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INVARIANT OPERATORS ON MANIFOLDS WITH

ALMOST HERMITIAN SYMMETRIC STRUCTURES,

II. NORMAL CARTAN CONNECTIONS

A. ČAP, J. SLOVÁK and V. SOUČEK

Abstract. We construct explicitly the canonical principal B-bundles P and their
canonical Cartan connections for all AHS-structures. Our methods are different
from the development in [Tanaka 79] or [Baston 91], in particular they are simpler,
more explicit and transparent. We also compute explicite formulae for the canonical
Cartan connections in terms of the underlying distinguished linear connections.

In the first part of this series, [Čap, Slovák, Souček], we defined almost

Hermitian symmetric structures as ‘second order structures’. Now, we will first

show that any first order structure with the ‘right’ structure group gives rise to

an almost Hermitian symmetric structure in this sense. Basically, the construc-

tion is just the standard first prolongation of G-structures, see [Kobayashi] or

[Sternberg]. Due to the special situation, there is a canonical prolongation which

admits the structure of a principal bundle with the structure group B. Moreover,

it turns out that for all almost Hermitian structures, there exists a unique normal

Cartan connection. We shall present the explicit construction in Section 2. Thus,

the calculus developed in Part I of this series will yield natural operators in all

these cases. Furthermore, we compute explicitly the corresponding deformation

tensors Γ in the last section.

Our results extend those by [Ochiai 70], but his methods using the vanishing

torsion assumption restrict in fact the considerations to the locally flat structures

in many cases, cf. [Baston 91] or [Čap, Slovák 95]. Tanaka’s general devel-

opment certainly covers our existence result, however his approach and aims are

so far different from ours, that we believe to need much more space to refer to

[Tanaka 79] than to present our simple independent proof. Another approach

to the construction of the canonical Cartan connections on certain auxiliary vec-
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tor bundles, thus avoiding the construction of the prolongation, can be found in

[Baston 91].

In the sequel, we shall use the notation and results from Part I of this series of

papers, the citations like I.2.3 mean the corresponding items in that part.

1 The Prolongation of First Order Structures

1.1. Let us recall the setting we work in from the first part of this series of

papers: We start from a connected semisimple real Lie group G whose Lie algebra

g is equipped with a grading g = g−1 ⊕ g0 ⊕ g1. By B we denote the closed

(parabolic) subgroup corresponding to the Lie subalgebra b = g0 ⊕ g1, further

we have the closed subgroup B0 ⊂ B corresponding to g0 and the closed normal

subgroup B1 of B corresponding to g1. Then it is known that

(1) g0 is reductive with one-dimensional center

(2) the map g0 → gl(g−1) induced by the adjoint representation is the inclu-

sion of a subalgebra and an irreducible representation

(3) the Killing form identifies g1 as a g0 module with the dual of g−1.

(4) the restrictions of the exponential map to g1 and g−1 are diffeomorphisms

onto the corresponding closed subgroups of G.

(5) B0 ∩B1 = {e}
(6) B is the semidirect product of B0 and B1,

see [Ochiai, Sections 3 and 6].

Examples of such Lie algebras and the corresponding structures can be found

in I.3.3. In particular recall that there are the classical projective structures, which

occur in this picture as the extremal case of an almost Grassmannian structure.

The projective structures behave rather exceptionally and we will have to treat

them separately.

1.2. Our starting point is a first order B0-structure on a smooth manifold M

of dimension m = dim (g−1), so assume that we have given a principal B0 bundle

P0 → M together with a soldering form θ−1 ∈ Ω1(P0, g−1) which is strictly

horizontal, i.e. its kernel in each tangent space is precisely the vertical tangent

space, and B0 equivariant, so (rb)∗θ−1 = Ad (b−1) ◦ θ−1. This is equivalent to

P0 being a reduction of the (first order) frame bundle P 1M of M , cf. I.3.6. Now

consider the tangent bundle TP0, the vertical subbundle V P0 and the quotient

bundle TP0/V P0. The fundamental vector field map gives a trivialization V P0 '
P0 × g0, while the soldering form induces a trivialization TP0/V P0 ' P0 × g−1.

For a point u ∈ P0 consider a linear isomorphism ϕ : g−1 ⊕ g0 → TuP0 which is

compatible with the two trivializations from above, i.e. such that ϕ(0, A) = ζA(u)

and θ−1(u)(ϕ(X,A)) = X. Via ϕ the exterior derivative dθ−1(u) gives rise to a

mapping g−1∧g−1 → g−1, defined by (X,Y ) 7→ dθ−1(u)(ϕ(X, 0), ϕ(Y, 0)), and we

view this mapping as tϕ ∈ g∗−1∧g
∗
−1⊗g−1, and call it the torsion of ϕ. Now let ϕ̄



II. NORMAL CARTAN CONNECTIONS 205

be another isomorphism compatible with the trivializations. Then there is a linear

map ψ : g−1 → g0 such that ϕ̄(X,A)−ϕ(X,A) = ζψ(X)(u). The difference between

the corresponding maps constructed using dθ−1(u) can be easily computed:

Lemma. In this situation we have:

dθ−1(u)(ϕ̄(X, 0), ϕ̄(Y, 0))− dθ−1(u)(ϕ(X, 0), ϕ(Y, 0)) = −[ψ(X), Y ] + [ψ(Y ),X].

Proof. Using bilinearity of dθ−1(u) and the fact the ϕ̄(X,A) = ϕ(X,A) +

ζψ(X)(u) the difference can be expressed as

dθ−1(u)(ζψ(X), ϕ(Y, 0)) + dθ−1(u)(ϕ(X, 0), ζψ(Y )) + dθ−1(u)(ζψ(X), ζψ(Y )).

Since θ−1 is horizontal and the Lie bracket of vertical vector fields is vertical,

the last term vanishes. On the other hand, the infinitesimal version of the B0-

equivariancy of θ−1 is clearly LζAθ−1 = −ad (A) ◦ θ−1, and again by horizontality

this reduces to iζAdθ−1 = −ad (A) ◦ θ−1. Applying this we see that the first term

from above reduces to −[ψ(X), θ−1(ϕ(Y, 0))] = −[ψ(X), Y ] and similarly for the

second term. �
There is a canonical map ∂ from L(g−1, g0) ' g∗−1 ⊗ g0 to g∗−1 ∧ g

∗
−1⊗ g−1, the

composition of the alternation in the first two factors with the map induced by

the inclusion g0 → g∗−1 ⊗ g−1 obtained from 1.1(2). Using this map, the lemma

above just says that

dθ−1(u)(ϕ̄(X, 0), ϕ̄(Y, 0))− dθ−1(u)(ϕ(X, 0), ϕ(Y, 0)) = −∂(ψ)(X,Y ).

