,Q given by (20) with ŨQ,L given by (14) we see that both

“quadratic” terms q′Q̃(ε) and Q̃1(ε) are linear combinations of quadratic forms.

Thus we have, as before, the following lemma and theorem.
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Lemma 3. Let the assumptions of the Lemma 2 are fulfilled. Then

MSEθ[ŨL,Q] = MSEθ[ŨL,L] +Eθ[(q
′Q̃)2].

Theorem 2. Let us suppose that the PRM (2) is Gaussian. Then

MSEθ[ŨL,Q] = MSEθ[ŨL,L] + q′D̃[〈2tr (NiΣNjΣ) + tr (NiΣ)tr (NjΣ)〉

− K̃ 〈2tr (CtΣNiΣ) + tr (CtΣ)tr (NiΣ)〉

+
1

4
K̃ 〈2tr (CtΣCsΣ) + tr (CtΣ)tr (CsΣ)〉 K̃′]D̃′q

≥MSEθ[ŨL,L],

where, as before, Ct = Ã′H(t)Ã.

Remark. We can write:

MSEθ[ŨL,Q] = MSEθ[ŨL,L] + ‖G′ − F′Σ−1r‖2V

= D[U ]− r′Σ−1r + ‖G′ − F′Σ−1r‖2
ÃΣÃ′+V

where the expression for V = E[Q̃Q̃
′
] follows from (22).

It is an open problem to compare the MSEθ[ŨQ,L] and the MSEθ[ŨL,Q].

It is shown in Štulajter (1992) that for θ̂, the OLSE of θ, its quadratic approx-

imation θ̂Q is given by (18) and (19) with D̃ = D̂ = (F′F)−1, K̃ = K̂ = F′ and

Ñi = N̂i with (N̂i)jl =
∑n
t=1(H(t)Â)ijM̂tl; j, l = 1, 2, . . . , n, where, as before

Â = (F′F)−1F′ and M̂ = I− P̂ = I−F(F′F)−1F′. These matrices should be also

used in (22) for computing the MSEθ[ÛL,Q].

Similar expressions can be given also for matrices defining the quadratic ap-

proximation U∗L,Q of the predictor U∗: A∗ = A∗0 and M∗ = M∗
0, where M∗

0

and A∗0 were already defined for U∗L,L, D∗ = (F′Σ−1F)−1, K∗ = F′Σ−1 and

(N∗i )jl =
∑n
t=1(H(t)A∗)ij(Σ

−1M∗)tl; j, l = 1, 2, . . . , n.

A comparison of ÛQ,L, U∗Q.L, ÛL,Q and U∗L,Q with respect to their mean squared

errors is still an open problem.

Remark. It is possible to use quadratic approximations for prediction regres-

sion functions f and g and also for an estimator θ̃ of regression parameter θ.

Doing this we get an approximation ŨQ,Q of Ũ containing terms ε′Ã′JQ(ε) and

Q(ε)′JQ(ε) with J a symmetric k×k matrix, for which we have no explicit formu-

lae for their variances. Thus we have no explicit expression for the MSEθ[ŨQ,Q].

4. Conclusions

In the preceding parts of the article different approximations for empirical pre-

dictors Ũ of U were suggested and their mean squared errors were derived. As
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we’ve already mentioned a comparison of these approximations and their mean

squared errors is difficult, since they depend on the model functions, on the true

value of regression parameter and on covariance characteristics of the prediction re-

gression model. Also a comparison of their mean squared errors with the MSEθ[Ũ ]

is an open problem.

One possibility to clear these problems is to make simulation studies for some

particular regression models (which are also often used in practical applications).

These simulation studies can be used for a comparison of ordinary and weighted

least squares predictors and their approximations. Such a comparison can be

found in Štulajter and Stano. The open problem is also the problem of estimation

the MSEθ[Ũ ], as it is, for a linear prediction regression model, studied in Harville

(1985) and (1990).

The main problem, from the point of view of practical applications, is the prob-

lem of prediction in (nonlinear) prediction regression models with unknown covari-

ance characterics which should also be estimated from the observations. In this

connection the paper of Štulajter (1994) can serve as a base for further investiga-

tions. Another possible approach to this problem is to use a parametric regression

model also for covariance characteristics of a prediction regression model. Some

results on estimation of parameters in such models are given in Gumpertz and

Pantulla (1992).
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