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OPTIMAL NATURAL DUALITIES FOR SOME

QUASIVARIETIES OF DISTRIBUTIVE DOUBLE p–ALGEBRAS

M. J. SARAMAGO

Abstract. Quasivarieties of distributive double p-algebras generated by an ordinal
sum M of two Boolean lattices are considered. Globally minimal failsets within
S(M2) are completely determined; from them all the optimal dualities for these
quasivarieties are obtained.

1. Introduction

This paper concerns natural duality theory, as developed in [3] and [1]. The

objective of this theory is to find a concrete representation, as a set of functions, of

each algebra in a given quasivarietyA = ISP(M), whereM is a finite algebra. Such

representations have been obtained for a considerable number of quasivarieties, in

particular of varieties of algebras having a lattice reduct, and it is of interest, and

of practical importance to the study of such varieties, to find workable dualities.

Given a quasivariety A = ISP(M) of algebras generated by a finite algebra M ,

let R be a set of algebraic relations on M , i.e., a set of relations on M such

that each of them is the underlying set of a subalgebra of a power of M . Define

M
∼

:= (M ;R, τ) to be the topological relational structure on the underlying set

M of M in which τ is the discrete topology. Given M
∼

, we define the category

X := IScP(M
∼

) in which objects are all isomorphic copies of closed substructures

of powers ofM
∼

and in which morphisms are the continuousR-preserving maps. Let

D and E be the natural hom functors A(−,M) : A → X and X (−,M
∼

) : X → A
respectively. The set R yields a duality on A if A is isomorphic to its second

dual ED(A), for every A ∈ A (see [6], [3], [1] for further details). Even when

the dualising set R is finite there are cases where R is extremely large. This can

occurs, for example, when R can be taken to be S(M2) as it is the case of M

having a lattice reduct. In these cases it would be useful to know whether such a
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duality is optimal in the sense that no proper subset of R yields a duality. In [5]

B. A. Davey and H. A. Priestley present a general theory of optimal dualities. For

a given finite dualising set Ω of finitary algebraic relations on M , they prove that

the subsets R of Ω which yield optimal dualities are precisely the transversals of

the globally minimal failsets in Ω, as defined at the beginning of Section 4. By a

failset we mean a set of the form

Failr(u) := { s ∈ Ω | u does not preserve s };

here r ranges over Ω and u over the set of maps from D(r) to M which do not

preserve r. The globally minimal failsets are those failsets which are minimal

with respect to set inclusion.

Here we have a dual motivation. Our first aim is to obtain optimal dualities for

the varieties under consideration. The second, and potentially the more important,

is to use these varieties to explore the structure of globally minimal failsets in a

non-trivial case, and so to gain a better understanding of the general theory. At

the same time we present some techniques which can be used to determine failsets.

In our examples Ω = S(M2), and so Ω includes in particular the graphs of the

(non-extendable) partial endomorphisms of M . In general, failsets which do not

contain partial endomorphisms are easier to analyse than those that do. We are

able in our examples to describe certain globally minimal failsets containing as

minimal elements non-extendable partial endomorphisms of M . In this work we

apply the theory to certain quasivarieties of distributive double p-algebras. These

algebras have as reducts a pseudocomplemented distributive lattice and a dual

pseudocomplemented distributive lattice. In [5], B. A. Davey and H. A. Priestley

have already applied the theory to the quasivarieties Bn of pseudocomplemented

distributive lattices.

For this work we have used some of the Pascal programs that B. A. Davey and

H. A. Priestley have used for studying optimality in [5], and which have as a basis

the backtracking algorithm presented in [8].

The author would like to thank to her supervisor, Dr. Hilary Priestley, for her

help and encouragement.

2. Preliminaries

An algebra A = (A;∨,∧, ∗, 0, 1) of type (2, 2, 1, 0, 0) is a distributive

p-algebra if (A;∨,∧, 0, 1) is a bounded distributive lattice and ∗ is a unary oper-

ation defined by

x ∧ a = 0 if and only if x 6 a∗,
i.e., x∗ is the pseudocomplement of x.

An algebra A = (A;∨,∧, ∗,+, 0, 1) of type (2, 2, 1, 1, 0, 0) is a distributive dou-

ble p-algebra if (A;∨,∧, ∗, 0, 1) is a distributive p-algebra and (A;∨,∧,+, 0, 1) is

a dual distributive p-algebra.
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For m,n > 1, let Bm and Bn be respectively the m-atom Boolean lattice and

the n-atom Boolean lattice. Define Pm,n to be the distributive double p-algebra

given by the ordinal sum Bm ⊕Bn. The unary operations ∗ and + are defined as

follows,

x∗ =


1 if x = 0,

x′Bm if x ∈ Bm, x 6= 0,

0 if x ∈ Bn

and x+ =


1 if x ∈ Bm,

x′Bn if x ∈ Bn, x 6= 1,

0 if x = 1,

where x′Bi is the complement of x ∈ Bi, with i ∈ {m,n}.

We denote by d1 and d2 respectively the maximum of Bm and the minimum of

Bn . Let πi, i ∈ {1, 2}, be the natural projection maps from P 2
m,n to Pm,n. For a

given subalgebra r we denote πi�r by ρi.

Let m,n > 1 and let A = ISP(Pm,n) be the quasivariety generated by Pm,n.

Let Ω = S(P 2
m,n) be the set of all binary algebraic relations on Pm,n. For a given

subalgebra r of P 2
m,n, we write r ⊆ P 2

m,n when we wish to think of r as a binary

relation and r 6 P 2
m,n when it is regarded as a subalgebra of P 2

m,n.

In Section 3 we will need some elementary facts on the algebras Pm,n which we

next collect together for future reference.

Proposition 2.1. Let r 6 P 2
m,n. Then one of the following cases must occur:

(a) (0, 1), (1, 0) ∈ r and then r is a product of subalgebras of Pm,n.

(b) (0, 1), (1, 0) /∈ r and then r\{(d1, d2), (d2, d1)} is the graph of some one-

to-one homomorphism h : N 6 Pm,n → Pm,n.

Proof. Note that (0, 1) ∈ r if and only if (1, 0) ∈ r. So either (1, 0), (0, 1) ∈ r or

(1, 0), (0, 1) /∈ r.

Suppose that (0, 1), (1, 0) ∈ r. For every a ∈ ρ1(r) and b ∈ ρ2(r), let c, d ∈ Pm,n
be such that (a, d), (c, b) ∈ r. Then we have that (a, 1) = (a, d) ∨ (0, 1) ∈ r and

(1, b) = (c, b) ∨ (1, 0) ∈ r, and consequently (a, b) = (a, 1) ∧ (1, b) ∈ r. Thus (a)

holds.

Now consider (b). We claim that we only have (a, 0) ∈ r for a = 0. Suppose

that (a, 0) ∈ r, with a 6= 0. Since (a∗, 1) ∈ r and (0, 1) /∈ r, we must have a < d1.

But then (d1, 1) = (a, 0) ∨ (a∗, 1) ∈ r and so (1, 0) = (d+
1 , 1

+) ∈ r, contrary to

hypothesis. By using the same argument we also prove that (0, a) ∈ r if and only

if a = 0. Analogously, we prove that (a, 1) ∈ r ⇔ a = 1 and (1, a) ∈ r ⇔ a = 1.

Let (a, b), (a, c) ∈ r. We have that (0, b∗ ∧ c), (0, b ∧ c∗) ∈ r which implies that

b∗ ∧ c = 0 = b ∧ c∗ and consequently b∗ = c∗. But then b = c or d1 6 b, c. We

also have that (1, b+ ∨ c), (1, b ∨ c+) ∈ r which implies b+ = c+. Thus b = c or

b, c 6 d2. If b or c is in {d1, d2} then (a∗, 0), (a+, 1) ∈ r, and so a ∈ {d1, d2}
because a∗ = 0 and a+ = 1. We prove in a similar way that (b, a), (c, a) ∈ r

implies that (b = c or a, b, c ∈ {d1, d2}). At last observe that if (a, b) ∈ r then
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(d1, d1) ∈ r whenever 0 < a < d1, and (d2, d2) ∈ r whenever d2 < a < 1. Now

it follows that r\{(d1, d2), (d2, d1)} is a subalgebra of P 2
m,n and finally we have

that r\{(d1, d2), (d2, d1)} is the graph of a one-to-one (partial) endomorphism

of Pm,n. �

From this proposition it follows immediately the following result.

Corollary 2.2. The endomorphisms of Pm,n are exactly the automorphisms

of Pm,n.

