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ON ALMOST SURE CONVERGENCE WITHOUT THE
RADON-NIKODYM PROPERTY

N. BOUZAR

Abstract. In this paper we obtain almost sure convergence theorems for vector-
valued uniform amarts and C-sequences without assuming the Radon-Nikodym

Property. Specifically, it is shown that if a limit exists in a weak sense for these
martingale generalizations, then a.s. scalar and strong convergence follow. These
results lead to some new versions of the Ito-Nisio theorem. Convergence results for

random sequences taking values in a weakly compact space are also presented.

1. Introduction

Convergence theorems for various classes of martingale generalizations taking val-
ues in a Banach space E are obtained in general under the assumption that E
possesses the Radon-Nikodym Property (RNP ). Without assuming the latter
property, Marraffa (1988) showed that a.s. scalar convergence of an E-valued
strong amart (Xn, n ∈ N) to an (E-valued) random variable X holds if there
exists a total subset D of E∗, dual of E, such that for any x′ ∈ D, x′ ◦Xn con-
verges a.s. to x′ ◦ X. Davis et al. (1990) established strong a.s. convergence for
martingales under the same assumptions. The purpose of this paper is to extend
the results of these authors to the uniform weak amarts of Schmidt (Gut and
Schmidt (1983)), the uniform amarts of Bellow (1978), and to weak and strong
C-sequences (Tuyẽn (1981), Bouzar (1991)). As a consequence, versions of the
Ito-Nisio theorem (Ito-Nisio (1968)) for uniform amarts and strong C-sequences
are derived. Some related convergence results for random sequences taking values
in a weakly compact space are also obtained. The paper is organized as follows.
In the remainder of the section we recall a few definitions and results. In Sec-
tion 2, convergence results for uniform amarts and uniform weak amarts are given.
C-sequences are the object of Section 3. In Section 4, we discuss the case of random
sequences taking values in a weakly compact space.

Throughout the paper, let (E, ‖.‖) be a Banach space and E∗ its dual. A subset
D of E∗ is said to be a total set over E if x′(x) = 0 for each x′ ∈ D implies x = 0.
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A subset I of the unit ball of E∗ is said to be norming for E if for each x ∈ E,
‖x‖ = sup{|x′(x)| : x′ ∈ I}.

Let (Ω, F , P ) be a probability space and (Fn, n ∈ N) an increasing sequence
of sub-σ-algebras of F . We denote by F∞ the σ-algebra generated by

⋃
n∈N Fn

and by T the set of bounded stopping times for (Fn, n ∈ N). Let T (n) = {τ ∈
T : τ ≥ n}, n ∈ N . For each τ ∈ T , we associate the σ-algebra Fτ = {A ∈ F∞ :
A ∩ [τ = n] ∈ Fn,∀n ∈ N}.

A random variable (rv) is any mapping X from Ω into E that is strongly F-
measurable. Unless specified otherwise, all the rv’s in the sequel are E-valued. A
sequence (Xn, n ∈ N) of rv’s is said to converge scalarly a.s. to the rv X if for
any x′ ∈ E∗, limn x

′ ◦ Xn = x′ ◦ X a.s. It is said to converge weakly a.s. to X
if it converges scalarly to X outside a null set independent of the functionals x′.
Note that if E∗ is separable, then scalar convergence and weak convergence are
equivalent.

An adapted sequence (Xn, Fn, n ∈ N) of Bochner integrable rv’s is said to be
i) a strong (resp. weak) amart if the net (E(Xτ ), τ ∈ T ) converges strongly

(resp. weakly) in E;
ii) a uniform amart if lim supτ∈T σ≥τ E(‖E(Xσ|Fτ )−Xτ‖) = 0;
iii) a uniform weak amart if it is a weak amart such that for any A ∈⋃

n∈N Fn, E(XnIA) converges weakly in E;
iv) a weak sequential amart if (E(Xτn), n ∈ N) converges weakly for each

increasing sequence (τn, n ∈ N) in T ;
v) a strong (resp. weak) C-sequence if its predictable compensator

(X̃n, n ∈ N) (of the Doob decomposition of (Xn, n ∈ N)) converges strongly
(resp. weakly) a.s. to a rv X̃.

