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“MORE OR LESS”
FIRST-RETURN RECOVERABLE FUNCTIONS

M. J. EVANS and P. D. HUMKE

Abstract. It is known that a real-valued function defined on the unit interval is first-return recoverable if and only if

itbelongs to Baire class one. Further, it is known that if first-return recoverability is replaced by stronger notions, such
as universal or consistent first-return recoverability, then familiar subclasses of the Baire one functions are obtained.
Likewise, if first-return recoverability is weakened to first-return recoverability except on a set of measure zero [first
category], then one obtains precisely the class of Lebesgue measurable functions [functions having the Baire property].
Here we examine the situation where even smaller exceptional sets (countable or scattered) are excluded, and then
explore possibility of combining these various methods for strengthening and weakening recoverability.

1. Introduction

It has been over a decade since the class of real-valued functions on the unit interval I ≡ [0, 1] which are first-
return recoverable was shown to be identical to the class of Baire one functions [5]. In subsequent years both
strengthenings and weakenings of the notion of first-return recoverability have been used to characterize some
standard classes of functions in real analysis. For example, the universally first-return recoverable functions are
the quasicontinuous Baire one functions [4] and the almost everywhere first-return recoverable functions are the
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Lebesgue measurable functions [6]. In this paper we wish to pursue a systematic investigation of classifications
of functions which arise when strengthening and weakening the notion of first-return recovery in various natural
ways. Before beginning, we need to recall the terminology and notation associated with first-return recoverability.

Underlying most of our subsequent definitions is the notion of what we call a trajectory. A trajectory is any
sequence x = {xn} of distinct points in I, whose range is dense in I. Any countable dense set D ⊂ I is called
a support set and, of course, any enumeration of D becomes a trajectory. For a given trajectory x = {xn} and a
finite union H of intervals, we let r(x,H) denote the first xn that belongs to H.

For x ∈ [0, 1] and ρ > 0 we let Bρ(x) = {y ∈ [0, 1] : |y− x| < ρ}. As is standard, we denote the restriction of a
function f : I → R to a set E ⊆ I by f |E .

Definition 1.1. Let x ∈ I and let x = {xn} be a fixed trajectory. The first return route to x, R(x, x) =
{wx,k(x)}∞k=1 ( or {wk(x)}∞k=1 when the trajectory is understood), is defined recursively via

w1(x) = x1,

wk+1(x) =
{

r
(
x,B|x−wk(x)|(x)

)
if x 6= wk(x)

x if x = wk(x).

We say that f is first return recoverable with respect to x at x provided that

lim
k→∞

f(wk(x)) = f(x),

and if this happens for each x ∈ I, we say that f is first return recoverable with respect to x. Finally, we say that
f is first-return recoverable if it is first-return recoverable with respect to some trajectory.

2. Functions which are recoverable except on small sets

Here we shall consider functions f : I → R which are recoverable except at points in a set which is small in one
sense or another.
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Definition 2.1. Let f : I → R. We say that f is
1. almost recoverable (f ∈ AR) if there exists a trajectory xwhich recovers f at each point of I \ S, where S

is of measure zero.
2. typically recoverable (f ∈ T R) if there exists a trajectory x which recovers f at each point of I \ S, where

S is of first category.
3. nearly recoverable (f ∈ NR) if there exists a trajectory x which recovers f at each point of I \ S, where S

is countable.
4. very nearly recoverable (f ∈ SR) if there exists a trajectory x which recovers f at each point of I \ S,

where S is scattered. (Recall that a set S ⊂ R is scattered if it contains no nonempty dense-in-itself subset,
or equivalently, if S is a countable Gδ.)

In [6] it was shown that f ∈ AR if and only if f is measurable, and that f ∈ T R if and only if f has the
Baire property. Our first immediate goal for this section is to classify the smaller class NR. We shall utilize a
few simple lemmas.

Lemma 2.1. If E = {en} is scattered, and {yn} ⊂ R is an arbitrary countable set, then

h(x) ≡

{
0 if x 6∈ E

yn if x = en

is a Baire 1 function.

Proof. We actually show that h is in the first Borel class which in our case, is equivalent. Let U be open. Then
h−1(U) = EU ∪ ZU where EU ⊂ E and ZU is either ∅ or [0, 1]\E depending on whether U contains 0 or not. In
either case, EU ∈ Fσ. �

The next lemma is an immediate consequence.
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Lemma 2.2. Suppose f is a Baire 1 function, {yn} is countable and E = {en} is scattered. Then

g(x) ≡

{
f(x) if x 6∈ E

yn if x = en

is a Baire 1 function.

Proof. Since E is scattered, it follows from Lemma 2.1 that h ∈ B1 where

h(x) ≡

{
0 if x 6∈ E

yn − f(en) if x = en

.

But, g(x) = f(x) + h(x) and as the class of Baire 1 functions is closed under addition, the result follows. �

With this lemma we are able to establish the following result, which may be of independent interest.

Lemma 2.3. If f : [0, 1] → R belongs to honorary Baire class two, then there exists a Baire class one function
g∗ such that the set E ≡ {x : f(x) 6= g∗(x)} is countable and such that the graph of g∗ restricted to the complement
of E is dense in the graph of g∗.