Proposition 2.3.

(a) There exists a group isomorphism between AutPm,n and Sm × Sn, the

direct product of the symmetric groups Sm and Sn.

(b) If f ∈ AutPm,n\{id} then there exists a maximal subgroup H of AutPm,n
such that f /∈ H.

Proof. First observe that the group of automorphisms of a k-atom Boolean

lattice is isomorphic to the symmetric group Sk. Since the restrictions of the

automorphisms of Pm,n to Bm and to Bn are respectively automorphisms of Bm
and Bn, every automorphim of Pm,n is uniquely determined by a permutation on

its atoms and by a permutation on its coatoms. Also, each automorphism of Bm
and each automorphism of Bn define an automorphism g of Pm,n. Now the claim

regarding (a) follows easily.

For (b) take the subgroup H = { g ∈ AutPm,n | g(a) = a } of AutPm,n, where

a ∈ Pm,n is such that f(a) 6= a and a is either an atom or a coatom of Pm,n.

Suppose without less of generality that a is an atom of Pm,n and take a1, . . . , am
to be the atoms of Pm,n such that a = a1. Then { σ ∈ Sm | σ(1) = 1 }× Sn is the

subgroup of Sm×Sn that corresponds to H. Since it is a maximal proper subgroup

of Sm × Sn, we have that H is a maximal proper subgroup of AutPm,n. �

Let a ∈ Pm,n. A subalgebra N of Pm,n is called a value of Pm,n at a if N is

maximal with respect to not containing a. Denote by Nd1
and Nd2

the values of

Pm,n at d1 and d2 respectively. Observe that Nd1 is {0}⊕Bn and Nd2 is Bm⊕{1}.
Given a partial endomorphism h of Pm,n, we have that h(di) ∈ {d1, d2}, for

di ∈ domh, and since h is one-to-one on domh\{d1, d2}, by Proposition 2.1, we

also have that h(domh ∩ Ndi) ⊆ Ndi whenever domh ∩ Ndi * {0, dj, 1}, with

j ∈ {1, 2}, j 6= i. Then we may observe easily that if the codomain of h is Ndi ,

for i ∈ {1, 2}, its domain is either Ndi or Ndi ∪ {d1, d2}. Now the following result

follows immediately.

Proposition 2.4. Let i ∈ {1, 2}. Then D(Ndi) is the set of automorphisms

of Ndi .

For every subalgebra N of Pm,n, we denote the set of atoms of N and the set

of coatoms of N by AtN and CoatN respectively.
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Lemma 2.5. Let h be a partial endomorphism of Pm,n with d1, d2 ∈ domh

and h(d1) = d1, h(d2) = d2. Then h is extendable if and only if

there is an atom a of domh such that neither a nor h(a) is an atom of Pm,n,

or

there is a coatom c of domh such that neither c nor h(c) is a coatom of Pm,n.

Proof. Let N = domh. If h is extendable then take h′ : N ′ 6 Pm,n → Pm,n to

be an extension of h. As N is a proper subalgebra of N ′ there exists a′ ∈ AtN ′

such that a′ < a, for some a ∈ AtN , or there exists c′ ∈ CoatN ′ such that c < c′,

for some c ∈ CoatN . Suppose without loss of generality that there is such an

atom a′. Since h′ is one-to-one, by Proposition 2.1, 0 < h′(a′) < h(a). But then

a ∈ AtN and a, h(a) /∈ AtPm,n. Conversely suppose without loss of generality

that a ∈ AtN and that a, h(a) /∈ AtPm,n. Then there are a1, a2 ∈ AtPm,n such

that a1 < a and a2 < h(a). For every x ∈ N , we have a1 6 x⇔ a 6 x⇔ a2 6 h(x)

because a ∈ AtN and h is one-to-one. Take

s = graph(h) ∪ {(a1, a2) ∨ (x, h(x)) | x ∈ N} ∪ {(a1
∗, a2

∗) ∧ (x, h(x)) | x ∈ N}.

It is not difficult to verify that s is the universe of a subalgebra of P 2
m,n. Then

s = graph(h) for some one-to-one partial endomorphism h of Pm,n. But then h

extends h. �

Lemma 2.6. Let N and Q be two maximal proper subalgebras of Pm,n. If

N and Q are isomorphic then there exists an automorphism g of Pm,n such that

g(N) = Q.

Proof. Since N is a maximal proper subalgebra of Pm,n, N must contain either

Nd1 or Nd2 . Suppose without loss of generality that Nd1 ⊆ N . Then both N and

Q are isomorphic to Pm−1,n. Let a1, . . . , am be the atoms of Pm,n. If m = 2 then

N = Nd1 ∪ {d1} = Q. If m > 2 then there exist ai1 , ai2 , aj1 , aj2 ∈ AtPm,n such

that ai1 ∨ ai2 and aj1 ∨ aj2 are respectively the atoms of N and Q that are not

atoms of Pm,n. Take ((i1 j1)◦ (i2 j2), id) ∈ Sm×Sn and let g be the corresponding

automorphism of Pm,n. Then we have that g(N) = Q. �

Proposition 2.7. Let h : N → Pm,n be a non-extendable partial endomor-

phism. If either Nd1 ⊆ N and N has m− 1 atoms, with m > 2, or Nd2 ⊆ N and

N has n− 1 coatoms, with n > 2, then

(a) there exists g ∈ AutPm,n such that h ◦ g ◦ h is extendable;

(b) for every non-extendable partial endomorphism f : Q → Pm,n of Pm,n,

where Q is isomorphic to N , there exist g1, g2 ∈ AutPm,n such that f =

g1 ◦ h ◦ g2�N .

Proof. Suppose that Nd1 ⊆ N and N has m − 1 atoms, with m > 2. We may

assume that AtN = {a1, . . . , am−2, am−1 ∨ am}, where a1, . . . , am are the atoms
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of Pm,n. Since h is one-to-one, by Proposition 2.1, and h is non-extendable, there

are ai, aj , ai1 , ai2 ∈ AtPm,n such that h(ai) = ai1 ∨ai2 and h(am−1∨am) = aj , by

applying Lemma 2.5. There exists σ ∈ Sm such that σ(i1) = m−1, σ(i2) = m and

σ(j) = i. Now (a) holds by taking the automorphism g of AutPm,n determined

by (σ, id) ∈ Sm × Sn.

By Lemma 2.6, we only need to prove (b) for the case Q = N . Let f : N → Pm,n
be a non-extendable partial endomorphism of Pm,n. By Lemma 2.5, there are

ai, aj ∈ N such that ai, aj ∈ AtPm,n and, for some ai1 , ai2 , aj1 , aj2 ∈ AtPm,n,

f(aj) = aj1 ∨ aj2 and h(ai) = ai1 ∨ ai2 . Take g2 to be the automorphism of Pm,n
determined by ((i j), id) ∈ Sm × Sn. Let f ′ = f ◦ g2

−1 ◦ h−1, where h−1 denotes

the inverse of the isomorphism from N to h(N) given by h. Since h(ai) is the

only atom of h(N) which is not an atom of Pm,n and f ′(h(ai)) = f(aj), f
′ is

extendable. Let g1 ∈ AutPm,n be an extension of f ′. We have g1 ◦ h ◦ g2�N = f .

In case Nd2 ⊆ N and N has n− 1 coatoms, with n > 2, the proof of the claim

is dual to this we have just done. �
Recall that a subset R of Ω entails a relation r (in symbols, R ` r) if, for every

A ∈ A, every continuos map ϕ : D(A) → Pm,n which preserves every relation in

R also preserves r. The map R 7→ R := { r ∈ Ω | R ` r } is a closure operator,

referred as entailment closure (see [4] and [5] for further details). There are

different ways of building relations from a subset R of Ω in order that those new

relations are entailed by R. In [4] the authors present a list of constructs sufficient

to describe entailment. Next we present some of those constructs which we will

need in Section 3.

Permutation. From a binary relation r, construct r` = { (c, d) ∈ P 2
m,n |

(d, c) ∈ r }.

Intersection. From binary relations r and s, construct r ∩ s.

Domains. From a partial endomorphism e : N → Pm,n, construct the domain,

dom e, of e.

Joint kernels. From (partial) endomorphisms e1 : N1 → Pm,n and e2 : N2 →
Pm,n, with N1, N2 ≤ Pm,n, construct ker(e1, e2) := { (c1, c2) ∈ N1×N2 | e1(c1) =

e2(c2) }.

