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ON SOME GENERALIZATIONS OF LC–SPACES

J. DONTCHEV, M. GANSTER and A. KANIBIR

Abstract. The aim of this paper is to extend the notion of LC-spaces, i.e. spaces
whose Lindelöf subsets are closed. We will consider four weaker forms of this concept

and investigate their relationships with LC-spaces as well as among themselves.

Accordingly, we continue the study of LC-spaces and related spaces.

1. Introduction

Lindelöf spaces have always played a highly expressive role in topology. They
were introduced by Alexandroff and Urysohn back in 1929 and their name is due to
Lindelöf’s proof in 1903 that from any collection of open sets covering an euclidean
space one can extract a countable subcollection covering the space.

Special classes of Lindelöf spaces such as hereditarily Lindelöf spaces and max-
imal Lindelöf spaces have had considerable impact on General Topology. A class
of spaces that occurs in the study of maximal Lindelöf spaces [3] is the notion of
LC-spaces, — a concept having much in common with P -spaces.

A topological space whose Lindelöf subsets are closed is called an LC-space by
Mukherji and Sarkar [16] and by Gauld, Mrsevic, Reilly and Vamanamurthy [8].
LC-spaces are also known as L-closed spaces ([10], [11], [12], [13]). They gen-
eralize KC-spaces (= compact subsets are closed) [21] and Hausdorff P -spaces
(= Fσ-sets are closed) [15]. Every LC-space is a cid-space (= countable subsets
are closed and discrete) [6] and so T1 and anticompact (= compact subsets are
finite). Note that cid-spaces have been called weak LC-spaces by Mukherji and
Sarkar [16].

In recent years there has been a significant interest in LC-spaces. Examples
of LC-spaces that are not P -spaces can be found in [12], [13], [15] and [16].
By making use of an example of Kunen of a rigid Tychonoff Lindelöf P -space,
Henrikson and Woods [12] provided an example of a Lindelöf Tychonoff cid-space
that is not an LC-space. Generalizations of some results from [11] can be found
in a paper by Ganster and Jankovic [6] where several examples are given as well.
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Grant and Reilly [9] considered the situation when an LC-space is discrete and
when a Hausdorff LC-space is countably compact. Very recently, Dontchev and
Ganster [5] showed that the product of two LC-spaces need not be an LC-space,
and Ganster, Kanibir and Reilly [7] pointed out that a locally LC-space need not
be an LC-space.

In this paper we consider LC-spaces from a more generalized point of view.
We introduce some new classes of spaces that contain properly the class of LC-
spaces. More precisely, we consider a modified version of C-spaces (= compact sets
have compact closures) as the spaces in which every Lindelöf subset has Lindelöf
closure. We also investigate spaces where all Lindelöf sets are Fσ-sets, spaces
whose Lindelöf Fσ-sets are closed, and the spaces where between each Lindelöf set
and its closure there lies a Lindelöf Fσ-set. In the last section we consider (weakly)
locally Lindelöf spaces and their relationships to generalized LC-spaces.

Our terminology is standard. The closure and the interior of a subset A of a
space (X, τ) are denoted by cl A and int A, respectively (or clτA and intτA if
there is a possibility of confusion). The set of all positive integers is denoted by ω.

2. Generalized LC-spaces

Definition 1. A topological space (X, τ) is called an LC-space ([16], [8]) if
every Lindelöf subset of X is closed.

Note that LC-spaces are also known under the name L-closed [11]. We will
now introduce the following four generalizations of LC-spaces.

Definition 2. A topological space (X, τ) is called

(1) an L1-space if every Lindelöf Fσ-set is closed,
(2) an L2-space if clL is Lindelöf whenever L ⊆ X is Lindelöf,
(3) an L3-space if every Lindelöf subset L is an Fσ-set,
(4) an L4-space if, whenever L ⊆ X is Lindelöf, then there is a Lindelöf Fσ-set

F with L ⊆ F ⊆ clL.

Our first result summarizes some immediate consequences of Definition 2.

Theorem 2.1. (i) If (X, τ) is an LC-space then (X, τ) is an Li-space, i = 1,
2, 3, 4.