Thus the above construction gives rise to a well defined function

P0 → (g∗−1 ∧ g
∗
−1 ⊗ g−1)/∂(g∗−1 ⊗ g0),

called the structure function of the B0-structure.

1.3. The map ∂ : g∗−1 ⊗ g0 → g
∗
−1 ∧ g

∗
−1 ⊗ g−1 from above is the differential

in the Spencer cohomology, the cohomology of the abelian Lie algebra g−1 with

values in the representation g. It is a crucial fact for the computation of this

cohomology that there is an adjoint ∂∗ : g∗−1 ∧ g
∗
−1 ⊗ g−1 → g∗−1 ⊗ g0, defined by

(∂∗ϕ)(X) =
∑
i[Z

i, ϕ(Xi,X)], where {Xi} is a basis of g−1 and Zi is the dual

basis of g1, see 1.1(3). It turns out that there is an inner product on g such that

∂∗ is the adjoint of ∂, see [Ochiai, Proposition 4.2]. Thus the kernel Ker(∂∗) is a

complementary subspace to the image of ∂.

Note that all spaces occurring in the above considerations are in fact g0-modules.

It is easy to verify that both ∂ and ∂∗ are in fact homomorphisms of g0-modules.

In particular, this implies that Ker(∂∗) is even a complementary g0-module to the

image of ∂. This will be crucial in the sequel.
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1.4. Now we define P to be the set of all linear isomorphisms ϕ : g−1 ⊕ g0 →
TuP0 as in 1.2 such that ∂∗(tϕ) = 0. It is easy to see that for each u ∈ P0 such

ϕ actually exist as follows: Take any ϕ satisfying the conditions of 1.2. Then,

as Ker(∂∗) is complementary to Im(∂), there is a linear map ψ ∈ g∗−1 ⊗ g0 such

that ∂∗
(
dθ−1(u)(ϕ(X, 0), ϕ(Y, 0)) + (∂ψ)(X,Y )

)
= 0. (In fact the image of ψ

under ∂ is uniquely determined.) Then one immediately verifies that ϕ̄(X,A) :=

ϕ(X,A) + ζψ(X)(u) satisfies the condition.

Next take an element b ∈ B. Viewing b as an element of G we have the adjoint

action Ad (b) : g→ g, and since Ad (exp (Z))·X = X+[Z,X]+1/2[Z, [Z,X]]+ . . .

(cf. I.3.8), we see that g1 is stable under this adjoint action, so we get an induced

linear automorphism Ad (b) of the space g/g1 ' g−1 ⊕ g0.

For b ∈ B denote by b0 the class of b in B/B1 ' B0. Then for an element ϕ :

g−1⊕g0 → TuP0 of P we define ϕ·b : g−1⊕g0 → Tu·b0P0 by ϕ·b := Trb0 ◦ϕ◦Ad (b),

where rb0 denotes the principal right action of b0 on P0.

1.5. Proposition. This defines a free right action of B on P . In each case

except the one of projective structures this action is also transitive on each fiber of

the obvious projection P →M .

Proof. Let us first verify that ϕ·b is again in P . So we have to compute

dθ−1(u·b0)((ϕ·b)(X, 0), (ϕ·b)(Y, 0)),

for elements X,Y ∈ g−1. By B0-equivariancy of θ−1 this equals

Ad (b−1
0 )(dθ−1(u)(ϕ(Ad (b)·(X, 0)), ϕ(Ad (b)·(Y, 0)))).

Now we may write b = b0b1 for some b1 ∈ B1 and by 1.1(4) there is a Z ∈ g1 such

that b1 = exp (Z). Using the formula for the adjoint action of an exponential from

above we see that

Ad (b)·(X, 0) = Ad (b0)·Ad (exp (Z))(X, 0) = (Ad (b0)·X,Ad (b0)·[Z,X]),

and thus ϕ(Ad (b)·(X, 0)) = ϕ(Ad (b0)·X, 0) + ζAd (b0)·[Z,X](u). The same compu-

tation as in the proof of lemma 1.2 then shows that

dθ−1(u)(ϕ(Ad (b)·(X, 0)), ϕ(Ad (b)·(Y, 0)))

= dθ−1(u)(ϕ(Ad (b0)·X, 0), ϕ(Ad (b0)·Y, 0))

+ Ad (b0)·([[Z,X], Y ]− [[Z, Y ],X])

= dθ−1(u)(ϕ(Ad (b0)·X, 0), ϕ(Ad (b0)·Y, 0)).

This shows that tϕ·b = b0·tϕ, so ∂∗(tϕ·b) = b0·∂∗(tϕ) = 0, and hence ϕ·b ∈ P .

Next, let us assume that ϕ·b = ϕ for some ϕ ∈ P and b ∈ B. Then obviously

b ∈ B1, since B0 acts freely on P0. So as before we may write b = exp (Z). But



II. NORMAL CARTAN CONNECTIONS 207

then ϕ·b = ϕ implies that [Z,X] = 0 for all X ∈ g−1, which implies Z = 0 by

1.1(3).

Finally, to prove transitivity of the action it suffices to show that B1 acts

transitive on each fiber of P → P0, since B0 acts transitive on each fiber of

P0 →M . But for two maps ϕ, ϕ̄ in the same fiber we see from 1.2 that ϕ̄(X,A) =

ϕ(X,A) + ζψ(X)(u) for some ψ ∈ g∗−1 ⊗ g0, and lemma 1.2 shows that if both

maps are in P we must have ∂(ψ) = 0. But now in all cases except the projective

one the corresponding Spencer cohomology group H1,1(g) is trivial, so there is a

Z ∈ g1 such that ψ = ad Z , see [Ochiai, Proposition 7.3]. Thus ϕ̄ = ϕ·exp (Z). �

1.6. The soldering form. ¿From now on we exclude the projective case

which we will discuss separately later. So P → M is a principal B-bundle, and

the proof of 1.5 also shows that p : P → P0 is a principal B1-bundle. Now we

define on P a one-form θ with values in g−1 ⊕ g0 as follows: For a point ϕ ∈ P
consider a tangent vector ξ ∈ TϕP . Then Tp·ξ is a tangent vector in Tp(ϕ)P0

and by definition ϕ is a linear isomorphism from g−1 ⊕ g0 to this tangent space,

so we may define θ(ξ) := ϕ−1(Tp·ξ). This form is called the soldering form

or displacement form on P . The torsion T of θ is defined by the structure

equation

dθ−1 = −[θ0, θ−1] + T.