Proof. Let f belong to honorary Baire class two. Then there is a Baire 1 function g for which {x : f(x) 6=
g(x)} ≡ E is countable. Let A denote [0, 1]\E.

If ε > 0, we say that a point x is ε-isolated from a set S if the distance between x and S is at least ε. Using
the notation C(f |A, x) to denote the cluster set of f |A at x, we let

E1 = {x ∈ E : g(x) ∈ C(f |A, x)}
E2 = {x ∈ E : g(x) 6∈ C(f |A, x)} ≡ {x ∈ E : g(x) 6∈ C(g|A, x)}.

For each natural number n we set

E2,n ≡ {x ∈ E2 : g(x) is
1
n
− isolated from C(g|A, x)},
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and note that E2 =
⋃∞

n=1 E2,n. We claim that each E2,n is scattered. To see this, fix an n and suppose that
E2,n contains a dense-in-itself subset D. Then D is perfect and since g belongs to Baire class one, there is a
point s ∈ D at which the function g|D is continuous at s. Choose 0 < ε < 1/4n and δ > 0 so that if x ∈ D and
|x− s| < δ, then |g(x)− g(s)| < ε. Next, choose x∗ ∈ D such that |x∗ − s| < δ.

Since D is perfect and E is countable, there exists a sequence {xk} in D ∩ A such that xk → x∗. Since each
xk ∈ A and since the distance from g(x∗) to C(g|A, x∗) is at least 1/n, there exists a natural number K such that
for all k > K, |g(xk)− g(x∗)| > 1/2n and |xk−x∗| < δ−|x∗− s|. For such a k > K we have xk ∈ D, |xk− s| < δ,
and

|g(xk)− g(s)| ≥ |g(xk)− g(x∗)| − |g(x∗)− g(s)| > 1
2n

− ε > ε,

and this contradiction completes the proof of our claim that E2,n is scattered.
Next, define H0 = E1 and for n ∈ N, Hn = E2,n+1\E2,n. Now let h0(x) = g(x) and

hn+1(x) =

{
hn(x) if x 6∈ Hn

y∗(x) if x ∈ Hn

where y∗(x) is any point of C(g|A, x) with 1
n+1 < |y∗(x) − g(x)| ≤ 1

n in the case that n ≥ 1 and any point of
C(g|A, x) whatsoever if n = 0. It follows from Lemma 2.2 that hn belongs to Baire class one for each n ∈ N.
Moreover, it is easy to see that {hn} is uniformly Cauchy and hence converges to a Baire 1 function g∗. Finally,
g∗(x) = g(x) whenever x ∈ A and for x ∈ E, g∗(x) ∈ C(g|A, x) = C(g∗|A, x) and as such, the graph of f |A = g∗|A
is dense in the graph of the Baire 1 function, g∗. �

Theorem 2.1. A function f : I → R belongs to NR if and only if f belongs to honorary Baire class two.

Proof. Let f : I → R belong to honorary Baire class two and let g∗ be the Baire one function from Lemma 2.3.
Let A be the co-countable set on which f and g∗ agree. Since g∗|A is dense in the graph of g∗, we may find a
support set D ⊂ A for which g∗|D is dense in g∗. Then Theorem 1 in [4] assures that there is an ordering x of
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D that recovers g∗ everywhere. Since f and g∗ agree on A and, in particular, agree on D, x recovers f at each
point of A. Thus, f is recoverable nearly everywhere.

Conversely, suppose that f ∈ NR. Let x be a trajectory which recovers f at each point of a co-countable set
A. Note that without loss of generality we may assume each x(n) belongs to A. F. Hausdorff [9] has shown that
a function belongs to honorary Baire class two if and only if the inverse image of each open set differs from an
Fσ set by a countable set. We shall show that f has this property.

First, viewing A as a metric space, we have that the function f |A : A → R is recoverable everywhere on A.
In [3] it was shown that if a function from a metric space to a separable metric space is recoverable everywhere,
then the function is of Borel class one. (See the comment following the proof of Theorem 1 in [3].)

Now, let U be an open set in R. Since f |A is Borel class one, there is an Fσ subset F of [0, 1] such that
(f |A)−1 (U) = F ∩A. Then

f−1(U) = (f |A)−1 (U) ∪
(
f−1(U) ∩Ac

)
= (F ∩A) ∪

(
f−1(U) ∩Ac

)
=

[
(F ∩A) ∪ (F ∩Ac) ∪

(
f−1(U) ∩ F c ∩Ac

)]
\

[
Ac \ f−1(U)

]
= F ∪

(
f−1(U) ∩ F c ∩Ac

)
\

(
Ac \ f−1(U)

)
.

Since both f−1(U)∩F c ∩Ac and Ac \ f−1(U) are countable sets, we have that f−1(U) differs from an Fσ set by
a countable set. �

If we further restrict the exceptional set for recoverability to not only being countable, but having countable
closure, then we are back to precisely the class of Baire one functions, as was observed in [2]. More generally, we
have

Theorem 2.2. Let f : I → R. The following are equivalent:

1. f belongs to Baire class one.
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2. f is recoverable
3. f is recoverable except on a scattered set.