Finally, an adapted sequence (Xn, Fn, n ∈ N) of Bochner integrable rv’s is said
to be of class (B) if supτ∈T E(‖Xτ‖) <∞. It is said to satisfy condition (I) if for
every stopping time σ,

∫
[σ<∞]

‖Xσ‖ dP <∞.

2. Convergence of Uniform Amarts

We start out with the case of uniform weak amarts.

Proposition 2.1. Let (Xn, n ∈ N) be a uniform weak amart of class (B).
Assume that there exist a rv X and a total subset D of E∗ such that for each
x′ ∈ D, (x′ ◦ Xn, n ∈ N) converges a.s. to x′ ◦ X. Then (Xn, n ∈ N) converges
scalarly to X.

Proof. Since (Xn, n ∈ N) and X are a.s. separably valued, we may and do
assume that E is separable. It can be easily seen that (Xσ∧n,Fσ∧n, n ∈ N)
is a uniform weak amart. Therefore, by the maximal inequality of Chacon and
Sucheston (1975) and a classical stopping time argument, we can assume that
E(supn ‖Xn‖) <∞. This implies that the (finitely additive) set function

µ(A) = lim
n→∞

E(XnIA), A ∈
⋃
n∈N
Fn
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is absolutely continuous and is of bounded variation. Its extension to F∞, which
we also denote by µ, satisfies

µ(A) = lim
n→∞

E(XnIA), A ∈ F∞.

Letting Ak = [‖X‖ ≤ k], k ∈ N , and noting that XIAk is Bochner integrable, it
follows that for any x′ ∈ D

x′ ◦ µ(Ak) = lim
n→∞

E((x′ ◦Xn)IAk) = E((x′ ◦X)IAk) = x′(E(XIAk)).

Since D is total, we have

µ(Ak) = E(XIAk), k ∈ N
which implies that

E(‖X‖IAk) = ‖µ‖(Ak) ≤ E(sup
n
‖Xn‖)

which in turn implies that X is Bochner integrable. Repeating the same argument
as above, we also have

µ(A) = E(XIA), A ∈ F∞.
Now for each x′ ∈ E∗, (x′ ◦ Xn, n ∈ N) is an L1-dominated, real-valued amart,
therefore x′ ◦Xn converges a.s. and for A ∈ F∞

E((x′ ◦X)IA) = x′(E(XIA)) = lim
n→∞

E((x′ ◦Xn)IA) = E( lim
n→∞

(x′ ◦Xn)IA)

which implies that x′ ◦X = limn→∞ x′ ◦Xn. �

Since weak sequential amarts and strong amarts are themselves uniform weak
amarts, we have

Corollary 2.2. Let (Xn, n ∈ N) be a weak sequential amart (resp. a strong
amart) of class (B). Assume that there exist a rv X and a total subset D of E∗ such
that for each x′ ∈ D, (x′ ◦Xn, n ∈ N) converges a.s. to x′ ◦X. Then (Xn, n ∈ N)
converges scalarly a.s. to X.

For uniform amarts the conclusions will be shown to be stronger. We begin
with the case of uniform amarts taking values in the dual of a normed space.

Proposition 2.3. Let F be a normed space and let (Xn, n ∈ N) be an
L1-bounded uniform amart with values in F ∗. Assume that there exists an F ∗-
valued rv X such that x ◦ Xn converges to x ◦ X a.s. for each x ∈ F . Then
(Xn, n ∈ N) converges strongly a.s. to X.