Lemma. The one form θ has the following properties:

(1) the component θ−1 is the pullback of the form from 1.2.

(2) θ0(ζY+Z) = Y for all Y ∈ g0, Z ∈ g1.

(3) θ is B-equivariant, i.e. (rb)∗θ = Ad (b−1) ◦ θ, where Ad is the action

from 1.4

(4) The torsion T is horizontal over M and can be viewed as a function in

C∞(P, g∗−1 ∧ g
∗
−1 ⊗ g−1). Moreover, ∂∗ ◦ T = 0.

In particular (P, θ) is a B-structure on M in the sense of I.3.4.

Proof. (1) is clear since θ−1(ϕ(X,A)) = X. For (2) note that ζZ lies in the

kernel of Tp, while ζY is mapped by Tp to the fundamental vector field on P0

corresponding to Y . Next, (3) follows immediately from the definition of the B-

action on P , and the fact that p◦ rb = rb0 ◦p. Finally, iζX with X ∈ g1, applied to

any of the terms in the structure equation yields zero, while for X ∈ g0 we obtain

iζX (dθ−1 + [θ0, θ−1]) = LζX θ−1 + [iζXθ0, θ−1] = 0

by the equivariancy of θ−1. Now, we can define T (X,Y )(u) by evaluating the

structure equation on arbitrary vectors ξ, η ∈ TuP such that θ−1(ξ) = X and

θ−1(η) = Y . It remains to prove ∂∗ ◦ T = 0 which can be done pointwise. So take
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ϕ ∈ P and choose ξ, η ∈ TϕP so that Tp ·ξ = ϕ(X, 0) and Tp·η = ϕ(Y, 0). Then

θ0(ξ) = θ0(η) = 0 by the construction. Using (1), we see that

dθ−1(ξ, η) + [θ0, θ−1](ξ, η) = tϕ(X,Y ) + 0. �

1.7. Consider a principal connection γ on P0. Then at each point u ∈ P0 we

get an isomorphism g−1 ⊕ g0 → TuP0 as in 1.2, defined by the soldering form θ−1

and the connection form of γ. Thus we have the torsion tγ : P0 → g∗−1∧g
∗
−1⊗g−1,

which is in fact the frame form of the usual torsion of γ.

The connection γ is called harmonic if ∂∗ ◦ tγ = 0. (The name harmonic is

due to the fact that the Spencer coboundary operator ∂ is trivial on the space in

question so that our condition is equivalent to harmonicity of the torsion.)

Proposition. There is a B0-equivariant section σ : P0 → P , and the space

of all such sections is in bijective correspondence with the space of all harmonic

principal connections on P0. Moreover, it is an affine space modeled on Ω1(M),

the space of one-forms on M .

Proof. We have already shown in I.3.6 that a global B0-equivariant section

σ always exists, but now we shall supply another simple (and more geometric)

argument.

Note first that any principal connection γ on P0 splits the exact sequence

0→ V P0 → TP0 → TP0/V P0 → 0

and thus gives rise to a linear isomorphism ϕu : g−1 ⊕ g0 → TuP0, which satisfies

the conditions of 1.2, in each point u.

Further, let us choose a B0-module homomorphism ψ which is a right inverse

of ∂ : g−1 ⊗ g0 → Im(∂) ⊂ g∗−1 ∧ g
∗
−1 ⊗ g−1. Starting from a chosen principal

connection γ, let f be the Im(∂)-part of the torsion tγ , and consider the smooth

map u 7→ ϕu + ζψ(f(u))(u). By the construction, this has values in P , since

tϕ+ζψ◦f = tϕ − ∂ ◦ ψ ◦ f = tϕ − f by Lemma 1.2. Due to the equivariancy of ψ,

this defines a B0-equivariant section of P → P0. If the original connection γ was

harmonic, then f = 0 and the mapping u 7→ ϕu itself is a B0-equivariant section.

Any B0-equivariant section σ : P0 → P can clearly be interpreted as a principal

connection γ on P0. For each point u ∈ P0 and ξ ∈ TuP0, we have

(σ∗θ)(u)(ξ) = θ(σ(u))(Tσ.ξ) = σ(u)−1(ξ) ∈ g−1 ⊕ g0

and the g0-part of this expression is just the connection form of the connection γ.

Applying σ∗ to the structure equation from 1.6(4) we obtain (using 1.6(1))

dθ−1 = −[γ, θ−1] + σ∗T,
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so that σ∗T is the torsion of the principal connection γ. Thus γ is a harmonic

connection.

Finally, if σ and σ̄ are two B0-equivariant sections of P → P0, then there is a

unique smooth map τ : P0 → g1 such that σ̄(u) = σ(u).exp τ(u). Since the sections

are B0-equivariant, we obtain τ(u.b0) = Ad (b−1
0 ).τ(u), so that τ is a frame form

of a one-form on M . �

1.8. The bundle P can be viewed as a subbundle of the frame bundle P 1P0 of

P0. In fact, a point ϕ ∈ P is by definition an isomorphism g−1 ⊕ g0 → Tp(ϕ)P0.

Moreover, taking into account that P0 is a reduction of P 1M to the group B0, we

can view P as a reduction of P 1(P 1M) to the group B. In fact, it can be shown

that this reduction has values in the second order frame bundle P 2M of M , if and

only if the torsion of θ vanishes, cf. [Slovák 96], but we will not pursue this point

of view.

1.9. The projective case. In this case the underlying first order structure

is the whole P 1M , so it carries no information. Thus to get a B-structure in the

sense of I.3.4 with harmonic torsion, one has to choose a reduction of the second

order frame bundle P 2M to the appropriate group B. (Note that in this case

∂ : g∗−1 ⊗ g0 → g
∗
−1 ∧ g

∗
−1 ⊗ g−1 is surjective, so the harmonic connections are

exactly the torsion free ones.)