Proof. Since 1. and 2. were shown to be equivalent in [5], and since 2. ⇒ 3., only 3. ⇒ 2. requires proof here.
To this end, suppose D is a support set, E ⊂ I \D is scattered, and x = {xn} is an ordering of D which recovers
f except on E. We shall produce an ordering y of D ∪E which recovers f on I. More specifically, we shall define
y in such a way that for each x ∈ I \ E, the first return route to x based on the trajectory y, R(y, x), and the
first return route to x based on the trajectory x, R(x, x) have a common tail sequence. Indeed, we shall arrange
things so that for each x ∈ I \ E, R(y, x) contains only finitely many points of E.

Enumerate E as {ek}. We shall define the modified trajectory y inserting each ek between two terms in x. Since
E is scattered, it is a countable Gδ and we may write E = ∩∞i=1Gi, where each Gi is open and G1 ⊃ G2 ⊃ . . . .
Let n1 be sufficiently large that if (a, b) is the component of G1 containing e1, then there exist k1, k2 < n1 such
that a < xk1 < e1 < xk2 < b. Then choose n2 larger than n1 such that if (a, b) is the component of G2 containing
e2, then there exist k1, k2 < n2 such that a < xk1 < e2 < xk2 < b. Continue this process and order D ∪ E as
y = {x1, x2, . . . , xn1 , e1, xn1+1, . . . , xn2 , e2, xn2+1, . . . }. Now, if {ekj

} ⊆ R(y, x), then x ∈ ∩∞j=1Gij
= E. Thus, if

x ∈ I \ E, then R(y, x) can contain only finitely many points of E and, thus, from some point on R(y, x) and
R(x, x) agree. Thus, y recovers f on I. �

3. Functions which are universally recoverable except on small sets

In the previous section we explored the possibility of weakening the condition of recoverablility. One way to
strengthen the condition is as follows.

Definition 3.1. Let f : I → R. The function is called universally recoverable (f ∈ UR) if for every support
set D there is an ordering x of D, such that f is first-return recoverable with respect to x.

In [4] it was shown that f ∈ UR if and only if f is a quasicontinuous function in Baire class one. Let us recall
the definition of quasicontinuity:
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Definition 3.2. A function f : I → R is quasicontinuous at x if every neighborhood of (x, f(x)) contains a
point of the graph of f |C(f), where C(f) denotes the set of points of continuity of f . We let Q(f) denote the
set of points of quasicontinuity of f and NQ(f) = [0, 1] \Q(f). If Q(f) = I, we say that f is a quasicontinuous
function.

In this section we investigate the various classes resulting from mixing the notion of universality with those of
the previous section. Here are the definitions we utilize:

Definition 3.3. Let f : I → R. We say that f is

1. almost universally recoverable (f ∈ AUR) if there is a measure zero set S such that every support set D
has an ordering which recovers f at each point of I \ S.

2. universally almost recoverable (f ∈ UAR) if for each support set D, there is an ordering x of D and a
measure zero set S(x) such that x recovers f at each point of I \ S(x).

3. typically universally recoverable (f ∈ T UR) if there is a first category set S such that every support set D
has an ordering which recovers f at each point of I \ S.

4. universally typically recoverable (f ∈ UT R) if for each support set D, there is an ordering x of D and a
first category set S(x) such that x recovers f at each point of I \ S(x).

5. nearly universally recoverable (f ∈ NUR) if there is a countable set S such that every support set D has
an ordering which recovers f at each point of I \ S.

6. universally nearly recoverable (f ∈ UNR) if for each support set D, there is an ordering x of D and a
countable set S(x) such that x recovers f at each point of I \ S(x).

7. very nearly universally recoverable (f ∈ SUR) if there is a scattered set S such that every support set D
has an ordering which recovers f at each point of I \ S.

8. universally very nearly recoverable (f ∈ USR) if for each support set D, there is an ordering x of D and a
scattered set S(x) such that x recovers f at each point of I \ S(x).
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We proceed to classify each of these eight function classes. Along the way we shall show that there are really
only four distinct classes since some of the adverbs “commute.” For example, we shall see that a function is almost
universally recoverable if and only if it is universally almost recoverable. We begin with a few straightforward
lemmas.

Lemma 3.1. Suppose f belongs to either UAR or UT R and r < s. Then there does not exist an interval J
in which both E1 = f−1 ((−∞, r]) and E2 = f−1 ([s,+∞)) are dense in J .

Proof. We will prove this lemma for f ∈ UAR, the proof for f ∈ UT R being similar. Suppose such an interval
J exists and choose support sets D1 and D2 such that Di ⊂ Ei ∩ J for i = 1, 2. Since f ∈ UAR, there are
enumerations x1 of D1 and x2 of D2 such that for almost every x ∈ [0, 1], {f(wx1,k(x))} → f(x) and for almost
every x ∈ [0, 1], {f(wx2,k(x))} → f(x). It follows that for almost every x ∈ J , f(x) ≤ r and also for almost every
x ∈ J , f(x) ≥ s. Since r < s, this contradiction completes the proof. �

Lemma 3.2. Suppose f belongs to either UAR or UT R and r < s. Then {x : limt→x f(t) exists} is residual.