Proof. Since (Xn, n ∈ N) and X are a.s. separably valued, we may assume (by
possibly passing to subspaces) that F ∗ and hence F are separable. There exists
therefore a countable dense subset I of {x ∈ F : ‖x‖ = 1} that norms F ∗. Since
L1-boundedeness of (Xn, n ∈ N) and the class (B) property are equivalent (see
Bellow (1978)), the maximal inequality and a stopping time argument allow us
again to reduce the proof to the case where E(supn ‖Xn‖) < ∞. The conclusion
follows then immediately from Proposition 1 of Bellow (1978). �
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It must be noted that Davis et al. (1990) obtained Proposition 2.3 for martin-
gales by using the submartingale lemma of Neveu (1975) and a renorming theorem
of Davis and Johnson (1973). In the case of uniform amarts we needed a different
proof as Neveu’s result is unapplicable.

Proposition 2.4. Let (Xn, n ∈ N) be an L1-bounded uniform amart. Let X
be a rv. Then the set Y = {x′ ∈ E∗ : limn x

′ ◦Xn = x′ ◦X a.s.} is a weak∗-closed
linear subspace of E∗.

Proof. As before, we will assume without loss of generality that E is separable.
It can be easily seen that Y is a linear subspace of E∗. By the Krein-Smulyan
theorem, we only need to prove that the unit ball of Y , B = {x′ ∈ Y : ‖x′‖ ≤ 1},
is weak∗-closed in E∗. Let x′ be in the weak∗-closure of B and let (x′n, n ∈ N)
be a sequence in B that weak∗-converges to x′. Such a sequence exists since E is
separable. Denote by F the linear subspace (of E∗) generated by (x′n, n ∈ N) and
let S be the canonical map from E to F ∗. From the inequality ‖S(x)‖F∗ ≤ ‖x‖E
it can be deduced that ‖S ◦X‖L1(F∗) ≤ ‖X‖L1(E) for a Bochner integrable rv X.
Likewise, for an E-valued (finitely additive) measure of bounded variation ν on an
algebra, we have ‖S ◦ν‖(·) ≤ ‖ν‖(·). For τ ∈ T and A ∈ Fτ , let µτ (A) = E(XτIA)
and let µ be the limiting measure of (µτ , τ ∈ T ) defined on

⋃
n Fn (Bellow (1978)).

Then for each τ ∈ T ,

‖S ◦ µτ − ((S ◦ µ)|Fτ )‖ = ‖S ◦ (µτ − (µ|Fτ ))‖ ≤ ‖µτ − (µ|Fτ )‖

which implies that (S ◦Xn, n ∈ N) is an L1-bounded uniform amart with limiting
measure S ◦ µ. Now, for each k ∈ N , x′k ◦Xn converges a.s. to x′ ◦X. Applying
Proposition 2.3 to (S ◦Xn, n ∈ N), we deduce that limn ‖S ◦Xn − S ◦X‖F∗ = 0
which implies that limn x

′
k ◦ (Xn − X) = 0 uniformly in k. This in turn implies

that limn x
′ ◦Xn = x′ ◦X and hence x′ ∈ B. �

The main convergence result for uniform amarts follows next.

Proposition 2.5. Let (Xn, n ∈ N) be an L1-bounded uniform amart. Assume
that there exist a rv X and a total subset D of E∗ such that for each x′ ∈ D,
(x′ ◦ Xn, n ∈ N) converges a.s. to x′ ◦ X. Then (Xn, n ∈ N) converges strongly
a.s. to X.

Proof. We have D ⊆ H ⊆ {x′ ∈ E∗ : limn x
′ ◦Xn = x′ ◦X a.s.} ⊆ E∗, where

H is the smallest linear subspace in E∗ that contains D. Since D is total in
E∗, so is H, and hence H is weak∗-dense. From Proposition 2.4 it follows that
limn x

′ ◦Xn = x′ ◦X a.s. for every x′ ∈ E∗. The conclusion is then obtained from
Proposition 2.3. �

Doob’s local convergence theorem is shown to extend easily to uniform amarts.