2. Canonical Cartan Connections

Our next task is to prove that in all but the very low dimensional cases, on all

prolongations as constructed in the previous section, there is a canonical Cartan

connection. Basically, this is a consequence of the fact that in these cases the next

prolongation is trivial, so its soldering form is a Cartan connection.

2.1. Assume we have constructed the B-bundle P → M with the soldering

form θ = θ−1 ⊕ θ0 for a B0-bundle P0 →M as above. As we have seen in 1.8 this

is in fact a B1 structure on P0, so we can try to apply the same construction as

above to this structure using the additional information we have in this case.

The starting point is to consider for ϕ ∈ P linear isomorphisms

Φ: g−1 ⊕ g0 ⊕ g1 → TϕP

such that θ(Φ(X,A,Z)) = (X,A) and Φ(0, A,Z) = ζA+Z(ϕ) (here we use the

finer structure and do not only fix Φ(0, 0, Z)). Having given such a Φ we have to

consider its torsion

tΦ ∈ (g−1 ⊕ g0)∗ ∧ (g−1 ⊕ g0)∗ ⊗ (g−1 ⊕ g0)

((X,A), (Y,B)) 7→ dθ(ϕ)(Φ(X,A, 0),Φ(Y,B, 0)).
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In fact, several parts of this mapping are independent of Φ. For later use we prove

a slightly more general result than we need here:

Lemma. Let pr : g→ g−1⊕g0 be the obvious projection. Then for all (X,A,Z),

(Y,B,W ) ∈ g we have

dθ(Φ(X,A,Z),Φ(Y,B,W ))

= dθ(Φ(X, 0, 0),Φ(Y, 0, 0))− pr([X +A+ Z, Y +B +W ]).

Proof. The infinitesimal version of the equivariancy of θ gives

iζA+Zdθ = −ad (A+ Z) ◦ θ,

where ad is the composition of pr with the adjoint action on g. Now the result

follows easily using bilinearity of dθ and the fact that Φ(X,A,Z) = Φ(X, 0, 0) +

ζA+Z(ϕ). �

Consequently, the torsion of Φ is determined by its component in g∗−1∧g
∗
−1⊗g0.

2.2. The next step is to compute the change of the torsion if one replaces Φ by

another isomorphism satisfying the above conditions. As in the proof of 1.2 one

verifies that in fact the change lies in the image of g∗−1⊗g1 under the composition

of the alternation with the map induced by the inclusion

g∗−1 ⊗ g1 → g
∗
−1 ⊗ g

∗
−1 ⊗ g0 ⊂ (g−1 ⊕ g0)∗ ⊗ (g−1 ⊕ g0)∗ ⊗ (g−1 ⊕ g0).

To get a well defined structure function as in Section 1 we have to factor the

latter space by the image of ∂ : g∗−1 ⊗ g1 → g
∗
−1 ∧ g

∗
−1 ⊗ g0. As before this is

the differential in the Spencer cohomology and it has an adjoint ∂∗ defined by the

same formula as in 1.3.

2.3. Theorem. In all cases but the one of g = sl(2), for each ϕ ∈ P there is a

unique linear isomorphism Φ as in 2.1 such that ∂∗ ◦ tΦ = 0. The inverses of these

can be viewed as a smooth one form ω ∈ Ω1(P, g) with the following properties:

(1) ω(ζX) = X for all X ∈ b
(2) (rb)∗ω = Ad(b−1) ◦ ω for all b ∈ B.

Proof. First, since the kernel of ∂∗ is a complement to the image of ∂, we can

construct such a Φ in a point ϕ like in 1.4. Moreover, it is clear that the set of

all such Φ is parameterized by the kernel of ∂ : g∗−1 ⊗ g1 → g
∗
−1 ∧ g

∗
−1 ⊗ g0. This

coincides with the Spencer cohomology group H2,1(g) which is trivial for all cases

in question, see [Ochiai, Proposition 7.1], so Φ is unique.

Let us verify the properties of ω. For A ∈ g0 and Z ∈ g1 we have Φ(0, A,Z) =

ζA+Z(ϕ), so ω reproduces the generators of fundamental vector fields. Finally, we
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have to verify the equivariancy of ω. Put Φ = ω(ϕ)−1 : g → TϕP and consider

Φ·b := Trb ◦ Φ ◦ Ad (b) : g → Tϕ·bP for b ∈ B. If we verify that Φ·b satisfies

the conditions of 2.1 and that ∂∗ ◦ tΦ·b = 0, then the uniqueness proved above

concludes the proof.

For A ∈ g0 and Z ∈ g1 we have

(Φ·b)(0, A,Z) = TrbζAd (b)·(0,A,Z)(ϕ) = ζA+Z(ϕ·b).

Further, θ(ϕ·b)((Φ·b)(X,A,Z)) = Ad (b−1)θ(ϕ)(Φ(Ad (b)·(X,A,Z))) = (X,A),

since Ad (b)·(X,A) is by definition just the first two components of

Ad (b)·(X,A,Z).

It remains to check the condition on the torsion. For b ∈ B, we write b =

b0exp (W ) (see 1.5). Using the equivariancy of θ and Lemma 2.1 we compute:

dθ(ϕ·b)(TrbΦ(Ad (b)·X), T rbΦ(Ad (b)·Y ))

= Ad (b−1)(dθ(ϕ)(Φ(Ad (b)·X),Φ(Ad (b)·Y )))

= Ad (b−1)(dθ(ϕ)(Φ(Ad (b0)·X),Φ(Ad (b0)·Y ))) + pr([Ad (b)·X,Ad (b)·Y ]).

The second term in this expression vanishes since Ad (b) is a Lie algebra homo-

morphism, so for the g0-component we get

Ad (b−1
0 )(dθ0(ϕ)(Φ(Ad (b0)·X),Φ(Ad (b0)·Y )))

+ Ad (b−1
0 )([W,dθ−1(ϕ)(Φ(Ad (b0)·X),Φ(Ad (b0)·Y ))]).