Composition. From (partial) endomorphisms e1 : N1 → Pm,n and e2 : N2 →
Pm,n, with N1, N2 ≤ Pm,n, construct the composite (partial) endomorphism

e2 ◦ e1 with domain { c ∈ dom e1 | e1(c) ∈ dom e2 }.

Action by (partial) endomorphisms. From r ⊆ P 2
m,n and a (partial)

endomorphism e : N → Pm,n of Pm,n, construct e ·r := { (c, d) ∈ P 2
m,n | c ∈ N and

(e(c), d) ∈ r }.
Let r ∈ Ω and let u : D(r)→ Pm,n be any map. Define

U = Failr(u) := { s ∈ Ω | u fails to preserve s };



OPTIMAL NATURAL DUALITIES 255

U is called a failset of r (within Ω) if it contains r. We say that U is a failset

whenever it is a failset of some r ∈ U . Let u : D(r) → Pm,n is a map and

x, y ∈ D(r). Then we say that (x, y) witnesses s ∈ Failr(u) if (x, y) ∈ sD(r) but

(u(x), u(y)) /∈ s.

Proposition 2.8. For any map u : D(r) → Pm,n, the complement of Failr(u)

in Ω is a closed set for entailment closure.

Proof. This follows from the definitions. �

A failset U is said to be a minimal failset of r if U is a minimal element of

the set of all failsets of r ordered by inclusion. If U is minimal in the set of all

failsets ordered by inclusion then U is called a globally minimal failset.

The following two results are Corollary 3.6 and part of Theorem 3.14 of [5].

Proposition 2.9. Let s ∈ Ω. Let U = Failr(u) be a failset containing s. Then

there is a minimal failset Us of s with Us ⊆ U .

Theorem 2.10. Let ∅ 6= U ⊆ Ω. Then the following are equivalent:

(a) U is a globally minimal failset;

(b) U is a minimal failset of r for all r ∈ U .

3. Globally Minimal Failsets in S(P 2
m,n)

As in the preceding section, let Ω be S(P 2
m,n). It is known that Ω yields a

duality on A = ISP(Pm,n), once Pm,n has a lattice reduct (see [3] and [6]).

For a given (partial) endomorphism h of Pm,n, we refer to r = graph(h) as h

whenever this causes no confusion. Note that each x ∈ D(r) may be identified

with the homomorphism x ◦ f , where f : domh → r is the isomorphism defined

by f(a) = (a, h(a)), and hence we may identify D(r) with D(domh). In case

domh = Pm,n, D(r) is identified with AutPm,n.

Observe that any map u : D(N) → Pm,n that fails to preserve a homomor-

phism h : N → Pm,n also fails to preserve either idN or every extension of h.

Consequently a globally minimal failset U in Ω which contains a partial endomor-

phism of Pm,n either contains every non-extendable extension of it or contains the

identity map on some value of Pm,n. This is the case for the two globally minimal

failsets in Ω which contain the identity maps idNd1
and idNd2

respectively, as we

show next.

Lemma 3.1. For i ∈ {1, 2}, let udi : D(Ndi
) → Pm,n be the constant map

with value di. Then FailidNdi
(udi) is the unique minimal failset of idNdi and its

elements are the following (and no others):

(i) the partial endomorphisms of Pm,n with codomain Ndi and their converses;
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(ii) the products Q×Ndi and Ndi ×Q, where Ndi 6 Q 6 Pm,n.

Moreover Fail idNdi
(udi) = ΦNdi , where ΦNdi := { r ∈ Ω | r ` idNdi }.

Proof. Firstly, note that idNdi ∈ Fail idNdi
(udi) is witnessed by (idNdi , idNdi ).

Suppose that FailidNdi
(v) is a failset of idNdi and that (h, h) witnesses idNdi ∈

FailidNdi
(v). We claim that Fail idNdi

(udi) ⊆ FailidNdi
(v). Let r ∈ Fail idNdi

(udi).

If r is a product of two subalgebras of Pm,n, then the identity map on one of

them must belong to Fail idNdi
(udi). Since idNdi is the only identity map in

Fail idNdi
(udi), r must be either Q × Ndi or Ndi × Q, for some Q 6 Pm,n. But

then r ∈ FailidNdi
(v). Thus, by Lemma 2.1, we only need to consider r when

r\{(d1, d2), (d2, d1)} is the graph of a one-to-one partial endomorphism of Pm,n.

Let h′ be such a partial endomorphism. Since r contains the graph of an automor-

phism of Ndi
and it does not contain (di, di), h

′ must be an automorphism of Ndi

and there is j ∈ {1, 2} such that di /∈ ρj(r). Consequently r is a partial endomor-

phism of Pm,n with codomain Ndi or the converse of its graph. Suppose without

loss of generality that j = 1. Then (h, h′ ◦ h) ∈ r and v(h) /∈ Ndi = ρ1(r). Thus

(h, h′ ◦h) witnesses r ∈ FailidNdi
(v). We have just proved that FailidNdi

(udi) is the

unique minimal failset of idNdi and that its elements are between those of (i) and

(ii), which belong to ΦNdi . Finally it is immediate that ΦNdi ⊆ FailidNdi
(udi). �

Proposition 3.2. The minimal failsets ΦNd1
and ΦNd2

are globally minimal

failsets.

Proof. Let r 6 P 2
m,n and let v : D(r)→ Pm,n be such that r ∈ Failr(v) ⊆ ΦNdi ,

with i ∈ {1, 2}. Suppose that idNdi /∈ Failr(v) or otherwise ΦNdi ⊆ Failr(v). Since

idNdi is the only identity map in ΦNdi we have that Q×Ndi , Ndi ×Q /∈ Failr(v),

for every Ndi
6 Q 6 Pm,n. But then, by Lemma 3.1, we may assume that r

is the graph of some partial endomorphism h of Pm,n with codomain Ndi . Let

x, y ∈ D(r) such that (x, y) ∈ r but (v(x), v(y)) /∈ r. We have that (v(x), v(y)) ∈
domh × Ndi . Take r′ = r ∪ {(di, di)}. It is easy to verify that r′ 6 P 2

m,n. Since

v(y) 6= di we have (v(x), v(y)) /∈ r′ and then r′ ∈ Failr(v). Thus r′ ∈ ΦNdi and so

(di, di) /∈ r′. �

Take U to be a failset such that U contains an automorphism of Pm,n. The set

of the automorphisms of Pm,n which are not in U forms a subgroup of AutPm,n.

The smaller U is, the bigger this subgroup will be. So we may ask if globally

minimal failsets in Ω containing automorphisms are “associated” with maximal

subgroups of AutPm,n. The following results give us the answer.

Let g be a (partial) endomorphism of Pm,n and let r be a binary algebraic

relation on Pm,n, with (d1, d1), (d2, d2) ∈ r. We denote by g6 and r the binary

relations graph(g)∪{(d1, d2)} and r∪{(d1, d2), (d2, d1)} respectively. Observe that

both these relations are algebraic.
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Lemma 3.3. Let H be a maximal proper subgroup of AutPm,n and K =

AutPm,n\H. Then

WH := K ∪ { g6 | g ∈ K } ∪ { (g6)` | g ∈ K }

is a minimal failset of each g ∈ K.

Proof. Let g ∈ K and define a map u : AutPm,n → Pm,n as follows:

u(x) =

{
d1 if x ∈ K,

d2 otherwise.

We have that g ∈ Failg(u) is witnessed by (id, g). Let s ∈ Failg(u). There exist

x, y ∈ AutPm,n such that (x, y) ∈ s and (u(x), u(y)) /∈ s. Then ρ1(s) = ρ2(s) =

Pm,n and s 6= P 2
m,n. Hence, by Lemma 2.1, s = graph(f) or s = f6 or (f6)`, for

some f ∈ K. Conversely suppose f ∈ K. Then (id, f) witnesses f, f6 ∈ Failg(u).

Thus Failg(u) = WH is a failset of g. Now let v : AutPm,n → Pm,n be a map

such that g ∈ Failg(v) ⊆ Failg(u). There exists x ∈ AutPm,n such that v(g ◦ x) 6=
g(v(x)). We claim that ∀y ∈ AutPm,n, v(y) ∈ {d1, d2}. If v(x) or v(g ◦ x) is not

in {d1, d2}, then (x, g ◦ x) witnesses r ∈ Failg(v), where r = graph(g), and then

r ∈ WH . Hence v(x), v(g ◦ x) ∈ {d1, d2}. Let y ∈ AutPm,n. If v(y) 6= d1, d2 then

(x, y) witnesses graph(y ◦ x−1) ∈ Failg(v). Thus graph(y ◦ x−1) ∈ Failg(u) and

this is false. Let K ′ = { f ∈ AutPm,n | f ∈ Failg(v) } and let H ′ = AutPm,n\K
′.