Proof. Set A = {x : limt→x f(t) does not exist} , and define

Ars = {x ∈ A : lim inf
t→x

f(t) ≤ r < s ≤ lim sup ft→xf(t)}.

Then A =
⋃

r<s∈Q
Ars and Lemma 3.1 assures that for fixed r < s, the set Ars is nowhere dense. Thus, A is of first

category, establishing the lemma. �

Lemma 3.3. If f belongs to either UT R or UAR, then C(f) is residual.

Proof. Define B = ([0, 1] \C(f)) \A, where A is the set defined in the proof of Lemma 3.2. In other words, B
is the set of points where f has a removable discontinuity. For r < s define

Brs = {x ∈ B : f(x) ≤ r < s ≤ lim
t→x

f(t)}, and
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B′
rs = {x ∈ B : lim

t→x
f(t) ≤ r < s ≤ f(x)}.

It follows that B =
⋃

r<s∈Q
(Brs ∪B′

rs) and from Lemma 3.1 that for fixed r < s, both Brs and B′
rs are nowhere

dense. Hence B is of first category. This observation and Lemma 3.2 complete the proof. �

Theorem 3.1. Let f : I → R. The following are equivalent.
1. f ∈ AUR.
2. f ∈ UAR.
3. f is measurable and NQ(f) has measure zero.

Proof. Clearly, 1. ⇒ 2. Next, suppose that f ∈ UAR. Then f ∈ AR and is, therefore, measurable according
to Theorem 2.2. in [6]. Furthermore, Lemma 3.3 assures that C(f) is residual. Suppose that NQ(f) has positive
outer measure. Let D be a support set lying entirely in C(f). No ordering of D will recover f at any point of
NQ(f), contradicting f ∈ UAR, verifying that 2. ⇒ 3.

Next, assume f is measurable and NQ(f) has measure zero. Let L(f) denote the set of points of f . (Recall
that z0 is a Lebesgue point of f if limh→0

1
h

∫ z0+h

z0
|f − f(z0)| = 0.) As f is measurable, I \ L(f) is of measure

zero and, hence, there is a Gδ set T of measure zero such that I \ L(f) ⊂ T . As T is Gδ, there are open sets
G1 ⊇ G2 ⊇ . . . , such that λ(Gn) < 1

2n for each n ∈ N and T = ∩∞n=1Gn. Throughout the remainder of this proof

we shall adopt the following notation. If J is any interval in I, then
?

J denotes the interval of length |J |/2 which
is centered in J . Furthermore, we let A(J) = 1

|J|
∫

J
f .

Let D be any support set. We shall find an ordering {xn} of D which recovers f at each point of L(f) \ T .
Without loss of generality assume that both 0 and 1 belong to D and enumerate D as {d1 = 0, d2 = 1, d3, d4, . . . },
where the ordering of dn for n ≥ 3 is arbitrary but fixed for the remainder of the proof. We shall reorder {dn}
as {xn} inductively in steps. At the conclusion of the nth step, we will have selected points x1, x2, . . . , xq(n) from
D, where q(n) > n. Furthermore, dn will be one of the selected points; i.e., dn ∈ Xn ≡ {x1, x2, . . . , xq(n)}.
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Step 1. Let x1 = 0, x2 = 1, q(1) = 2, and X1 = {x1, x2}.

Inductive Step. Let n ∈ N and assume Xn has been chosen. We let X∗
n = Xn∪{dn+1}. Set ρn = min {|x− y| : x, y ∈ X∗

n, x 6= y},
and select δn so small that

• δn < ρn/2,
• If x ∈ X∗

n ∩ L(f), then whenever
x− δn < a < x < b < x + δn, |A([a, b])− f(x)| < 1

n+1 , and
• If x ∈ X∗

n \ L(f), then (x− δn, x + δn) ⊆ Gn+1.

Fix x < y where x and y are consecutive points of X∗
n in the usual ordering of [0, 1]. We shall hierarchically

identify finitely many points of (D \ X∗
n) ∩ (x, y). (Upon doing this for each consecutive pair x < y in X∗

n, we
shall append these points in a specific order to X∗

n to form Xn+1.)
Let J = [x, y] and set

V (J) = inf {|f(t)−A(J)| : t ∈ D ∩
?

J}.

Let p ≡ p(x, y) ∈ D ∩
?

J be such that |f(p)−A(J)| < V (J) + 1
n . Now, set J0 = [x, p], and J1 = [p, y].

Inductively, suppose k ∈ N and intervals J0(k) = [x, p0(k−1)] and J1(k) = [p1(k−1), y] have been defined, where
0(j) = 00 . . . 0︸ ︷︷ ︸

j

and 1(j) = 11 . . . 1︸ ︷︷ ︸
j

. Let

V (J0(k)) = inf {|f(t)−A(J0(k))| : t ∈ D ∩
?

J0(k)}

and

V (J1(k)) = inf {|f(t)−A(J1(k))| : t ∈ D ∩
?

J1(k)}.
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Then choose p0(k) ∈ D ∩
?

J0(k) and p1(k) ∈ D ∩
?

J1(k) such that

|f(p0(k))−A(J0(k))| < V (J0(k)) +
1
n

and
|f(p1(k))−A(J1(k))| < V (J1(k)) +

1
n

.