(ii) (X, τ) is an LC-space if and only if it is an L1-space and an L3-space.
(iii) Every Lindelöf space is an L2-space, and every L2-space having a dense

Lindelöf subset is Lindelöf.
(iv) Every space which is L1 and L4 is an L2-space.
(v) Every L2-space is an L4-space, and every L3-space is an L4-space.
(vi) Every L3-space is T1, and every T1 L1-space is cid.
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(vii) The property L3 is hereditary, and the properties L1, L2 and L4 are hered-
itary on Fσ-sets.

(viii) Every P -space is an L1-space.

In 1979, Bankston [2] introduced the so-called anti-operator on a topological
space. A space (X, τ) is said to be anti-Lindelöf if each Lindelöf subset of X is
countable. Recall also that (X, τ) is called a Q-set space if each subset of (X, τ) is
an Fσ-set. The proof of the following result is straightforward and hence omitted.

Proposition 2.2. (i) Every T1 anti-Lindelöf space is an L3-space. Hence every
T1, anti-Lindelöf L1-space is an LC-space.

(ii) Every Q-set space is an L3-space, hence so is every strongly σ-discrete and
every regular submaximal space with countable Souslin number [1].

Note that, although Q-set spaces are L3-spaces they need not be LC-spaces as
the set of all integers with the cofinite topology shows. Our next result provides a
condition under which L3-spaces are Q-set spaces.

Proposition 2.3. Every hereditarily Lindelöf L3-space is a Q-set space.

We now provide some examples to show that among the Li-spaces there are no
more implications than those listed in Theorem 2.1.

Example 2.4. Let R be the set of reals and let τ be the usual topology. Then
(R, τ) is a hereditarily Lindelöf L2-space and thus an L4-space, but neither an
LC-space nor an L1-space nor an L3-space.

Example 2.5. Let R be the set of reals and let τ be the rational sequence
topology on R (see , Example 65[19, Example 65]). Then (R, τ) is a separable
non-Lindelöf space where each point has a countable neighbourhood. Hence (R, τ)
is anti-Lindelöf and so an L3-space and also an L4-space. Clearly (R, τ) is neither
an L2-space nor an L1-space.

Example 2.6 (see [20]). Let X be the set of reals and let τ be the density
topology on X. It is consistent with the axioms of set theory that the only hered-
itarily Lindelöf subspaces are the countable ones [20]. Since the density topology
is perfect, all Lindelöf subsets are hereditarily Lindelöf and hence countable. Since
(X, τ) is a cid-space it is thus an LC-space. Additionally we note that (X, τ) is
neither Lindelöf nor separable.

Our next task is to show that there exists a Hausdorff L1-space that is not an
LC-space. For this we need some preparation. Let R be the set of reals and let
τ be the usual topology on R. B ⊆ R is called a Bernstein set if B and R − B
intersect every uncountable closed subset of (R, τ). L ⊆ R is said to be a Lusin
set if L is uncountable and the intersection of L with any meager subset of (R, τ)
is at most countable. For the convenience of the reader let us mention some basic
facts about these notions (see e.g. [18]).
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Proposition 2.7. (i) There exists a Bernstein subset of (R, τ), and if B is a
Bernstein set then R−B is also a Bernstein set.

(ii) If B is a Bernstein set then B is a dense Baire subspace. In particular, for
any open set U , U ∩B is uncountable.

(iii) Under the continuum hypothesis (CH), every subset of R of 2nd category
contains a Lusin set.

Now let R = B1∪B2 be the disjoint union of two Bernstein sets B1 and B2, and
let {Gn : n ∈ ω} be a countable base for (R, τ). For each n ∈ ω choose a Lusin set
Ln ⊆ B1 ∩Gn and let L = ∪{Ln;n ∈ ω}. Then L is also a Luzin set such that for
any nonempty open set U in (R, τ), U ∩ L is uncountable. Let X = L ∪ B2. We
will define a new topology σ on X in the following way: a basic neighbourhood
of x ∈ L is a set Wx containing x and having the form Wx = (U ∩ L)− C where
U is open in (R, τ) and C is countable. A basic neighbourhood of x ∈ B2 has
the form {x} ∪ ((V ∩ L) − C) where V is an open set in (R, τ) containing x and
C is countable. Note that every countable subset of (X,σ) is closed. Since the
Countable Complement Extension Topology τ∗ on R is hereditarily Lindelöf (see ,
Example 63[19, Example 63]) and τ∗|L = σ|L, L is a Lindelöf subspace of (X,σ)
which is not closed. Hence (X,σ) is not an LC-space.