Then H ′ is a proper subgroup of AutPm,n. By the maximality of H, H ′ = H

and hence K ′ = K. Now it suffices to prove that f ∈ Failg(v) implies that f6 ∈
Failg(v) in order to conclude that WH ⊆ Failg(v). Suppose that f ∈ Failg(v). Let

x ∈ AutPm,n such that v(f ◦x) 6= f(v(x)). If f6 /∈ Failg(v) then (v(x), v(f ◦x)) =

(d1, d2) and v(fk ◦x) = v(f ◦x) = d2, for every k > 1 (note that (fk−1◦x, fk ◦x) ∈
f6). But then v(x) = v(f−1 ◦ f ◦ x) = d2. Thus f6 ∈ Failg(v). �

Proposition 3.4. Let H be a maximal proper subgroup of AutPm,n. Then

WH is a globally minimal failset.

Proof. By Theorem 2.10 and Lemma 3.3, it suffices to prove that WH is a

minimal failset of each g6, with g ∈ K. Fix g ∈ K and let s = g6. Suppose

s ∈ Fails(v) ⊆WH , for some map v : D(s)→ Pm,n. Since WH is a minimal failset

of g and, by Proposition 2.9, every failset that contains g must contain a minimal

failset of g, we only need to prove that g ∈ Fails(v). Observe that s = g ·id6. Since

s ∈ Fails(v) and id6 /∈ Fails(v) because id6 /∈WH , we must have g ∈ Fails(v). �
Proposition 3.5. Let U be a globally minimal failset. If U intersects AutPm,n

then U is WH for some maximal proper subgroup H of AutPm,n.

Proof. Let K = U ∩ AutPm,n and let H = AutPm,n\K. Then H is a proper

subgroup of AutPm,n. Take H ′ to be a maximal subgroup of AutPm,n con-

taining H. Let K ′ = AutPm,n\H
′ ⊆ K and let g ∈ K ′. Since g ∈ U we
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may take x ∈ AutPm,n and a map u : AutPm,n → Pm,n such that (x, g ◦ x)

witnesses g ∈ U = Failg(u). If g6 /∈ U then u(x) = d1, u(g ◦ x) = d2 and

u(g2 ◦ x) = u(g ◦ x) = d2 (note that (g ◦ x, g2 ◦ x) ∈ g6). Moreover u(gk ◦ x) = d2,

for k > 1. But then u(g−1 ◦ g ◦ x) = d2, i.e. u(x) = d2. Thus WH′ ⊆ U . �

It follows from Lemma 2.1 that for every g ∈ AutPm,n, the subalgebra r, with

r = g6, is maximal with respect to not containing (d2, d1), that is what we call a

value of P 2
m,n at (d2, d1). The next result gives us a globally minimal failset whose

elements are exactly the relations g6 and their converses, with g ∈ AutPm,n.

Proposition 3.6. The set { g6, (g6)` | g ∈ AutPm,n} is a globally minimal

failset.

Proof. Let f ∈ AutPm,n and r = f6. Let u : D(r) → Pm,n be defined as

follows:

u(x) =

{
d2 if x(d1, d2) = d1,

d1 if x(d1, d2) = d2.

Observe that

(i) for every g ∈ AutPm,n we have

u(g ◦ ρi) = u(ρi) and g6 = { (a, g ◦ f−1(b)) | (a, b) ∈ f6 },

which implies that

(ρ1, g ◦ f
−1 ◦ ρ2) ∈ g6 and (u(ρ1), u(g ◦ f−1 ◦ ρ2)) = (d2, d1) /∈ g6 ;

(ii) for every x ∈ D(r), x�graph(f) is identified with an automorphism of Pm,n
and then x(r) = Pm,n. Therefore if s ∈ Failr(u) then ρ1(s) = ρ2(s) = Pm,n
and (d1, d1), (d2, d2) ∈ s. Hence, by Lemma 2.1, s must be one of the

relations graph(g), g6 or (g6)`, for some g ∈ AutPm,n;

(iii) for every g ∈ AutPm,n and x ∈ D(r), u(g ◦ x) = g(u(x)) and so g /∈
Failr(u).

Thus Failr(u) = { g6, (g6)` | g ∈ AutPm,n}.

We claim that { g6, (g6)` | g ∈ AutPm,n} is a minimal failset of r. Suppose

that r ∈ Failr(v) ⊆ Failr(u), for some map v : D(r)→ Pm,n. Let x, y ∈ D(r) such

that (x, y) ∈ r and (v(x), v(y)) /∈ r. If (v(x), v(y)) 6= (d2, d1) then (x, y) witnesses

r ∈ Failr(v). But then r ∈ Failr(u) and this is false. Thus (v(x), v(y)) = (d2, d1).

Now take g ∈ AutPm,n. Since g ◦ f−1 /∈ Failr(v) we must have v(g ◦ f−1 ◦ y) =

g ◦ f−1(v(y)) = v(y). But then (x, g ◦ f−1 ◦ y) witnesses g6 ∈ Failr(v). Thus

Failr(v) = Failr(u). Finally we apply Theorem 2.10 and we get that { g6, (g6)` |
g ∈ AutPm,n} is a globally minimal failset because it is a minimal failset of each

one of its elements. �
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Proposition 3.7. Let U be a globally minimal failset. If U intersects the

globally minimal failset { g6, (g6)` | g ∈ AutPm,n} but U does not intersect

AutPm,n then U = { g6, (g6)` | g ∈ AutPm,n}.

Proof. Let g ∈ AutPm,n and suppose that g6 ∈ U . Take g′ ∈ AutPm,n and

let f = g′
−1 ◦ g. Note that g6 = f · g′6. Since f /∈ U and g6 ∈ U we must have

g′
6 ∈ U . �

Denote by g the algebraic relation graph(g); the subalgebra r, where r = g, is

a value of P 2
m,n at (0, 1) and then r is uniquely covered by P 2

m,n. Also now we get

a globally minimal failset whose elements are the relations g, with g ∈ AutPm,n.

Proposition 3.8. The set { g | g ∈ AutPm,n} is a globally minimal failset.

Proof. Let f ∈ AutPm,n and r = f . Let u : D(r)→ Pm,n be defined by

u(x) =

{
0 if x(d1, d2) = d1,

1 otherwise.

Note that

(i) ∀g ∈ AutPm,n , (ρ1, g◦f−1◦ρ2) ∈ g and (u(ρ1), u(g◦f−1◦ρ2)) = (0, 1) /∈ g;

(ii) if s ∈ Failr(u) then s must be one of the relations graph(g), g6, (g6)` or

g, for some g ∈ AutPm,n, by applying Lemma 2.1;

(iii) ∀x ∈ D(r), x(d1, d2) 6= x(d2, d1) since d1 = x(d1, d1) = x(d1, d2)∧ x(d2, d1)

and d2 = x(d2, d2) = x(d1, d2) ∨ x(d2, d1). If x, y ∈ D(r) such that (x, y) ∈ s and

u(x) 6= u(y), then (d1, d2), (d2, d1) ∈ s.

Thus { g | g ∈ AutPm,n} = Failr(u) is a failset of r. Let U be a failset of r

contained in Failr(u). For every g ∈ AutPm,n, we have r = (g−1 ◦ f) · g. Since

g−1 ◦f /∈ Failr(u), and consequently g−1 ◦f /∈ U , we must have g ∈ U or otherwise

r /∈ U . Thus U = Failr(u) and Failr(u) is a minimal failset of r. Finally we apply

Theorem 2.10 and we have that { g | g ∈ AutPm,n} is a globally minimal failset.�

Proposition 3.9. Let U be a globally minimal failset. If U intersects the

globally minimal failset { g | g ∈ AutPm,n} but U does not intersect AutPm,n
then U = { g | g ∈ AutPm,n}.

Proof. Use a similar argument to that in the proof of Proposition 3.7. �

The following result gives us two globally minimal failsets that contain non-

extendable partial endomorphisms of Pm,n. Later on we will see that they are

the unique globally minimal failsets, within Ω, containing non-extendable partial

endomorphisms of Pm,n and containing no identity maps.

We denote by Endi Pm,n the set of non-extendable partial endomorphisms of

Pm,n having as its domain a maximal proper subalgebra of Pm,n containing Ndi .
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Proposition 3.10.