It is easy to see that as k →∞, both p0(k) → x and p1(k) → y. Hence, there exist k0 and k1 such that both

k ≥ k0 ⇒ 0 < p0(k) − x < δn,

and
k ≥ k1 ⇒ 0 < y − p1(k) < δn.

Let P (x, y) = {p(x, y)} ∪ {p0(k) : 1 ≤ k ≤ k0} ∪ {p1(k) : 1 ≤ k ≤ k1} and set P = ∪P (x, y) where the union is
taken over all pairs x < y where x and y are consecutive elements of X∗

n in the usual ordering of [0, 1]. Now, let
Xn+1 = X∗

n ∪ P and order the elements of Xn+1 according to the following scheme:
1. The initial portion Xn = {x0, x1, . . . , xq(n)} retains its original order.
2. First, points of the form p(x, y) are appended according to the usual order of [0, 1] with the leftmost such

point being denoted xq(n)+1.
3. Then, all points of the form p0(k) and p1(k) are appended next, ordered lexicographically: first according

to “k”, then according to the usual ordering of [0, 1].
4. Finally we append dn+1 if dn+1 /∈ Xn.

We let q(n + 1) be the subscript of the final point appended in the scheme, completing the inductive step.
We now proceed to show that this ordering {xn} of D recovers f at each x ∈ S ≡ L(f) \ T . Suppose not;

i.e., suppose there is an yo ∈ S for which {f(rn)} fails to converge to f(yo), where {rn} is the first-return route
to yo based on the ordering {xn}. Then there exists an εo > 0 and an increasing sequence {ni} such that
|f(rni

)− f(yo)| ≥ εo for each i.
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Since yo ∈ L(f), there exists a η1 > 0 such that if H is any interval containing yo with |H| < η1, then
|f(yo) − A(H)| < εo/10. Furthermore, since yo must be a point of approximate continuity of f , there exists a
0 < η2 < η1 such that if δ ≤ η2, then there is a set E(δ) ⊆ (yo − δ, yo + δ) with λ(E(δ)) > 9δ/5 such that
|f(x)−f(yo)| < εo/10 for all x ∈ E(δ). Furthermore, each rni

was appended to the trajectory {xn} at some Stage
Nni

. There is a K such that for all i > K, Nni−1 > 5
εo

and thus, we may assume this true for all i. For a fixed i

we have that rni
was appended to the trajectory {xn} at Stage Nni

for one of two reasons: Either rni
= dNni

or
it is a member of the collection P of Stage Nni .

Suppose that the former case applies. Then we must have yo ∈ (dNni
−δNni

−1, dNni
+δNni

−1). If dNni
/∈ L(f),

then yo ∈ GNni
. But if this happens for infinitely many i′s, we would have yo ∈ T , a contradiction. Thus,

we may assume that if rni = dNni
, then dNni

∈ L(f). Let H be any closed subinterval of (yo − η2, yo +
η2) ∩ (dNni

− δNni
−1, dNni

+ δNni
−1), containing both yo and dNni

= rni . Then |f(yo) − A(H)| < εo/10 and
|f(rni)−A(H)| < 1/Nni < εo/5, contradicting the assumption that |f(rni)− f(yo)| ≥ εo.

Thus, it must be the case that for each i, rni is a member of the collection P of Stage Nni . Thus, rni be a
point of the form p(x, y) or p0(k) or p1(k). Let J denote the interval of Stage Nni which determined rni . Then

we know J contains yo, rni
∈

?

J ⊂ (yo − η2, yo + η2), and |f(rni
)− A(J)| < V (J) + 1

Nni
−1 < V (J) + εo/5. Now,

since NQ(f) is of measure zero, there is a point x∗ ∈ Q(f) ∩
?

J ∩ E(η2). Hence, there is a point x∗∗ ∈ C(f) ∩
?

J

such that |f(x∗∗) − f(yo)| < εo/10. Thus, there is an interval H ⊂
?

J such that |f(x) − f(yo)| < ε/10 for
all x ∈ H. Since D is dense, there is a d ∈ H ∩ D, and hence |f(d) − f(yo)| < ε/10. This implies that
V (J) ≤ |f(d)−A(J)| ≤ |f(d)− f(yo)|+ |f(yo)−A(J)| < εo/10 + εo/10 = εo/5. Consequently, |f(rni

)− f(yo)| ≤
|f(rni

)−A(J)|+ |A(J)− f(yo)| < εo/5 + εo/5 + εo/10 < εo, contradicting |f(rni
)− f(yo)| ≥ εo, and completing

the proof. �

Theorem 3.2. Let f : I → R. The following are equivalent.

1. There is a residual set T such that every ordering of every support set recovers f at each point of T .
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2. f ∈ T UR.
3. f ∈ UT R.
4. C(f) is residual.

Proof. It is obvious that 1. ⇒ 2. ⇒ 3., and Lemma 3.3 assures that 3. ⇒ 4. Finally, assume that C(f) is
residual. Letting T = C(f), it is clear that every ordering of every support set recovers f at each point of T . �

Theorem 3.3. Let f : I → R. The following are equivalent.