The first term lies in the kernel of ∂∗ since this is a B0-submodule. The second

one lies in this kernel since by definition of ∂∗ we have ∂∗ ◦ ad (W ) = ad (W ) ◦ ∂∗

(cf. 1.3). �
Since the restriction of the one form ω to any tangent space TϕP is an iso-

morphism, ω is a Cartan connection on P , see the definition in I.2.1. Moreover,

the first condition put on Φ in 2.1 implies that the (g−1 ⊕ g0)-part of ω coincides

with θ. Thus, ω is an admissible Cartan connection in the sense of I.3.9.

Let us remark that another approach to the construction of canonical prolonga-

tions equipped with canonical Cartan connections can be found in [Alekseevsky,

Michor 95].

2.4. Let us return to the point of view of G-structures and compute the struc-

ture function of the last prolongation. Clearly this is induced by

(X,A,Z), (Y,B,W ) 7→ dω(ω−1(X,A,Z), ω−1(Y,B,W )).

Using the B-equivariancy of ω one proves precisely as in Lemma 2.1 that

dω(ω−1(X,A,Z), ω−1(Y,B,W ))

= dω(ω−1(X, 0, 0), ω−1(Y, 0, 0)) + [X +A+ Z, Y + B +W ].
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By definition the first term of the right hand side is just the curvature κ(X,Y ),

see I.2.1. Thus, if this curvature vanishes then the structure function is constant

(and equal to the Lie bracket, viewed as an element of (g∗ ∧ g∗)⊗ g), independent

of the manifold under consideration.

In this situation, taking into account that the components ω−1 and ω0 coincide

with the respective components of θ, we see from 2.1 that also the next “lower”

structure function is constant and independent of the manifold. Similarly, one

shows that the same is true for the first structure function constructed in 1.2 .

In the flat case M = G/B the canononical Cartan connection is just the Maurer

Cartan form, and the Maurer Cartan equation means just that κ = 0 in this

case. Thus we see that a B0-structure P0 → M has the structure functions of

all prolongations constant and equal to those of the flat model if and only if the

curvature of the canonical Cartan connection vanishes. From [Sternberg, p. 339]

we conclude:

Proposition. P0 →M is locally isomorphic to the flat model if and only if the

canonical Cartan connection has zero curvature.

2.5. Using the properties of Cartan connections derived in [Čap, Slovák,

Souček] it is quite easy to compute explicitely the obstructions against flatness

of the canonical Cartan connection in terms of any of the underlying linear con-

nections. The main step is to understand the link of the second cohomology

H2(g−1, g) to the curvature. Then it is easy to determine, which parts of the

curvature are the true obstructions, and which vanish automatically. Essentially,

this can be found implicitly also in [Tanaka 79], and quite explicitly in [Bas-

ton 91] for the four main series of complex simple groups. This is also worked

out in our approach in [Čap, Slovák], using the results on cohomologies listed in

[Baston 91]. However, an easy computation using the Kostant’s version of the

Bott-Borel-Weil theorem yields that the cohomology is sitting only in the torsion

part for the two exceptional simple groups. Thus the only obstructions are the

torsions in both these cases.

3. Explicit Formulae for the Canonical Cartan Connections

Let us consider a B-structure P → P0 → M , its soldering form θ with a har-

monic torsion T , and the canonically defined Cartan connection ω on P , as con-

structed in Section 2. Note that the canonical Cartan connection is characterized

by the fact the the component κ0 of its curvature is in the kernel of ∂∗.

For each global B0-equivariant section σ : P0 → P there is the principal con-

nection σ∗θ0 on P0, the induced admissible Cartan connection γ̃ on P , and the

difference between the canonical Cartan connection and the latter one is described

by the so called deformation tensor Γ, see I.3.9. In this section, we shall compute

explicitly the deformation of a chosen induced admissible Cartan connection which
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leads to the canonical one. It turns out, that for each of the structures in question,

there is a universal formula for Γ in terms of the curvature tensor of the chosen

underlying connection γ.

Since the computations are quite elementary and in fact an explicit use of the

general result from section 2 does not spare much work, we prefer to recover

completely also the existence and uniqueness of the canonical Cartan connection

in this way. Thus a part of the next considerations will be redundant, but on the

other hand, this will also provide the link to the traditional concept of the normal

Cartan connection, see e.g. [Kobayashi 72].

3.1. The trace of the curvature. Let ω be an admissible Cartan connection

on a B-structure P → M , i.e. ω = θ−1 ⊕ θ0 ⊕ ω1. Let us recall the definition of

the trace of the g0-component κ0 of the curvature function κ of ω. We can view

the values of κ0 as elements in g∗−1 ⊗ g
∗
−1 ⊗ g

∗
−1 ⊗ g−1 = g∗−1 ⊗ g

∗
−1 ⊗ g

∗
−1 ⊗ g

∗
1.

There are three possible evaluations in the target space. The evaluation over

the last two entries is just the trace in g0, the other two possibilities coincide up to

a sign. By definition, the trace Trκ0 of the curvature function κ0 is the evaluation

over the first and the last entry.

Lemma. For all X ∈ g−1 we have (∂∗κ0)(X) = (Trκ0)(X, ) ∈ g1. In partic-

ular, Trκ0 = 0 if and only if ∂∗κ0 = 0.

Proof. By the definition above, (Trκ0)(X,Y ) =
∑
i κ0(ei,X)(Y )(ei), where ei

is a basis in g−1 while ei is its dual basis in g1. If we take Y as a free argument, we

obtain Trκ0(X, ) ∈ g1, Trκ0(X, ) =
∑
i[e

i, κ0(ei,X)]. But the latter is exactly

the formula for (∂∗κ0)(X), see 1.3. �

3.2. Definition. A normal Cartan connection ω ∈ Ω1(P, g) is an admissi-

ble connection with the curvature satisfying Trκ0 = 0.

3.3. Lemma. Let P → M be a B structure with harmonic torsion, P0 be the

underlying first order structure. Then for each admissible Cartan connection ω on

P , ∂∗κ0 is constant on the fibers of P → P0.

Proof. By the formula I.3.8(4), for each section σ of P → P0 and u ∈ P we

have

κ0(u)(X,Y ) = κ0(σ(p(u)))(X,Y )− [τ(u), κ−1(σ(p(u)))(X,Y )],

where τ is the mapping introduced in the proof of I.3.7.