(a) If m > 2 then the set Wd1 = {h, h6, (h6)` : h ∈ End1 Pm,n } is a globally

minimal failset.

(b) If n > 2 then the set Wd2 = {h, h6, (h6)` : h ∈ End2 Pm,n } is a globally

minimal failset.

Proof. Next we prove the claim regarding (a). By Theorem 2.10, it is enough

to prove that Wd1 is a minimal failset of each of its elements. Take h : N → Pm,n
to be a homomorphism in End1 Pm,n. Hence N is isomorphic to Pm−1,n. Define

a map u : D(N)→ Pm,n by

u(x) =

{
d1 if x is non-extendable,

d2 otherwise.

We claim that Wd1 = Failh(u). Let f : Q → Pm,n be a homomorphism in

End1 Pm,n. By Lemma 2.6, there is g ∈ AutPm,n such that g(N) = Q. Con-

sequently (g�N , f ◦ g�N ) witnesses f, f6 ∈ Failh(u). Conversely let s ∈ Failh(u).

Then one of the pairs (d1, d2),(d2, d1) is not in s. By applying Lemma 2.1,

s = graph(f) or s = f6 or s = (f6)` for some one-to-one partial endomorphism f

of Pm,n. Let x, y ∈ D(N) be such that (x, y) witnesses s ∈ Failh(u). Then either

x is non-extendable or y is non-extendable. Since (x, y) ∈ s\{ (d1, d2), (d2, d1) }
which is either graph f or (graphf)`, and y◦x−1 is non-extendable, we must have

that f is either y ◦ x−1 or x ◦ y−1. Hence f is non-extendable and its domain is

isomorphic to Pm−1,n.

Next we prove that Failh(u) is a minimal failset of h. Let v : D(N) → Pm,n
be a map such that h ∈ Failh(v) ⊆ Failh(u). For every f ∈ Failh(u), there are

g1, g2 ∈ AutPm,n such that h = g1 ◦ f ◦ g2�N , by Lemma 2.7. Consequently

Failh(v) contains every f ∈ Failh(u) because it contains no automorphisms of

Pm,n. Suppose that Failh(v) 6= Failh(u). Then there exists f ∈ Failh(u) such that

f6 /∈ Failh(v). We claim that h′
6
/∈ Failh(v), for every h′ ∈ Failh(v). Let h′ ∈

Failh(v) and suppose that (x, y) witnesses h′
6 ∈ Failh(v), for some x, y ∈ D(N).

Then (x, y) also witnesses h′ ∈ Failh(v). We apply Lemma 2.7 again and we have

that h′ = g′1 ◦ f ◦ g
′
2�x(N), for some g′1, g

′
2 ∈ AutPm,n. Since

g′1(v(f ◦ g′2 ◦ x) = v(h′ ◦ x) 6= h′(v(x)) = g′1 ◦ f(v(g′2 ◦ x))

and (g′2 ◦x, f ◦g
′
2 ◦x) ∈ f6 we must have v(g′2 ◦x) = d1 and v(f ◦g′2 ◦x) = d2. But

then (d1, d2) = ((v(x), v(h′ ◦ x)) = (v(x), v(y)) /∈ h′6 and this is absurd. Denote

by h−1 the partial endomorphism from h(N) into Pm,n given by the inverse of

the isomorphism from N to h(N) given by h. As h, h−1 ∈ Failh(v) we have that

h6, (h−1)6 /∈ Failh(v). Therefore h = h6 ∩ ((h−1)6)` /∈ Failh(v). Hence Wd1 is a

minimal failset of h.
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In order to finish our proof we only need to see that Wd1 is a minimal failset

of s = h6. Suppose that s ∈ Fails(v) ⊆ Failh(u), for some map v : D(s) → Pm,n.

Observe that s = h · id6. Since id6 /∈ Fails(v), h must be in Fails(v). By the

minimality of Failh(u) as a failset of h we have that Fails(v) = Wd1 .

The proof of (b) is done by using the same kind of arguments as those used to

prove (a). �

Proposition 3.11. Let U be a globally minimal failset. If there is a non-

extendable partial endomorphism h of Pm,n such that domh is a maximal proper

subalgebra of Pm,n and h ∈ U , then either U = ΦNdi or U = Wdi , for some

i ∈ {1, 2}.

Proof. Let h : N → Pm,n be a non-extendable partial endomorphism of Pm,n,

where N is a maximal proper subalgebra of Pm,n. Then N must contain either

Nd1 or Nd2, so that either h ∈ End1 Pm,n or h ∈ End2 Pm,n. Suppose that h ∈ U
and suppose without loss of generality that h ∈ End1 Pm,n. By Proposition 3.5,

U does not intersect AutPm,n.

Firstly consider the case m = 2. Then N = Nd1 ∪ {d1} and h(d1) = d2.

Take f ∈ AutNd1
to be h�Nd1

. Observe that graphh = (f−1 · (id6)`)` and so

f−1 ·(id6)` ∈ U . Consequently either f−1 ∈ U or id6 ∈ U . Since U∩{ g6, (g6)` |
g ∈ AutPm,n} = ∅, by Proposition 3.7, we have that id6 /∈ U . Hence we must

have that f−1 ∈ U . Let g ∈ AutPm,n be given by g�Nd1
= f−1 and g�Nd2

= idNd2
.

We have that g /∈ U and consequently idNd1
∈ U because graph f−1 = g · MNd1

.

Finally U = ΦNd1
by Theorem 2.10 and Lemma 3.1.

Now consider the casem > 2. We claim that U = Wd1 . Let u : D(N)→ Pm,n be

a map and x, y ∈ D(N) such that (x, y) witnesses h ∈ U = Failh(u). Let f ∈Wd1

be a non-extendable partial endomorphism of Pm,n. We apply Lemma 2.7 and

we get that there exist g1, g2 ∈ AutPm,n such that h = g1 ◦ f ◦ g2�N . Since

g1, g2 /∈ U and h ∈ U , f must be in U . We still need to prove that f6 ∈ U .

Observe that h6 = (g−1
1 · (g2 · f6)`)`. Therefore if h6 ∈ U then f6 ∈ U

because g1, g2 /∈ U . Hence it only remains to prove that h6 ∈ U . Suppose that

(u(x), u(y)) = (d1, d2). Let h−1 ∈ Wd1 be the partial endomorphism of Pm,n
corresponding to the inverse of the isomorphism N → h(N) given by h. Once

again there are g′1, g
′
2 ∈ AutPm,n such that h = g′1 ◦ h

−1 ◦ g′2. Since y = h ◦ x we

have that u(h−1 ◦ g′2 ◦ x) = g′1
−1

(u(y)) = d2 and u(g′2 ◦ x) = g′2(u(x)) = d1. But

then (h−1 ◦ g′2 ◦ x, g
′
2 ◦ x) witnesses h6 ∈ U . �

Our next step is to find out if there are any other globally minimal failsets

containing proper partial endomorphisms of Pm,n.

Lemma 3.12. Let U be a failset and suppose that id{0,1} ∈ U . Then ΦNd1
⊆ U

or ΦNd2
⊆ U .
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Proof. This is a consequence of the equality MNd1
∩ MNd2

=M{0,1} and of Propo-

sition 2.9 and Lemma 3.1. �

Lemma 3.13. Let U be a failset. For every subalgebra Q of Pm,n such that

Nd1 ⊆ Q, Nd2 ∩ Q * {0, d1, 1} and idQ ∈ U , there exists a maximal proper

subalgebra N of Pm,n such that Q ⊆ N and idN ∈ U .

Proof. We prove the result by induction on m − k, where k is the number of

atoms of Q.