Let A be closed and Lindelöf in (X,σ). Then A ∩ B2 is countable since B2 is
closed and discrete in (X,σ). Suppose that A is uncountable. Then A ∩ L is not
meager in (R, τ). If (A∩L)∗ denotes the set of condensation points of A∩L then
(A∩L)∗ is closed in (R, τ), (A∩L)−(A∩L)∗ is countable and so (A∩L)∩(A∩L)∗

is not nowhere dense in (R, τ), i.e. there exists a nonempty open set W in (R, τ)
such that W ⊆ (A∩L)∗. Let x ∈W ∩B2 and suppose that x /∈ clσA. Then there
exists an open set V in (R, τ) containing x and a countable set C such that V ⊆W
and ({x} ∪ (V ∩L)−C)∩ (A∩L) is empty, i.e. V ∩A∩L is countable, which is a
contradiction to x ∈ (A ∩ L)∗. So we have W ∩B2 ⊆ clσA ∩B2 = A ∩B2. Hence
W ∩ B2 is countable. On the other hand, since B2 is a dense Baire subspace of
(R, τ), W ∩B2 has to be uncountable, a contradiction. So we have shown that any
set which is closed and Lindelöf in (X,σ) has to be countable, and consequently
every Lindelöf Fσ-set in (X,σ) is countable and thus closed in (X,σ). So (X,σ)
is an L1-space and we have shown

Example 2.8. Under (CH) there exists a Hausdorff L1-space (X,σ) which is
not an LC-space. Also, one easily checks that (X,σ) is not an L4-space, hence
neither an L2-space nor an L3-space.

Example 2.9. The set of reals with the “right ray” topology is a P -space and
thus an L1-space. The rationals form a Lindelöf non-closed subset and so this
space is not an LC-space.

Question. Does there exist a Hausdorff L1-space which fails to be an LC-space
without any set-theoretic assumptions?
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3. Characterizations

In this section we will provide characterizations of L1-spaces and additional
characterizations of LC-spaces.

In 1984, Gauld, Mrsevic, Reilly and Vamanamurthy [8] introduced the co-
Lindelöf topology of a given space (X, τ). They showed that l(τ) = {∅} ∪ {G ∈
τ : X − G is Lindelöf in (X, τ)} is a topology on X with l(τ) ⊆ τ , called the
co-Lindelöf topology of (X, τ).

Theorem 3.1. For a space (X, τ) the following are equivalent:
(1) (X, τ) is an L1-space,
(2) (X, l(τ)) is a P -space.

Proof. (1) ⇒ (2): For each n ∈ ω, let An be closed in (X, l(τ)) and let A =
∪{An : n ∈ ω}. If A = X we are done. Otherwise each An is closed and Lindelöf in
(X, τ) and thus A is closed and Lindelöf in (X, τ). Hence A is closed in (X, l(τ)).

(2) ⇒ (1): For each n ∈ ω, let An be closed and Lindelöf in (X, τ) and let
A = ∪{An : n ∈ ω}. Then each An is closed in (X, l(τ)) and so A is also closed in
(X, l(τ)). Hence A is closed in (X, τ) and so (X, τ) is an L1-space. �

Theorem 3.2. For a Hausdorff space (X, τ) the following are equivalent:
(1) (X, τ) is an LC-space,
(2) (X, τ) is an L1-space and an L2-space.