Further, ∂∗κ−1 = 0 since the torsion κ−1 is harmonic, and we obtain

∂∗κ0(u)(X) = [ei, κ0(σ(p(u)))(ei,X)]− [ei, [τ(u), κ−1(σ(p(u)))(ei,X)]]

= ∂∗κ0(σ(p(u)))(X) − [τ(u), [ei, κ−1(σ(p(u)))(ei,X)]]

= ∂∗κ0(σ(p(u)))(X) − [τ(u), ∂∗κ−1(σ(p(u)))(X)]

= ∂∗κ0(σ(p(u)))(X). �
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We shall also need another technical lemma. In view of lemma 3.1, it is a direct

consequence of the uniqueness result from the previous section, the elementary

argument used here is an easy application of the Bianchi identity for general Cartan

connections.

3.4. Lemma. Let ω and ω̄ be two normal Cartan connections on a B-struc-

ture P , κ and κ̄ be their curvatures. Then the trace Trg0(κ̄0 − κ0) within g0
vanishes.

Proof. Let us write δ = κ̄0 − κ0, and let ei and ei be the dual bases in g±1.

According to the Bianchi identity (proved in I.2.4) we have for X,Z ∈ g−1

[δ(X,Z), ei] = [δ(X, ei), Z] + [δ(ei, Z),X]

+∇ωZκ−1(X, ei) +∇ωXκ−1(ei, Z) +∇ωeiκ−1(Z,X)

+ κ−1(κ−1(X, ei), Z) + κ−1(κ−1(ei, Z),X) + κ−1(κ−1(Z,X), ei)

−∇ω̄Z κ̄−1(X, ei)−∇
ω̄
X κ̄−1(ei, Z)−∇ω̄ei κ̄−1(Z,X)

− κ̄−1(κ̄−1(X, ei), Z)− κ̄−1(κ̄−1(ei, Z),X)− κ̄−1(κ̄−1(Z,X), ei).

Since κ̄−1 = κ−1 and the torsion κ−1 is constant on the fibers of P → P0, all lines

except the first one vanish, see I.3.8(4), I.3.10(3) and the definition of ∇ω in I.2.3.

Now, Trg0(δ)(X,Z) =
∑
i[δ(X,Z), ei](e

i) while (Tr δ)(X,Z) = [δ(ei,X), Z](ei)

= 0. Thus the above computation shows that the traces inside of g0 coincide as

required. �
3.5. Remark. If the torsion of a B-structure P vanishes, then all the admissi-

ble Cartan connections have vanishing g−1-part of the curvature. Then the Bianchi

identity implies directly that ∂κ0 vanishes for all admissible Cartan connections.

Thus, in the language of the Hodge theory for the corresponding cohomologies,

this means just that the normal Cartan connections are exactly those admissible

Cartan connections for which κ0 is harmonic. As discussed in 1.8, if there is a

torsion free connection on a reduction P0 of P 1M to the structure group B0, then

there is the canonical B-structure P over P0 with vanishing torsion and a normal

Cartan connection on P is then an admissible Cartan connection with a harmonic

g0-part of the curvature. This is the point of view adopted in [Ochiai 70] where

the torsion-free case is discussed. However this cannot yield a canonical Cartan

connection in the cases of non vanishing torsion in view of the results of the pre-

vious section.

3.6. The conformal case. Since there is always a torsion-free linear connec-

tion on each Riemannian manifold, the canonical prolongation P of a first order

conformal Riemannian structure P0 → M is always a reduction of P 2M and so

we reproduce the classical construction in this case, cf. [Kobayashi 72]. We

already deduced in I.6.3 the existence and uniqueness of the normal Cartan con-

nections, and the corresponding explicit deformation tensors Γ, on all manifolds
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M with conformal Riemannian structures, dim M ≥ 3. Let us recall the final

formula: Starting with a torsion-free connection γ on P0 with curvature tensor

Rijkl, Ricci tensor Rij and scalar curvature R, the necessary deformation tensor

Γ ∈ C∞(P0, g
∗
−1 ⊗ g

∗
−1) is given by

Γij = −1
m−2

(
Rij −

δij
2(m−1)R

)
.

3.7. The almost Grassmannian case. Now we shall construct the normal

Cartan connections on manifolds with almost Hermitian symmetric structures

corresponding to the algebras g = sl(p + q,R). The description of the algebra

g = Mat q,p(R) ⊕ (sl(p,R) ⊕ sl(q,R) ⊕ R) ⊕Mat p,q(R) yields easily the formulas

for the bracket. Let us use the generators eαβ of the vector spaces of matrices, the

matrices with all entries zero except a 1 in the β-th line and the α-th column. We

shall use the letters a, b, c, . . . for the indices between 1 and p, the letters i, j, k, . . .

will indicate indices running between 1 and q. For example, eai means one of the

generators in Mat q,p(R). Using the fact that the Killing form of g = sl(p + q,R)

is a scalar multiple of the trace form one easily see that the bases {eia} and {eai }
are also dual with respect to the Killing form, up to a fixed scalar multiple, and

this suffices for our purposes. Then we have

[eai , e
j
b] = δab e

j
i − δ

j
i e
a
b , [eka, e

b
c] = −δbae

k
c , [eka, e

j
l ] = δkl e

j
a.

Let us fix the sizes p and q, and consider an almost Grassmannian structure

P → M with a harmonic torsion. Let P0 → M be the underlying first order

structure with the distinguished class of the harmonic connections.

The deformation tensor Γ is expressed through functions Γb
j
a
i

defined by Γ(eai ) =

Γb
j
a
i
ejb. The possible deformations δκ0 of the curvature are described in I.3.10(4)

The trace of the curvature is obtained through evaluation in g∗−1 ⊗ g
∗
−1 ⊗ g

∗
−1 ⊗

g−1 over the first and the fourth entry, however according to Lemma 3.1, we

can compute ∂∗(κ0) instead. Let us first evaluate [eib, [Γ.e
b
i , Y ] − [Γ.Y, ebi ]] on the

generators.

[eib, [Γ.e
a
k, e

b
i ]− [Γ.ebi , e

a
k]] = [eib, [Γdsake

s
d, e

b
i ]− [Γd

s
b
i
esd, e

a
k]]

= [eib,−Γb
s
a
k
esi + Γd

i
a
k
ebd + Γa

s
b
i
esk − Γd

k
b
i
ead]

= (−δiiΓbsak + δikΓa
s
b
i
)esb + (−δbbΓdi ak + δbaΓdkbi )e

i
d

The application of the formula for ∂∗ from 1.3 yields

∂∗(δκ0)(eak) =
∑q
s=1

∑p
b=1(−qΓb

s
a
k

+ Γa
s
b
k
)esb(1)

+
∑p
d=1

∑q
i=1(−pΓd

i
a
k

+ Γd
k
a
i
)eid

=
∑q
l=1

∑p
c=1(−qΓc

l
a
k
− pΓc

l
a
k

+ Γa
l
c
k

+ Γc
k
a
l
)elc.
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According to 3.1, the trace of κ0 evaluated on the base elements eak, ecl is exactly

the expression inside the brackets in the last sum.