For m − k = 1, Q has m − 1 atoms and therefore Q is a maximal proper

subalgebra of Pm,n since Nd1 ⊆ Q. Now suppose that the result is valid for

subalgebras of Pm,n containing Nd1 and having k atoms. Let Q be a subalgebra

of Pm,n containing Nd1 and let a1, . . . , ak−1 be the atoms of Q. There exists i ∈
{1, . . . , k− 1} such that ai /∈ AtPm,n. We may assume that i = k− 1. Then ak−1

is of the form ai1 ∨ai2 ∨a for some ai1 , ai2 ∈ AtPm,n and some a ∈ Pm,n such that

ai1 
 a∨ai2 and ai2 
 a∨ai1 . Now we takeQ
1
, Q

2
6 Pm,n such thatNd1 ⊆ Q1, Q2

and AtQ
1

= {a1, . . . , ak−2, a ∨ ai1 , ai2} and AtQ
2

= {a1, . . . , ak−2, a ∨ ai2 , ai1}.
Note that Q = Q1 ∩ Q2. Since idQ ∈ U one of the two identity maps idQ1 , idQ2

must be in U . Then by our inductive hypothesis there exists a maximal proper

subalgebra N of Pm,n such that Q ⊆ N and idN ∈ U . �

By using a similar argument we also have the following result:

Lemma 3.14. Let U be a failset. For every subalgebra Q of Pm,n such that

Nd2 ⊆ Q, Nd1 ∩ Q * {0, d2, 1} and idQ ∈ U , there exists a maximal proper

subalgebra N of Pm,n such that Q ⊆ N and idN ∈ U .

Lemma 3.15. Let U be a failset and suppose that U contains neither idNd1
nor

idNd2
and that U does not intersect AutPm,n. Let Q be a subalgebra of Pm,n such

that Q 6= {0, 1}. If idQ ∈ U then U contains the identity map on some maximal

proper subalgebra of Pm,n.

Proof. Let Q1 = Nd1 ∪ Q and Q2 = Nd2 ∪ Q. Observe that Q1 and Q2 are

universes of two subalgebras Q
1

and Q
2

of Pm,n. Since idQ ∈ U and Q = Q
1
∩

Q
2

one of the identity maps idQ1 , idQ2 must be in U . Suppose without loss of

generality that idQ1 ∈ U . By hypothesis, idNd1
/∈ U and therefore Q1 6= Nd1 .

If Q1 ∩ Nd2 * {0, d1, 1} then, by applying Lemma 3.13, there exists a maximal

proper subalgebra N of Pm,n satifying Q1 ⊆ N and idN ∈ U . Now suppose that

Q1 ∩Nd2 ⊆, {0, d1, 1} and so Q1 = Nd1 ∪ {d1}. There exists a map u : D(Q
1
) →

Pm,n such that idQ1 ∈ Fail idQ1
(u) ⊆ U . Let x ∈ D(Q

1
) such that x ∈ Q1 and

u(x) /∈ Q1. Hence 0 < u(x) < d1 and then there exist distinct atoms a, b of Pm,n
such that a 6 u(x) and b 
 u(x). Now we take N to be the maximal proper

subalgebra of Pm,n, containing Nd1, whose atoms are a ∨ b and all the atoms of

Pm,n different from a and b. Observe that x ∈ N and u(x) /∈ N . Thus idN ∈ U .�
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Proposition 3.16. Let U be a globally minimal failset. Suppose that U con-

tains neither idNd1
nor idNd2

and suppose that U does not intersect AutPm,n. For

every subalgebra Q of Pm,n, idQ /∈ U .

Proof. Let Q be a subalgebra of Pm,n. If Q = {0, 1} then idNd1
, idNd2

/∈ U
implies idQ /∈ U by Lemma 3.12. Now consider Q 6= {0, 1}. Suppose that idQ ∈ U .

By Proposition 3.15, there exists a maximal proper subalgebra N of Pm,n such

that idN ∈ U . Let h be a non-extendable partial endomorphism of Pm,n having

N as its domain. We have that idN ∈ U implies h ∈ U and from Proposition 3.10

and Proposition 3.11 we get U = Wdi , for some i ∈ {1, 2}, and idN /∈ Wdi . Thus

idQ /∈ U . �

Lemma 3.17. Let U be a failset and suppose that U contains no identity maps.

For every one-to-one non-extendable partial endomorphism h : N → Pm,n of Pm,n,

if Ndi ⊆ N , for some i ∈ {1, 2}, and h ∈ U then U intersects Endi Pm,n.

Proof. Let h : N → Pm,n be a one-to-one non-extendable partial endomorphism

such that Ndi ⊆ N , for some i ∈ {1, 2}, and h ∈ U . Suppose without loss of

generality that i = 1. Note that d1 ∈ domh because h is non-extendable. Since h

is one-to-one and h(d1), h(d2) ∈ {d1, d2} we must have h(d1) = d1 and h(d2) = d2.

Thus Nd2 ∩ N 6= {0, d1, 1} or otherwise h would be extendable. Let k be the

number of atoms of N . We will prove the result by induction on m− k.

If m− k = 1 then N has m-1 atoms. Hence N is a maximal proper subalgebra

of Pm,n and there is nothing more to prove.

Now suppose the result is valid for partial endomorphisms whose domains have

at least k atoms. Let h : N → Pm,n be a one-to-one non-extendable partial en-

domorphism of Pm,n such that h ∈ U , Nd1 ⊆ N and N has k − 1 atoms. Let

a1, . . . , ak−1 be the atoms of N . Since h is non-extendable and k − 1 < m, there

exists aj ∈ AtN such that aj /∈ AtPm,n but h(aj) ∈ AtPm,n. Suppose without

loss of generality that j = k − 1 and let b be the atom h(aj) of Pm,n. Then ak−1

must be of the form ak1 ∨ ak2 ∨ a for some distinct atoms ak1 , ak2 of Pm,n and for

some a ∈ Pm,n (eventually 0), with a < d1. The one-to-one non-extendability of h

also implies the existence of some l in {1, . . . , k−2} such that al ∈ AtN∩AtPm,n,

but h(al) /∈ AtPm,n, and so h(al) is of the form al1 ∨ al2 ∨ a
′ for some distinct

atoms al1 , al2 of Pm,n and some a′ ∈ Pm,n with a′ < d1. Now two cases may

occur:

Case 1: there exists al ∈ AtPm,n for which h(al) = al1 ∨ al2 ∨ a
′, for some

distinct atoms al1 , al2 of Pm,n and some 0 < a′ < d1 such that al1 , al2 
 a′;

Case 2: for every al ∈ AtN ∩AtPm,n, h(al) is either an atom of Pm,n or is the

join of two atoms of Pm,n.

Observe that the subalgebras of Pm,n are completely determined by their atoms

and their coatoms, and every one-to-one partial endomorphism of Pm,n is com-

pletely determined by the following conditions:
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(i) The bijection from the set of the atoms of the domain, if non empty, into

the set of the atoms of the codomain;

(ii) The bijection from the set of the coatoms of the domain, if non empty,

into the set of the coatoms of the codomain.

We begin with case 1. Let N1 and N2 be the subalgebras of Pm,n such that

Nd1 ⊆ N1, N2 and

AtN1 = {a1, . . . , ak−2, ak1 , ak2 ∨ a}

and

AtN2 = {al1 , al2 ∨ a
′} ∪Ath(N)\{h(al)}.

Let h1 : N1 → Pm,n be the one-to-one partial endomorphism determined by

h1�Nd1
= h�Nd1

and

h1(x) =


al2 ∨ a

′ if x = al,

b if x = ak1 ,

al1 if x = ak2 ∨ a,

h(x) otherwise

for every x ∈ AtN1. Observe that the non-extendability of h implies that h1 is

also non-extendable. Let h2 : N2 → Pm,n be the one-to-one partial endomorphism

determined by h2�Nd1
= id�Nd1

and

h2(x) =


al2 if x = al1 ,

a′ if x = al2 ∨ a
′,

al1 ∨ b if x = b,

x otherwise

for every x ∈ AtN2. We claim that ker(h1, h2) = graph(h). Note that ker(h1, h2)

= (N2
d1
∩ ker(h1, h2)) ∪ (N2

d2
∩ ker(h1, h2)). Since h1�Nd1

= h �Nd1
and h2�Nd1

=

id �Nd1
we have N2

d1
∩ ker(h1, h2) = N2

d1
∩ graphh. Let x, y ∈ Nd2 . We are going

to prove that (x, y) ∈ ker(h1, h2) only for x ∈ N . Suppose (x, y) ∈ ker(h1, h2)

with x ∈ N1\N . Then one and only one of the atoms ak1 , ak2 ∨ a of N1 is less or

equal to x.

If ak1 6 x then b = h1(ak1) 6 h1(x) = h2(y). But then al1 ∨ b 6 h2(y).

Thus h1(ak2 ∨ a) = al1 6 h1(x) and this is false because h1(x) ∧ h1(ak2 ∨ a) =

h1(x ∧ (ak2 ∨ a)) = 0.

If ak2 ∨a 6 x then al1 = h1(ak2 ∨a) 6 h1(x) = h2(y). But then al1 ∨ b 6 h2(y).