Proof. (1) ⇒ (2): This is obvious.
(2) ⇒ (1): Let L be a Lindelöf subset of (X, τ) and let x /∈ L. Since (X, τ) is

Hausdorff, for each y ∈ L there exist an open set Vy containing y with x /∈ clVy.
Clearly {Vy : y ∈ L} is a cover of L and so there exists a countable set C ⊆ L

such that L ⊆ ∪{Vy : y ∈ C} ⊆ ∪{clVy : y ∈ C}. For each y ∈ C, L ∩ clVy is
Lindelöf and so cl(L ∩ clVy) is Lindelöf since (X, τ) is an L2-space. Furthermore,
if W = ∪{cl(L∩ clVy) : y ∈ C} then W is a Lindelöf Fσ-set and, since (X, τ) is an
L1-space, W is a closed Lindelöf set not containing x. Thus x /∈ clL. This shows
that L is closed in (X, τ). �

Remark 3.3. Note that the Hausdorff condition cannot be removed as the
following example shows. Let X be any countably infinite set with a distinguished
point p and let τ be the point excluded topology on X (see e.g. [4]), i.e. τ =
{X} ∪ {U ⊆ X : p /∈ U}.

Clearly (X, τ) is a countable, thus hereditarily Lindelöf, non-Hausdorff space
but not an LC-space since it is not discrete. If A is a nonempty Fσ-set then p ∈ A
and so (X, τ) is an L1-space. Since (X, τ) is Lindelöf it is also an L2-space.

Theorem 3.4. For a Hausdorff space (X, τ) the following are equivalent:
(1) (X, τ) is an LC-space.
(2) Every locally countable family of Lindelöf sets is closure preserving.



350 J. DONTCHEV, M. GANSTER and A. KANIBIR

(3) Every countable family of Lindelöf sets is closure preserving.

Proof. (1) ⇒ (2): Let {Li : i ∈ I} be a locally countable family of Lindelöf
subsets, i.e. each x ∈ X has a neighbourhood Ux intersecting at most countably
many sets Li. Since each Li is closed we need to show that L = ∪{Li : i ∈ I} is
closed. Let x ∈ X − L and let Ux be a neighbourhood of x such that I0 = {i ∈
I : Ux ∩ Li is nonempty} is at most countable. This implies that ∪{Li : i ∈ I0} is
Lindelöf and thus closed. Hence there is a neighbourhood Vx of x with Vx ⊆ Ux
and Vx ∩ (∪{Li : i ∈ I0}) is empty. So we have Vx ∩ (∪{Li : i ∈ I}) = ∅. This
shows that L is closed.

(2) ⇒ (3): This is obvious.
(3) ⇒ (1): Let L be a Lindelöf subset and let x /∈ L. Since (X, τ) is Hausdorff,

for each y ∈ L there exists an open neighbourhood Vy of y with x /∈ clVy. Choose
a countable set C ⊆ Y with L ⊆ ∪{Vy : y ∈ C}. Since {L ∩ clVy : y ∈ C} is a
countable family of Lindelöf sets, we have clL ⊆ ∪{cl(L ∩ clVy) : y ∈ C} and so
x /∈ clL. Hence L is closed. �

Note, however that the Sierpinski space (X, τ) where X = {0, 1} and τ =
{∅, {0}, X} is non-Hausdorff and every countable family of Lindelöf sets is closure
preserving. Obviously, (X, τ) fails to be an LC-space.

Theorem 3.5. For a space (X, τ) the following are equivalent:
(1) (X, τ) is an L1-space.
(2) Every locally countable family of closed Lindelöf sets is closure preserving.
(3) Every countable family of closed Lindelöf sets is closure preserving.

Proof. (1)⇒ (2): This is very similar to the proof of (1)⇒ (2) in Theorem 3.4.
(2) ⇒ (3): This is obvious.
(3) ⇒ (1): Let L be a Lindelöf Fσ-set, i.e. L = ∪{Ln : n ∈ ω} where each Ln

is closed. By assumption, clL = ∪{clLn : n ∈ ω} = ∪{Ln : n ∈ ω} = L. Thus L
is closed. �

4. Local Lindelöfness and Generalized LC-spaces

In this section we consider locally Lindelöf spaces and their relationships to
generalized LC-spaces.

Definition 3. A topological space (X, τ) is called locally Lindelöf (resp. weakly
locally Lindelöf) if each point has a closed Lindelöf (resp. Lindelöf) neighbour-
hood.