1. f ∈ NUR [SUR].
2. f ∈ UNR [USR].
3. f belongs to Baire class one and NQ(f) is countable [scattered].

Proof. Clearly, 1. ⇒ 2. Next to see that 2. ⇒ 3., suppose that f ∈ UNR [USR]. Then f ∈ UT R and
Lemma 3.3 assures that C(f) is dense. Let D ⊂ C(f) be a support set and let xD be an ordering of D which
recovers f at each point of I \ S(xD), where S(xD) is countable [scattered]. Since xD cannot recover f(x) at any
x ∈ NQ(f), we have NQ(f) ⊆ S(xD) and, hence, NQ(f) is countable [scattered].

We shall show that f belongs to Baire class one by observing that it is recoverable. (Since USR ⊂ UNR we
need only provide the proof for when f ∈ UNR.) We first recall that J. Borśık [1] has shown that Q(f) \BQ(f)
is countable, where BQ(f) denotes the set of points at which f is bilaterally quasicontinuous. Let D be a support
set containing the countable set NQ(f)∪ ([Q(f) \BQ(f)] and let x be an ordering of D which recovers f except
at points in a countable set S(x) = {s1, s2, . . . }. By systematically inserting each sn between two terms in the
trajectory x = {xj} we shall produce a trajectory y which is an enumeration of the support set D ∪ S(x) and
which recovers f everywhere. We proceed inductively:
Step 1. Let ε1 = 1. Since s1 ∈ BQ(f), there exists an xj(1,l) and an xj(1,r) such that

0 < s1 − xj(1,l) < ε1 and
∣∣f(s1)− f

(
xj(1,l)

)∣∣ < ε1,
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and
0 < xj(1,r) − s1 < ε1 and

∣∣f(s1)− f
(
xj(1,r)

)∣∣ < ε1,

where j(1, l) and j(1, r) are the minimal subscripts yielding these results. Let j(1) denote the larger of j(1, l) and
j(1, r), set k1 = j(1) + 1 and define the initial segment of the new trajectory {yk} by

yk =

{
xk if k ≤ j(1)
s1 if k = j(1) + 1 = k1

.

In other words, we have inserted s1 into the sequence {xj} between xj(1) and xj(1)+1.
Step n. Assume that {yk}kn−1

k=1 has been specified. Let

εn = min
({

1
n

}
∪ {|yk − yj | : k 6= j, k, j ≤ kn−1}

)
.

Since sn ∈ BQ(f), there exists an xj(n,l) and an xj(n,r) such that

(1) 0 < sn − xj(n,l) < εn and
∣∣f(sn)− f

(
xj(n,l)

)∣∣ < εn,

and

(2) 0 < xj(n,r) − sn < εn and
∣∣f(sn)− f

(
xj(n,r)

)∣∣ < εn,

where j(n, l) and j(n, r) are the minimal subscripts yielding these results. Let j(n) denote the larger of j(n, l)
and j(n, r). Set kn = j(n) + n and define yk for kn−1 < k ≤ kn by

yk =

{
xk−n+1 if kn−1 < k < kn

sn if k = kn

.

In other words, we have inserted sn into the sequence {xj} between xj(n) and xj(n)+1.
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In this manner we have completed our definition of the expanded trajectory y = {yk}, which is an enumeration
of D∪S(x). Letting U(y, yk) denote the interval of influence of yk based on the trajectory y, and U(x, xj) denote
the interval of influence of xj based on the trajectory x, we have that for each n, sn = ykn , and U(y, sn) ⊂
U(x, xj(n,l)) ∪ U(x, xj(n,r)). This observation, together with inequalities (1) and (2) shows that y recovers f
everywhere.

Finally, to see that 3. ⇒ 1., suppose that f belongs to Baire class one and NQ(f) is countable [scattered]. Let
D be any support set. Then f |D is dense in f |Q(f). Let S = NQ(f) \D and define a function g : I → R by

g(x) ≡

{
f(x) if x ∈ I \ S

sup
(
C(f |C(f), x)

)
if x ∈ S

,

where C(f |C(f), x)) denotes the cluster set at x of the restriction of f to its set of continuity points. Then g
belongs to Baire class one and g|D is dense in g. Thus, Theorem 1 in [4] guarantees the existence of an ordering
x of D which recovers g everywhere. Then, since f |D = g|D and g(x) = f(x) for all x ∈ I \ S, we have that x
recovers f at each point of I \ S. In particular, x recovers f at each point of I \NQ(f), showing that f ∈ NUR
[SUR]. �

4. Functions which are consistently recoverable except on small sets

Besides universality, a second natural means of strengthening the notion of recoverability is to require the existence
of a support set every ordering of which recovers the function. More specifically we have the following.

Definition 4.1. Let f : I → R. Let D be a support set. We shall say that D consistently recovers f provided
that f is first-return recoverable with respect to every ordering of D. A function is said to be consistently
recoverable (f ∈ CR) if there exists a support set D which consistently recovers f .