Thus h1(ak1) = b 6 h1(x) and this is false because h1(x ∧ ak1) = 0.

Now let x ∈ N . We are going to consider three different possibilities in order

to prove that (x, y) ∈ ker(h1, h2) if and only if (x, y) ∈ graph(h).
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If ak−1, al 
 x then h1(x) = h(x) = h2(h(x)). Thus h1(x) = h2(y) if and only

if y = h(x).

If ak−1 
 x and al 6 x then x = al ∨ x′ for some x′ � al in N . Then we have

h1(x) = al2 ∨ a
′ ∨ h(x′). Since al2 ∨ a

′ 6 h2(y) if and only if h(al) 6 y we have

h1(x) = h2(y) if and only if

h2(y) = h2(h(al)) ∨ h1(x) = h2(h(al)) ∨ h(x′) = h2(h(al)) ∨ h2(h(x′)) = h2(h(x))

if and only if (x, y) ∈ graphh.

If ak−1 6 x then x = ak−1 ∨ x′ for some x′ � ak1 , ak2 ∨ a in N1. Then we have

h1(x) = b ∨ al1 ∨ h1(x′) and h1(x′) � b, al1 . Observe that

y = h(x)⇒ b ∨ al1 6 h2(y)⇔ b 6 y ⇔ y = b ∨ y′,

for some y′ � b in N2. Also note that y′ � b⇒ h2(y′) � al1 ∨ b⇒ h2(y′) � al1 , b

because al1 ∨ b is an atom of h2(N2). Hence we have

h1(x) = h2(y)⇔ h1(x′) ∨ b ∨ al1 = h2(y)⇔ h1(x′) ∨ b ∨ al1 = h2(y′) ∨ h2(b)

⇔ h1(x′) ∨ b ∨ al1 = h2(y′) ∨ b ∨ al1 ⇔ h1(x′) = h2(y′).

Since ak−1 
 x′ and x′ ∈ N we already know that h1(x′) = h2(y′)⇔ y′ = h(x′)⇔
y = b ∨ h(x′) = h(x).

Thus h ∈ U implies there is i′ ∈ {1, 2} such that hi′ ∈ U .

If i′ = 1 then hi′ satisfies the inductive conditions and the result comes imme-

diately.

If i′ = 2 and h2 is non-extendable then hi′ satisfies the inductive conditions and

the result comes immediately.

If i′ = 2 and h2 is extendable then take h3 : N3 → Pm,n to be a non-extendable

partial endomorphism of Pm,n such that h3 extends h2. We only need to prove

that h3 ∈ U in order that we can apply the inductive hypothesis. Since h2 ∈ U
we may take u : D(N2)→ Pm,n such that h2 ∈ Failh2(u) ⊆ U . Let (x, y) witness

h2 ∈ Failh2(u). Since idN2 /∈ U we must have u(x) ∈ N2 and u(y) 6= h2(u(x)) =

h3(u(x)). Hence h3 ∈ Failh2(u) ⊆ U .

Finally we consider case 2. Recall that we only need to consider k − 1 <

m − 1. Hence N and consequently h(N) are not maximal proper subalgebras

of Pm,n. But then there are distinct atoms aj , al of N in AtPm,n such that

h(aj), h(al) /∈ AtPm,n. Hence h(aj) = aj1 ∨ aj2 and h(al) = al1 ∨ al2 , for some

aj1 , aj2 , al1 , al2 ∈ AtPm,n (recall that h is non-extendable). Observe that h(aj)

and h(al) are atoms of h(N) and then aj1 6= al1 . Let h1 : N → Pm,n be the

one-to-one partial endomorphism determined by h1�Nd1
= h�Nd1

and

h1(x) =


aj1 ∨ aj2 ∨ al1 if x = aj ,

al2 if x = al,

h(x) if x 6= aj , al,
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for every x ∈ AtN . Let N ′ be the maximal proper subalgebra of Pm,n containing

Nd1 whose atoms are aj1∨al1 and all the atoms of Pm,n different from aj1 and from

al1 . Now let h2 : N ′ → Pm,n be the one-to-one partial endomorphism determined

by h2�Nd1
= idNd1

and

h2(x) =


aj1 if x = aj1 ∨ al1 ,

al1 ∨ al2 if x = al2 ,

x for x 6= aj1 ∨ al1 , al2 ,

for every x ∈ AtN ′. Now we claim that h = h2 ◦ h1. Let x ∈ N .

If aj , al 
 x then h1(x) = h(x) is the join of some atoms of Pm,n different from

aj1 , aj2 , al1 and al2 . But then h(x) = h2(h(x)) = h2 ◦ h1(x).

If aj 
 x and al 6 x then x = x′ ∨ al for some x′ ∈ N with al 
 x′. But now

we have

h2 ◦ h1(x) = h2(h(x′)) ∨ h2 ◦ h1(al) = h(x′) ∨ h(al) = h(x).

If aj 6 x then x = x′ ∨ aj for some x′ ∈ N with aj 
 x′. But now we have

h2 ◦ h1(x) = h2 ◦ h1(x′) ∨ h2 ◦ h1(aj) = h(x′) ∨ h(aj) = h(x).

Since h ∈ U we must have h1 ∈ U or h2 ∈ U .

If h1 ∈ U then the result comes by applying case 1.

If h2 ∈ U then there is nothing more to prove since h2 is already a non-

extendable partial endomorphism of Pm,n having as its domain a maximal proper

subalgebra of Pm,n. �

Proposition 3.18. Let U be a globally minimal failset and suppose that U

contains a partial endomorphism of Pm,n. Then either U = ΦNdi or U = Wdi ,

for some i ∈ {1, 2}.

Proof. Observe that U must not intersect AutPm,n, by Proposition 3.5. If U

contains an identity map then, by Proposition 3.16, U must contain idNdi , for

some i ∈ {1, 2}, and therefore U = ΦNdi , by Lemma 3.1.

Now suppose that U does not contain any identity map. Let h : N → Pm,n be

a partial endomorphism of Pm,n in U . There exists a map u : D(N)→ Pm,n such

that Failh(u) = U . Since idN /∈ U there is x ∈ D(N) such that u(x) ∈ x(N) ⊆ N
and u(h ◦ x) 6= h(u(x)). Thus every non-extendable extension of h is also in

U . So we may assume that h is non-extendable. Note that d1, d2 ∈ N . We claim

that U contains a one-to-one non-extendable partial endomorphism of Pm,n whose

domain contains Ndi , for some i ∈ {1, 2}.
If h is not one-to-one then h(d1) = h(d2). Suppose without loss of generality

that h(d1) = h(d2) = d2. We must have N ∩ Nd2 = {0, d1, 1} and, by Proposi-

tion 2.1, h�Nd1
∩N is one-to-one. Let N ′ be the subalgebra of Pm,n that contains
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Nd2 and whose coatoms are the coatoms of N , so that the universe of N ′ is N∪Nd2 .

Let h′ : N ′ → Pm,n be the one-to-one partial endomorphism of Pm,n that satisfies

h′�Nd2
= idNd2

and h′�Nd1
∩N = h�Nd1

∩N . Since h is non-extendable h′ must also

be non-extendable. Suppose that h′ /∈ U . We have x(d1) = d1 or otherwise

x, u(x) ∈ Nd1, (x, h ◦ x) ∈ h�Nd1
∩N = h′�Nd1

∩N

and

u(h′ ◦ x) = u(h ◦ x) 6= h(u(x)) = h′(u(x)).

Take y ∈ D(N) to be defined by y�Nd1
∩N = x�Nd1

∩N and y(d1) = d2. Now

we have (x, y) ∈ id6. By Proposition 3.7, id6 /∈ U . Hence u(x) = u(y) or

(u(x), u(y)) = (d1, d2). If u(x) = u(y) then u(x) ∈ y(N) ⊆ Nd1 and

u(h ◦ x) = u(h′ ◦ y) = h′(u(y)) = h(u(y)) = h(u(x)).

If (u(x), u(y)) = (d1, d2) then

u(h ◦ x) = u(h′ ◦ y) = h′(u(y)) = h′(d2) = d2 = h(d1) = h(u(x)).

Thus h′ ∈ U .

If h is one-to-one then take Q to be the subalgebra of Pm,n whose atoms are

the atoms of N and whose coatoms are the coatoms of h(N). Let h1 : N → Pm,n
be the one-to-one partial endomorphism determined by h1�AtN = id �AtN and

h1�CoatN = h�CoatN , and let h2 : Q → Pm,n be the one-to-one partial endomor-

phism determined by h2�AtN = h�AtN and h2�Coath(N) = id �Coath(N). Then

h1 ∈ U or h2 ∈ U because h = h2 ◦ h1 ∈ U . Finally observe that the one-

to-one non-extendability of h implies that h1 and h2 are extended by one-to-one

non-extendable partial endomorphisms whose domains contain Nd2 and Nd1 re-

spectively.