Corollary 2.6. Let (Xn, n ∈ N) be a uniform amart such that E(supn ‖Xn+1−
Xn‖) <∞. Assume that there exist a rv X and a total subset D of E∗ such that
for each x′ ∈ D, (x′ ◦ Xn, n ∈ N) converges a.s. to x′ ◦ X. Then (Xn, n ∈ N)
converges strongly a.s. to X in the set {ω ∈ Ω : supn ‖Xn(ω)‖ <∞}.
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Proof. For a > 0, we define the stopping time

σa(ω) =

inf{n : ‖Xn(ω)‖ > a}, if sup
n
‖Xn(ω)‖ > a,

+∞, otherwise.

We have E(‖Xσa∧n‖) ≤ a + E(supn(‖Xn+1 − Xn‖). By the optional stopping
theorem of Bellow (1978), the uniform amart (Xσa∧n, n ∈ N) is L1-bounded.
Moreover, it can be easily seen that for each x′ ∈ D, limn x

′ ◦ Xσa∧n = x′ ◦ Y
for some rv Y . Therefore, (Xσa∧n, n ∈ N) converge a.s. by Proposition 2.5. The
conclusion follows by noting that

⋃
a>0[σa = +∞] = [supn ‖Xn+1−Xn‖ <∞]. �

We conclude the section by proving the uniform amart version of the Ito-Nisio
theorem. A lemma that may be of independent interest is obtained first.

Lemma 2.7. Let H be a linear subspace of E∗ and let (Xn, n ∈ N) be a
sequence of rv’s of class (B). Let S be the canonical injection from E to H∗.
Further, assume that for any x′ ∈ H, the sequence (x′ ◦Xn, n ∈ N) converges a.s.
Then there exists a weak∗-measurable, H∗-valued rv φ such that for each x′ ∈ H,
x′ ◦Xn converges a.s. to φ(x′).

Proof. By the maximal inequality of Chacon and Sucheston (1975),
supn ‖Xn‖ < ∞ a.s. and hence supn ‖S(Xn)‖ < ∞ a.s. The weak∗-compactness
of the unit ball in H∗ implies that for almost every ω ∈ Ω, S(Xn(ω)) has a weak∗-
limit point φ(ω) in H∗ which is weak∗-measurable. The conclusion follows by
noting that S(Xn)(x′) = x′ ◦Xn. �

Proposition 2.8. Assume E separable and let H be a total subspace of E∗.
Let (Xn, n ∈ N) be an L1-bounded uniform amart. The following assertions are
equivalent:

(1) Xn converges a.s.
(2) Xn converges in distribution.
(3) For almost all ω ∈ Ω, (Xn(ω), n ∈ N) has a cluster point in the topology

σ(E,H).
(4) There is a distribution µ on E such that for each x′ ∈ H, x′ ◦Xn converges

in distribution to x′ ◦ µ.

Proof. We proceed as in Davis et al. (1990). The implications (1) ⇒ (2), (2)
⇒ (4), and (2) ⇒ (3) are true in general, and the details are omitted. Next we
prove that (3) ⇒ (1). Let S be the canonical injection from E to H∗ and note
that for each x′ in H, (x′ ◦Xn, n ∈ N) is a real valued, L1-bounded amart, and
hence converges a.s. By (3) and Lemma 2.7 (recall again that for uniform amarts
L1-boundedness and the class (B) property are equivalent), S(X) = φ a.s. where
φ is H∗-valued and weak∗-measurable. Since E is separable, so is S(E). There-
fore, φ is almost separably valued and by a well-known theorem of Pettis, it is
H∗-strongly measurable. Since S−1 is Borel measurable, a theorem of Lusin im-
plies that X = S−1 ◦φ is E-strongly measurable. Since φ(x′) = x′ ◦X, (1) follows
then from Lemma 2.7 and Proposition 2.5. It remains to show that (4) ⇒ (1).
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By (4) the distribution of φ of Lemma 2.7 is equal to S ◦ µ which is tight. This
implies that φ is almost surely S(E)-valued and hence H∗-strongly measurable.
Letting X = S−1 ◦ φ, the conclusion follows then along the same lines as that of
(3) ⇒ (1). �

Remark. 1. Proposition 2.5 can also be derived from Proposition 2.1 as follows.
We assume without loss of generality that E is separable and E(supn ‖Xn‖) <∞.
A uniform amart is necessarily a weak uniform amart. Hence by Proposition 2.1,
Xn converges scalarly to X. Since E is separable, there exists a countable norming
subset D (subset of the unit ball of E∗) for E. The conclusion follows again from
Proposition 1 in Bellow (1978).

2. Lemma 2.7 states that under some mild assumptions, any random sequence
of class (B) has a limit, in a weak∗-sense, in the second dual.

3. Convergence of C-Sequences

Proposition 3.1. Let (Xn, n ∈ N) be a strong (resp. weak) C-sequence that
satisfies condition (I). Assume further that there exist a rv X and a total subset
D of E∗ such that for each x′ ∈ D, (x′ ◦Xn, n ∈ N) converges a.s. to x′ ◦X. Then
(Xn, n ∈ N) converges strongly (resp. scalarly) to X.

Proof. Let (X̃n, n ∈ N) be the predictable compensator of (Xn, n ∈ N). It is
enough to prove that the martingale Mn = Xn − X̃n converges scalarly a.s. For
a > 0, we define the stopping time

σa(ω) =

{
inf{n : ‖X̃n+1(ω)‖ > a}, if supn ‖X̃n+1(ω)‖ > a,

+∞, otherwise.

Then for each n ∈ N , ‖X̃σa∧n‖ ≤ a, which implies that for any stopping time τ∫
[τ<∞]

‖Mσa∧τ‖ dP ≤ a+
∫

[τ<∞]

‖Xσa∧τ‖ dP <∞.

This implies (by a result of Schmidt (1979)) that the martingale (Mσa∧n, n ∈ N)
is L1-bounded. It is easy to deduce from the assumptions that (X̃σa∧n, n ∈ N)
converges scalarly (in fact strongly in the case of a strong C-sequence). Hence
there exists a rv Y such that for each x′ ∈ D, limn x

′ ◦Mσa∧n = x′ ◦ Y . Applying
Proposition 2.5 to (Mσa∧n, n ∈ N), we have that Mn converges strongly a.s. on
[σa = +∞]. This in turn implies that Mn converges strongly on

⋃
a>0[σa = +∞] =

[supn ‖X̃n‖ <∞]. The conclusion follows since the latter set has probability 1. �

The Ito-Nisio theorem as stated in Proposition 2.8 extends to C-sequences of
class (B) with essentially the same proof. The details are omitted. We simply note
that Lemma 2.7 does apply since if (Xn, n ∈ N) is a C-sequence, then (x′◦Xn, n ∈
N) is a real-valued C-sequence of class (B) and hence converges a.s. (Bouzar
(1991)).

Remark. 1. Proposition 3.1 remains valid for C-sequences of class (B) since the
latter condition implies (I). Condition (I), the class (B) property, and
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L1-boundedness have been shown to be equivalent for martingales, and uniform
amarts (Dubins and Freedman (1966), Schmidt (1979), Gut and Schmidt (1983)).
They are, however, not equivalent for C-sequences (Bouzar (1991)).

2. Tomkins (1984) showed that L1-bounded (even uniformly integrable)
C-sequences need not converge a.s.

3. Doob’s local convergence theorem, as stated in Corollary 2.6, extends to
strong strict C-sequences. The proof is a combination of the arguments used in
the proofs of Proposition 3.2 and Corollary 2.7, with the following stopping time

σa(ω) = inf{n : ‖Xn(ω)‖ > a or ‖X̃n+1(ω)‖ > a}.