In [8] it was shown that f ∈ CR if and only if f has only countably many discontinuities.
Paralleling Definition 3.3, we make the following definitions.
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Definition 4.2. Let f : I → R. We say that f is
1. almost consistently recoverable (f ∈ ACR) if there is a measure zero set S and a support set D every

ordering of which recovers f at each point of I \ S.
2. consistently almost recoverable (f ∈ CAR) if there is a support set D, such that every ordering x of D

recovers f at each point of I \ S(x), where S(x) is of measure zero.
3. typically consistently recoverable (f ∈ T CR) if there is a first category set S and a support set D every

ordering of which recovers f at each point of I \ S.
4. consistently typically recoverable (f ∈ CT R) if there is a support set D, such that every ordering x of D

recovers f at each point of I \ S(x), where S(x) is of first category.
5. nearly consistently recoverable (f ∈ NCR) if there is a countable set S and a support set D every ordering

of which recovers f at each point of I \ S.
6. consistently nearly recoverable (f ∈ CNR) if there is a support set D, such that every ordering x of D

recovers f at each point of I \ S(x), where S(x) is countable.
7. very nearly consistently recoverable (f ∈ SCR) if there is a scattered set S and a support set D every

ordering of which recovers f at each point of I \ S.
8. consistently very nearly recoverable (f ∈ CSR) if for each support set D, such that every ordering x of D

recovers f at each point of I \ S(x), where S(x) is scattered.

We proceed to investigate these eight classes of functions.

Theorem 4.1. Let f : I → R. The following are equivalent.
1. f ∈ ACR.
2. f ∈ CAR.
3. f is almost everywhere equal to a function g which is continuous almost everywhere.

Proof. Clearly, 1. ⇒ 2. To see that 2. ⇒ 3., let f ∈ CAR. Since f ∈ AR, f is measurable according to
Theorem 2.2 in [6]. Let D be a support set such that every ordering of D recovers f almost everywhere. Let
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F = arctan(f) and note that every ordering of D recovers the bounded measurable function F almost everywhere.
Thus, in the terminology of [6], Theorem 2.1 of that paper asserts that every ordering of D yields the Lebesgue
integral of F . Then Theorem 1 in [7] assures the existence of a Riemann integrable function G, which equals
F almost everywhere. Letting g = tan (G), we have that f = g almost everywhere and g is continuous almost
everywhere, completing the proof that 2. ⇒ 3.

Finally, we show that 3. ⇒ 1. To this end, assume that f = g almost everywhere and that g is continuous at
each point of a full measure set S. Let D be a support set lying entirely in the set S∗ ≡ S ∩ {x : f(x) = g(x)}.
Then, clearly every ordering of D recovers g at each point of S and, consequently, recovers f at each point of the
full measure set S∗. �

Theorem 4.2. Let f : I → R. The following are equivalent.
1. f has the Baire property.
2. f ∈ T R.
3. f ∈ CT R.
4. f ∈ T CR.

Proof. That 4. ⇒ 3. ⇒ 2. follows directly from the definitions. The equivalence of 1. and 2. was shown in
Theorem 2.3 of [6]. It remains to show that 1. ⇒ 4. To this end, let f have the Baire property. Then there is a
residual set S such that f |S is continuous. Let D be any support set lying entirely in S. Clearly every ordering
of D recovers f at each point of S. Hence f ∈ T CR. �

Before establishing the next theorem, we need the following definition.

Definition 4.3. If f : [0, 1] → R, then the strong oscillation of f at a point x ∈ [0, 1] is
s-osc(f, x) ≡ sup{r ≥ 0 : there are sets S1(x) and S2(x) such that for every ε > 0

both S1 ∩Bε(x) and S2 ∩Bε(x) are uncountable and

|f(x1)− f(x2)| ≥ r, whenever x1 ∈ S1 and x2 ∈ S2}.
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Theorem 4.3. Let f : I → R. The following are equivalent.

1. f ∈ NCR.
2. f ∈ CNR.
3. There is a co-countable set T ⊆ I such that f |T is continuous.

Proof. That 1. ⇒ 2. is immediate. Next, to see that 3. ⇒ 1., suppose that S is co-countable in I and that
f |S is continuous. Let D be a support set lying in S such that D contains every isolated point of S. Then every
ordering of D recovers f at each point of S, so that 3. ⇒ 1.

The bulk of the work to be done here is is showing the remaining implication that 2. ⇒ 3. We first establish a
couple of claims:

Claim 1. Let f : I → R and suppose f ∈ CNR. Then En ≡ {x : s-osc(f, x) ≥ 1
n} is countable.

Proof. Suppose that for some n ∈ N, En is uncountable. Let D be a support set, every ordering x of which
recovers f on I \ S(x), where S(x) is countable. We shall determine an enumeration x of D with the property
that x fails to recover f at uncountably many points, yielding a contradiction.