Note that a weakly locally Lindelöf space need not be a locally Lindelöf space
as any uncountable point generated space [4] shows.

Our first result is immediate and so its proof is omitted.
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Proposition 4.1. (i) Every weakly locally Lindelöf L2-space is locally Lindelöf,
and so every weakly locally Lindelöf space which is L1 and L4 is locally Lindelöf.

(ii) Every Fσ-subspace of a (weakly) locally Lindelöf space is (weakly) locally
Lindelöf.

(iii) Every locally Lindelöf Q-set space is hereditarily locally Lindelöf.

Theorem 4.2. Every locally Lindelöf space (X, τ) is an L1-space if and only
if it is a P -space.

Proof. We already know that a P -space is an L1-space. Now let F be an Fσ-set
in (X, τ). If x /∈ F choose a closed Lindelöf neighbourhood U of x. Then U ∩ F
is a Lindelöf Fσ-set in (X, τ) and so closed, since (X, τ) is an L1-space. Hence
U − (U ∩F ) is a neighbourhood of x disjoint from F . This shows that F is closed
and so (X, τ) is a P -space. �

We note that if we replace the ‘L1-condition’ in Theorem 4.2 by any of the other
‘L1-conditions’ then the space (X, τ) need not even be a cid-space. If we take a non-
discrete, countable, zero-dimensional Hausdorff space (X, τ) then (X, τ) clearly is
an Li-space for i = 2, 3, 4 since it is countable and thus hereditarily Lindelöf. Since
(X, τ) is not discrete it is not a cid-space and hence not a P -space. A space (X, τ)
satisfying the hypothesis above is, for example, the space Seq (ξ) discussed in [14].

Corollary 4.3. Every Hausdorff, locally Lindelöf L1-space (X, τ) is an LC-
space.

Corollary 4.4. Every weakly locally Lindelöf LC-space (X, τ) is a P -space.

Recall that a space (X, τ) is said to be a weak P -space if any countable union
of regular closed sets is closed. One can show easily that (X, τ) is a weak P -space
if and only if for every countable family {Un : n ∈ ω} of open sets, cl(∪{Un : n ∈
ω}) = ∪{clUn : n ∈ ω}.

Theorem 4.5. Let (X, τ) be a weak P -space. Then the following are equivalent:
(1) (X, τ) is locally Lindelöf,
(2) (X, τ) is a weakly locally Lindelöf L2-space.

Proof. (1) ⇒ (2): Let L be a Lindelöf subset of (X, τ). Each point of L has
an open neighbourhood Ux such that clUx is Lindelöf. Pick a countable subset
C of L such that L ⊆ ∪{Ux : x ∈ C}. Since (X, τ) is a weak P -space we have
clL ⊆ ∪{clUx : x ∈ C} = W . Since W is Lindelöf we conclude that clL is Lindelöf
and so (X, τ) is an L2-space.

(2) ⇒ (1): This is Proposition 4.1. �

Recall that a subset A of a space (X, τ) is called locally closed if A is the
intersection of an open set and a closed set, or, equivalently, if each point x ∈ A
has a neighbourhood V such that A ∩ V is a closed subset of V . (X, τ) is said to
be submaximal if every dense set is open or, equivalently, if every subset of (X, τ)
is locally closed.
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Theorem 4.6. Let (X, τ) be an LC-space and let A be a weakly locally Lindelöf
subspace. Then A is locally closed in (X, τ).

Proof. Choose x ∈ A. Then x has a neighbourhood V in (X, τ) such that A∩V
is Lindelöf in A and thus also in X. So A ∩ V is closed in (X, τ) and thus also
in V . This shows that A is locally closed in (X, τ). �

Corollary 4.7. Every hereditarily weakly locally Lindelöf LC-space is submax-
imal.

Remark 4.8. It is well known that maximally connected spaces are submaxi-
mal. A hereditarily weakly locally Lindelöf LC-space is not necessarily maximally
connected, in fact such a space might be hereditarily disconnected as the One-
point-Lindelöfication of an uncountable discrete space shows.
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