4. Random Sequences Taking Values in a Weakly Compact Set

Chatterji (1973) showed that martingales taking values in a weakly compact set
of a Banach space converge strongly a.s. (see also Brunel and Sucheston (1976)
for a related result on vector-valued amarts.) In this section we obtain a general
convergence result for random sequences taking values in a weakly compact set.
We then specialize our result to several martingale generalizations.

Proposition 4.1. Let (Xn, n ∈ N) be a sequence of rv’s taking values in a
weakly compact space K of the Banach space E. Suppose moreover that for each
x′ ∈ E∗, there exists Nx′ ∈ F , P (Nx′) = 0, such that x′ ◦ Xn(ω) converges for
every ω ∈ Ω\Nx′ . Then Xn converges weakly a.s.

Proof. We may assume without loss of generality that E is separable. Since K
is weakly compact, for each ω ∈ Ω, there exists a weak limit point X(ω) ∈ K of the
sequence (Xn(ω), n ∈ N). It follows from the assumptions that for every x′ ∈ E∗,
limn x

′ ◦Xn(ω) = x′ ◦X(ω) outside Nx′ . Since K is separable and E is separable,
the weak topology in K is metrizable, and the metric d is determined by a sequence
(x′j , j ∈ N) in E∗. Moreover, the class of Borel sets B(K) in (K, d) is the same
as in (K, ‖.‖) (see, for example, Bellow and Egghe (1982).) Letting N =

⋃
j Nx′j ,

we have P (N) = 0. For every ω ∈ Ω\N and j ∈ N , limn x
′
j ◦Xn(ω) = x′j ◦X(ω).

This implies that Xn : (Ω,F) → (K,B(K)) converges a.s. in (K, d). We define
X∗ : Ω→ K by

X∗(ω) =

{
lim
n
Xn(ω) if the limit exists in (K, d)

a ∈ K otherwise.

Since the set {ω : limnXn(ω) exists in (K, d)} is in F , X∗ is measurable as a
function from (Ω,F) to (K,B(K)). Furthermore,

Ω\N ⊂ {ω : lim
n
Xn(ω) exists in (K, d)}.

Therefore Xn converges weakly a.s. to X∗. �

Next, we derive several corollaries.

Corollary 4.2. Let (Xn, n ∈ N) be a uniform amart (resp. a weak uniform
amart) taking values in a weakly compact space K of E. Then (Xn, n ∈ N)
converges strongly (resp. weakly) a.s.
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Proof. Since K is weakly compact, K is bounded. There exists therefore M > 0
such that for any x ∈ K, ‖x‖ ≤M . It is easy to see that for both strong and weak
amarts (x′◦Xn, n ∈ N), x′ ∈ E∗, is a real-valued amart that is bounded by ‖x‖.M
and hence converges a.s. (see for example Austin et al. (1974).) The conclusion
follows from Proposition 4.1 for uniform weak amarts and from Propositions 4.1
and 2.5 for uniform amarts. �

Corollary 4.3. Let (Xn, n ∈ N) be a strong (resp. weak) C-sequence taking
values in a weakly compact space K of E. Then (Xn, n ∈ N) converges strongly
(resp. weakly) a.s.

Proof. Let (X̃n, n ∈ N) be the predictable compensator of (Xn, n ∈ N). Then
for each x′ ∈ E∗, x′ ◦ X̃n is the predictable compensator of x′ ◦Xn. This implies
that (x′ ◦Xn, n ∈ N) is a real-valued C-sequence. Since x′ ◦Xn is dominated by
a constant, it is necessarily of class (B) and hence converges a.s. The conclusion
follows then from Propositions 4.1 and 3.2. �

Remark. The results of the previous two sections extend accordingly to quasi-
martingales (Fisk (1965)) as these are uniform amarts, and to eventual martingales
(Tomkins (1975)) as these are C-sequences.
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(1982), 335–365.
4. Bouzar N., Convergence results for Strict C-sequences, Can. J. Statistics 19 (1991), 219–227.
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19. Tuyẽn D. Q., On the asymptotic behavior of sequences of random variables, Ann. Inst. H.
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