For each admissible Cartan connection ω on P there are the two parts κ0,1, κ0,2

of κ0, corresponding to the decomposition of g0 into two components. They are

given by functions Ka
db
k
c
l

, Ki
jb
k
c
l

, one set for each of the two blocks in the matrices in

g0. From the second line of the above computation, we can read the formulae for

the deformation of these functions achieved by the chosen deformation tensor Γ

δKl
sbi
a
k

= Γb
s
a
k
δli − Γa

s
b
i
δlk, δKd

cbi
a
k

= Γd
k
b
i
δac − Γd

i
a
k
δbc.

Consequently, the deformation of the traces Trg0(δ(κ0,1)), Trg0(δ(κ0,2)) of these

two components within g0 are ∓(Γa
k
b
i
− Γb

i
a
k
).

Now, given a connection γ in the distinguished class on P0, we shall compute

the deformation tensor Γ which deforms the induced admissible Cartan connection

γ̃ into a normal Cartan connection ω with curvature κ̄ = κ − δκ. Let κ be the

curvature function of γ̃, and write δκ for its change achieved by the choice of Γ.

We have

Trg0(δ(κ0,2))c
l
a
k

= Γc
l
a
k
− Γa

k
c
l

(p+ q)Tr(δ(κ0))c
l
a
k

= −(p+ q)2Γc
l
a
k

+ 2(p+ q)Γa
l
c
k
− (p+ q)Trg0(δ(κ0,2))a

l
c
k

2Tr(δ(κ0))a
l
c
k

= −2(p+ q)Γa
l
c
k

+ 4Γc
l
a
k
− 2Trg0(δ(κ0,2))c

l
a
k

where the aim of our manipulation is to get rid of the interchanging indices in the

formula for the trace of κ0.

Let σ : P0 → P be the section corresponding to the connection γ. The curvature

R = R1+R2 : P0 → g∗−1∧g
∗
−1⊗g0 of γ is σ-related to κ0 = κ0,1+κ0,2. In particular,

on the image σ(P0) ⊂ P , we can achieve the vanishing of the trace of κ̄0 by the

following choice of the deformation

(2) Γc
l
a
k

= −1
4−(q+p)2

(
(p+q)Tr(R)c

l
a
k
+2Tr(R)a

l
c
k
+(p+q)Trg0(R2)a

l
c
k
+2Trg0(R2)c

l
a
k

)
.

Since the torsion of the B-structure P is harmonic, this choice of Γ leads to a

normal Cartan connection according to Lemma 3.3.

The results of the previous section assure that there is a unique normal Cartan

connection on P , however it is easy to verify this directly. Indeed, it is equivalent to

prove, that if ω and ω̄ are two normal Cartan connections on P , then the (uniquely

defined) deformation tensor Γ is identically zero. In fact, we have computed above

a tensor Γ deforming a given ω in such a way, that on the image of a section

σ : P0 → P the achieved deformation of the trace of g0-part of the curvature of

γ reaches a value prescribed in advance. But Lemma 3.4 states that the traces

of κ0 and κ̄0 inside of g0 coincide. In view of our computation this means, that

the deformation tensor Γ satisfies Γa
k
b
i

= Γb
i
a
k

and so for any two normal Cartan
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connections ω, ω̄, the corresponding deformation tensor Γ is symmetric. Further,

the achieved deformation of the trace of κ0 by means of Γ has to vanish too and

since we can use the equality Γa
k
b
i

= Γb
i
a
k

we obtain 2Γc
k
a
l

= (p + q)Γc
l
a
k
. Applying

the latter equality twice, we get

2(p+ q)Γc
l
a
k

= 4Γc
k
a
l

= (p+ q)(p+ q)Γc
k
a
l
.

Thus, if q ≥ p ≥ 1, q + p ≥ 3 then Γc
k
a
l

= 0 for all c, a, k, l and so there is at most

one normal Cartan connection ω on P .

Thus, we can formulate the final result of our computations.

3.8. Theorem. Let P → M be a real almost Grassmannian structure with a

harmonic torsion, on a smooth manifold M and assume q ≥ p ≥ 1, q+p ≥ 3. Then

there is a uniquely defined normal Cartan connection ω on P and for each linear

harmonic connection γ on the underlying first order structure P0 with curvature

R = R1 + R2, ω = γ̃ − Γ ◦ θ−1, where the corresponding deformation tensor Γ is

given by the formula 3.7(2).

3.9. Corollary. Let P → M be a projective structure on a smooth manifold

M , dim (M) = q > 1. Then there is a uniquely defined normal Cartan connection

ω on P and for each linear torsion-free connection γ from the underlying class on

the first order structure P0 with curvature R = (Rijkl), we obtain ω = γ̃ −Γ ◦ θ−1,

where the corresponding deformation tensor Γ is given by

Γjk = 1
(q−1) (Rljlk +Rlljk).

3.10. The almost Lagrangian case. We have to deal with g = g−1⊕g0⊕g1
where g−1 = S2Rm, g1 = S2Rm∗, g0 = gl(m,R), cf. I.3.3. Let us fix the base

ek � el consisting of symmetric matrices with entries aij = 1
2 (δikδjl + δilδjk). Let

es� et be the dual base of g1 and let eij be the usual base of g0. The commutators

of the base elements are

[es � et, ek � el] = −
1

4
(δske

t
l + δsl e

t
k + δtke

s
l + δtle

s
k)(1)

[es � et, epw] = δtwe
p � es + δswe

p � et.(2)

We shall express the deformation tensor Γ by its values on the generators, so we

write Γ·(ei � ej) =:
∑
s,t Γ(st)(ij)e

s � et. Similarly to the above cases we compute

the deformation of the curvature.