Now the result follows from Proposition 3.11 and Lemma 3.17. �

Finally we are going to prove that the globally minimal failsets within Ω are

exactly those which have already been described.

Theorem 3.19. The globally minimal failsets, within Ω, are the following:

(a) ΦNdi , where i ∈ {1, 2};
(b) WH , for every maximal proper subgroup H of AutPm,n;

(c) { g6, (g6)` | g ∈ AutPm,n};
(d) { g | g ∈ AutPm,n};
(e) Wd1 if m > 2;

(f) Wd2 if n > 2.
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Proof. Let U be a globally minimal failset and suppose that U is not one of

the globally minimal failsets described before. By Lemma 3.1, idNd1
, idNd2

/∈ U
and, by Proposition 3.5, U does not intersect AutPm,n. Consequently U does not

contain any idQ, with Q 6 Pm,n, by Proposition 3.16. We also have that there

is no partial endomorphisms of Pm,n in U , by applying Proposition 3.18. Then

for every r ∈ U , we use Lemma 2.1 and Propositions 3.7 and 3.9 and we have

that r must be one of the relations h6, (h6)` and h, for some one-to-one partial

endomorphism h of Pm,n such that h(di) = di when i ∈ {1, 2} and di ∈ domh.

Let h : N → Pm,n be a one-to-one partial endomorphism and suppose that

r ∈ U , with r = h6 or r = h. If h is extendable then there exists an extension

f of h such that either f is an automorphism of Pm,n or f is a one-to-one non-

extendable partial endomorphism of Pm,n with di ∈ dom f and f(di) = di, for

i ∈ {1, 2}. Observe that r = r′∩(ρ1(r)×ρ2(r)), where r′ = f6 if r = h6 and r′ = f

otherwise. Since ρ1(r)×ρ2(r) /∈ U we have that r′ ∈ U . But then f must be a non-

extendable partial endomorphism, by Proposition 3.7 and Proposition 3.9. Thus

we may assume that h is non-extendable. Hence d1, d2 ∈ N . Take u : D(r)→ Pm,n
to be a map such that U = Failr(u) and let (x, y) witness r ∈ Failr(u). Since h /∈ U
we must have (x, y) /∈ h and so (x(a, b), y(a, b)) ∈ r ∩ {(d1, d2), (d2, d1)} for some

(a, b) ∈ r ∩ {d1, d2}2. Denote by r′ the set r\{d1, d2}2 Let z ∈ D(r) be defined by

z�r′ = y�r′ and z(a, b) = x(a, b), for (a, b) ∈ r ∩ {d1, d2}2. We have that (x, z) ∈ h
and (z, y) ∈ id′, where id′ =MPm,n ∪ (r ∩ {(d1, d2), (d2, d1)}). Since h, id′ /∈ U

we must have u(z) = h(u(x)) and (h(u(x), u(y)) = (u(z), u(y)) ∈ id′. Then either

(u(x), u(y)) ∈ h or (u(x), u(y)) ∈ r∩{(d1, d2), (d2, d1)}, so that (u(x), u(y)) ∈ r.�

4. Optimal Natural Dualities on ISP(Pm,n)

A subset R of Ω yields an optimal duality on A = ISP(Pm,n) if R yields a

duality on A but no proper subset of R does so. Let G be a family of globally

minimal failsets within Ω and let T be a subset of Ω. We say T is a transversal

of G if T intersects each U ∈ G but no proper subset of T does.

The following result is part of Theorem 4.4 (The Optimal Duality Theorem)

of [5].

Theorem 4.1. Assume that Ω′ ⊆
⋃
n>1 S(Mn) is finite and yields a duality

on ISP(M), where M is a finite algebra. Then the following are equivalent:

(a) R ⊆ Ω′ yields an optimal duality on A;

(b) R is a transversal of the globally minimal failsets in Ω′.

Recall that Ω = S(P 2
m,n) yields a duality on A = ISP(Pm,n). Thus the following

result is obtained by applying Theorem 3.19 and Theorem 4.1.
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Theorem 4.2. The optimal dualities on A = ISP(Pm,n) given by binary rela-

tions are the dualities yielded by the transversals of the family G whose elements

are the following:

(a) ΦNdi for i ∈ {1, 2};
(b) WH , for every maximal proper subgroup H of AutPm,n;

(c) { g6, (g6)` | g ∈ AutPm,n};
(d) { g | g ∈ AutPm,n};
(e) Wd1 if m > 2;

(f) Wd2 if n > 2.

We may take transversals of G whose intersections with the globally minimal

failsets WH only contain automorphisms of AutPm,n. This implies that the

intersections of these transversals with AutPm,n are transversals of the family

of the globally minimal failsets WH , where H is a maximal proper subgroup of

AutPm,n, because these are the unique globally minimal failsets that contain au-

tomorphisms of AutPm,n. The next result tells us that these transversals of the

family {WH | H is a maximal proper subgroup of AutPm,n } are precisely the

minimal generating sets of AutPm,n.

Proposition 4.3. A set TA of automorphisms of Pm,n is a transversal of the

family GA = {WH | H is a maximal proper subgroup of AutPm,n } if and only if

TA is a minimal generating set of AutPm,n.

Proof. Let TA be a set of automorphisms of Pm,n. We have that TA is a

transversal of {WH | H is a maximal proper subgroup of AutPm,n } if and only

if

TA ∩WH 6= ∅, for every WH in GA, and for every S ( TA, S ∩WH = ∅ for some

WH in GA,

if and only if

TA * H, for every maximal proper subgroupH of AutPm,n, and for every S ( TA,

there is a maximal proper subgroup H of AutPm,n that contains S

if and only if

TA generates AutPm,n but no proper subset of TA does so

if and only if

TA is a minimal generating set of AutPm,n. �
Hence we may take as transversals of G the unions of minimal generating sets

of AutPm,n with transversals of the family of globally minimal failsets containing

no automorphisms of Pm,n.

Let σ, τ be the following elements of Sm × Sn:

σ =


((1 2), id) if n = 2,

((1 2), (1 3 . . . n)) if n is even and n > 2,

((1 2), (1 2 . . . n)) if n is odd
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and

τ =


(id, (1 2)) if m = 2,

((1 3 . . .m), (1 2)) if m is even and m > 2,

((1 2 . . .m), (1 2)) if m is odd.

Proposition 4.4. The set {σ, τ} is a minimal generating set of Sm × Sn.

Proof. If n is even and n > 2 then σn = (id, (1 3 . . . n)) and σn−1 = ((1 2), id).

If n is odd then σn+1 = (id, (1 2 . . . n)) and σn = ((1 2), id). Then σ gener-

ates either { ((1 2), id), (id, (1 3 . . . n))} or { ((1 2), id), (id, (1 2 . . . n))}. Similarly τ

generates either { (id, (1 2)), ((1 3 . . .m), id)} or { (id, (1 2)), ((1 2 . . .m), id)}. Since

(1 2 . . . k) = (1 3 . . . k)(1 2), for k > 1, the set {σ, τ} generates (id, (1 2)), ((1 2), id),

(id, (1 2 . . . n)) and ((1 2 . . .m), id). Consequently {σ, τ} generates Sm × Sn. �

Corollary 4.5. The minimum size of the generating sets of Sm × Sn is 2.

Now take g1 and g2 to be the automorphisms of Pm,n determined by σ and

τ respectively. Then the set { g1, g2 } is a minimal generating set of AutPm,n of

minimum size. The set {h1�Nd1
, h2�Nd2

, h1, h2, id6, id }, where h1 ∈ End1 Pm,n

and h2 ∈ End2 Pm,n, is a minimum size transversal of the family of globally

minimal failsets containing no automorphisms. Thus the set

T = {h1�Nd1
, h2�Nd2

, h1, h2, g1, g2, id6, id }

is a minimum size transversal of G containing a generating set of AutPm,n. The

set

T ′ = {h1�Nd1
, h2�Nd2

, h1, h2, g1, g
6
2 , id }

is also a transversal of G and it has minimum size. Both sets T and T ′ yield optimal

dualities on A and T ′ is one of the smallest sets of binary relations yielding an

optimal duality on A.
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