(3)

[Γ·(ek � el), ei � ej]− [Γ·(ei � ej), ek � el] =

=
∑
s,t

(
Γ(st)(kl)·[e

s � et, ei � ej ]− Γ(st)(ij)[e
s � et, ek � el]

)
= −

1

4

∑
s,t

(
Γ(st)(kl)(δ

s
i e
t
j + δsje

t
i

+ δtie
s
j + δtje

s
i )− Γ(st)(ij)(δ

s
ke
t
l + δsl e

t
k + δtke

s
l + δtle

s
k)
)

=
1

2

∑
p,w

(
δwl Γ(kp)(ij) + δwk Γ(lp)(ij) − δ

w
j Γ(ip)(kl) − δ

w
i Γ(jp)(kl)

)
epw
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In order to get the deformation of the trace we compute ∂∗(κ0)(ek � el):

[ei � ej , [Γ·(ek � el), ei � ej ]− [Γ·(ei � ej), ek � el]]

=
1

2

∑
p,w(the above coefficient at epw)(δjwe

p � ei + δiwe
p � ej)(4)

=
∑
p,q

(
Γ(kp)(ql) + Γ(lp)(qk) − (m+ 1)Γ(pq)(kl)

)
ep � eq

and so the value of the deformation of the trace on the generators is

δTr(κ0)(pq)(kl) = δTr(κ0)(ek � el, ep � eq)(5)

= Γ(kp)(ql) + Γ(lp)(qk) − (m+ 1)Γ(pq)(kl).

Now, similarly to the Grassmannian case, we have to consider a suitable combi-

nation. Surprisingly enough, we do not need the traces inside of g0 in order to

express the tensor Γ. If we substitute (5) into

mδTr(κ0)(pq)(kl) + δTr(κ0)(pk)(ql) + δTr(κ0)(pl)(qk),

we are left with (2 −m(m + 1))Γ(pq)(kl) on the right hand side. Thus if we start

with a linear harmonic connection γ on M and κ is the curvature of γ̃, then we

can achieve vanishing of ∂∗κ̄0 on the section which corresponds to γ by the choice

(6) Γ(pq)(kl) = 1
m(m+1)−2 (mTr(R)(pq)(kl) + Tr(R)(pk)(ql) + Tr(R)(pl)(qk))

where Tr(R) is the Ricci curvature of γ. In view of Lemma 3.3, this deformation

tensor leads to a normal Cartan connection. Moreover, this deformation is uniquely

determined by our computation. Thus, we have proved

3.11. Theorem. Let P → M be an almost Lagrangian structure with a har-

monic torsion, on a smooth manifold M with dimension greater then 2. Then

there is a uniquely defined normal Cartan connection ω on P and for each linear

harmonic connection γ on the underlying first order structure P0 with curvature

R, ω = γ̃ − Γ ◦ θ−1, where the corresponding deformation tensor Γ is given by the

formula 3.10(6).

3.12. The almost spinorial case. The situation is very similar to the

almost Lagrangian case. We have to proceed quite analogously with the symmetric

matrices replaced by the antisymmetric ones.

We have g−1 = Λ2Rm, g1 = Λ2Rm∗, g0 = gl(m,R). The commutators of the

base elements are

[es ∧ et, ek ∧ el] = 1
4 (−δsl e

t
k + δtle

s
k + δske

t
l − δ

t
ke
s
l )(1)

[es ∧ et, epw] = δtwe
s ∧ ep − δswe

t ∧ ep.(2)
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We write, Γ·(ei ∧ ej) =:
∑
s,t Γ[st][ij]e

s ∧ et. Similarly as before we compute the

deformation of the curvature.

(3)

[Γ·(ek ∧ el), ei ∧ ej ]− [Γ·(ei ∧ ej), ek ∧ el]

=
∑
s,t

(
Γ[st][kl]·[e

s ∧ et, ei ∧ ej ]− Γ[st][ij][e
s ∧ et, ek ∧ el]

)
= 1

4

∑
s,t

(
Γ[st][kl](−δ

s
je
t
i + δtje

s
i + δsi e

t
j − δ

t
ie
s
j)

− Γ[st][ij](−δ
s
l e
t
k + δtle

s
k + δske

t
l − δ

t
ke
s
l )
)

= 1
2

∑
p,w

(
δwi Γ[pj][kl] + δwj Γ[ip][kl] + δwk Γ[lp][ij] + δwl Γ[pk][ij]

)
epw.

Further we compute

∂∗(κ0)(ek ∧ el) = [ei ∧ ej , [Γ·(ek ∧ el), ei ∧ ej]− [Γ·(ei ∧ ej), ek ∧ el]]

= 1
2

∑
p,w(the above coefficient at epw)(δjwe

i ∧ ep − δiwe
j ∧ ep)(4)

=
∑
p,q

(
Γ[pk][ql] + Γ[lp][qk] + (1−m)Γ[pq][kl]

)
eq ∧ ep

δTr(κ0)(ek ∧ el, ep ∧ eq) = Γ[pk][ql] + Γ[lp][qk] − (m− 1)Γ[pq][kl].

Now, we have to find a suitable combination. Let us substitute (4) into

mδTr(κ0)[pq][kl] + δTr(κ0)[pk][ql] − δTr(κ0)[pl][qk].

Then only (2−m(m− 1))Γ[pq][kl] remains on the right hand side. Thus if we start

with a linear harmonic connection γ on M and κ is the curvature of γ̃, then we

can achieve global vanishing of ∂∗κ̄0 by the choice (cf. Lemma 3.3)

(5) Γ[pq][kl] = 1
m(m−1)−2 (mTr(R)[pq][kl] + Tr(R)[pk][ql] − Tr(R)[pl][qk])

where Tr(R) is the Ricci curvature of γ. Since this deformation is uniquely deter-

mined by our computation, we have proved:

3.13. Theorem. Let P →M be an almost spinorial structure with a harmonic

torsion, on a smooth manifold M with dimension greater then 2. Then there is a

uniquely defined normal Cartan connection ω on P and for each linear harmonic

connection γ on the underlying first order structure P0 with curvature R, ω =

γ̃ − Γ ◦ θ−1, where the corresponding deformation tensor Γ is given by 3.12(5).
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A. Čap, Institut für Mathematik, Universität Wien, Strudlhofgasse 4, 1090 Wien, Austria

J. Slovák, Department of Algebra and Geometry, Masaryk University in Brno, Janáčkovo
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