Let S1 and S2 be as in the definition of strong oscillation, i.e., for each x ∈ En and for each ε > 0 both
S1 ∩Bε(x) and S2 ∩Bε(x) are uncountable and |f(x1)− f(x2)| ≥ 1/n, whenever x1 ∈ S1 and x2 ∈ S2 . Next, let
Σ denote the collection of all finite sequences of 0’s and 1’s, and Σ∗ denote the collection of all infinite sequences
of 0’s and 1’s. For each σ ∈ Σ, we let |σ| denote the length of σ and let Σk = {σ ∈ Σ : |σ| = k}. For each σ ∈ Σ∗

and each natural number k, we let σ|k ∈ Σk denote the sequence consisting of the initial k terms in σ. We shall
proceed by induction on k to define an enumeration x of D and to identify closed intervals Hσ for each σ ∈ Σk.
The enumeration x and these intervals will be chosen such that the following conditions are satisfied:

• If σ 6= τ both belong to Σk, then Hσ ∩Hτ = ∅.
• For each σ ∈ Σ, Hσ0 ∪Hσ1 ⊂ Hσ.
• If σ ∈ Σk, then 0 < |Hσ| < 1/2k.
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• If σ ∈ Σk and x ∈ Hσ, then there are two numbers ux and wx in R(x, x)∩B 1
2k

(x) such that |f(ux)−f(wx)| ≥
1/n.

For each σ ∈ Σ∗ we let x(σ) be the unique point in ∩∞k=1Hσ|k. There are uncountably many such points and
clearly x cannot recover f at any such point because of the last property listed above.

Before describing the inductive process, we first let {d1, d2, . . . } be an arbitrary but fixed enumeration of D
and let

E∗ = En \ (D ∪ {x ∈ En : x is not a condensation point of En}) .

Then E∗ is uncountable.
Stage 0: Let ε1 = 1 and let c∅ ∈ E∗. Then there are two elements x1, x2 ∈ D such that |f(x1)− f(x2)| ≥ 1

n . This
is because the sets S1(c∅) and S2(c∅) are uncountable and D must recover f at all but countably many points.
We suppose that |c∅ − x1| > |c∅ − x2| and let H∅ = B|c∅−x2|(c∅). We set n0 = 2 and specify the initial segment
of n0 terms in x as {x1, x2}.
Stage k: Assume that Stage k−1 has been completed. If dk has not been selected as one of the {x1, x2, . . . , xnk−1},
append it now as xnk−1+1 and let mk denote the number of terms selected of x to this point. (Thus, mk

is either nk−1 or nk−1 + 1.) For each σ ∈ Σk−1 let Jσ be a subinterval of Hσ \ {dk} containing cσ with
0 < |Jσ| < |Hσ|/2. In Jσ select two distinct points cσ0, cσ1 ∈ Jσ ∩ E∗. Next, inside Jσ choose disjoint open
intervals Iσ0 centered on cσ0 and Iσ1 centered on cσ1. Find two points aσ0 and bσ0 in [D \ {x1, x2, . . . , xmk

}]∩Iσ0

with |aσ0 − cσ0| < |bσ0 − cσ0| and |f(aσ0)− f(bσ0)| ≥ 1/n. Let Hσ0 = B|cσ0−aσ0|(cσ0). Likewise, find two points
aσ1 and bσ1 in [D \ {x1, x2, . . . , xmk

}] ∩ Iσ1 with |aσ1 − cσ1| < |bσ1 − cσ1| and |f(aσ1)− f(bσ1)| ≥ 1/n. Then let
Hσ1 = B|cσ1−aσ1|(cσ1). We do this for each σ ∈ Σk−1 and have thus selected points aσ and bσ for each σ ∈ Σk.
We append these 2k+1 points to {x1, x2, . . . xmk

} taking care to insert each b point before its corresponding a
point. We let nk denote the number of elements of D selected up to this point. This completes Stage k.

The resulting ordering x and the intervals Hσ have the four properties noted above, completing the proof of
Claim 1. �
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With this claim we have that the set E ≡ ∪∞n=1En is countable. Next we wish to establish:

Claim 2. If xo 6∈ En, then there is an δ(xo) > 0 and an interval J with |J | = 1
n such that f(x) ∈ J for all but

countably many x ∈ Bδ(xo)(xo).

Proof. Since xo 6∈ En, there is an δ = δxo
> 0 so that whenever S1, S2 ⊂ Bδ(xo) with |f(x1) − f(x2)| ≥ 1

n
for every x1 ∈ S1 and x2 ∈ S2, then either S1 or S2 is countable. It is easy to see that there is a yo such that
f−1 ((−∞, yo))∩Bδ(xo) is uncountable and thus it follows that the set f−1

(
(yo + 1

n ,+∞)
)
∩Bδ(xo) is countable.

Let
y∗ ≡ inf{y : f−1 ((−∞, y)) ∩Bδ(xo) is uncountable}.

Then y∗ > −∞ and for every ε > 0, f−1 ((−∞, y∗ − ε))∩Bδ(xo) is countable and so A1 = f−1 ((−∞, y∗))∩Bδ(xo)
is countable. Since A2 = f−1

(
(y∗ + 1

n ,+∞)
)
∩Bδ(xo)) is countable, it follows that for every x ∈ Bδ(xo)\(A1∪A2),

f(x) ∈ [y∗, y∗ + 1
n ] which verifies Claim 2. �

For each xo 6∈ En let I(xo, n) denote the interval Bδ(xo)(xo), where δ(xo) is from Claim 2 and let A(xo, n)
denote the countable set A1 ∪ A2 described in the proof of Claim 2. Then if n is fixed, Ec

n ⊂ ∪x∈Ec
n
I(xo, n) and

by Lindeloff’s Theorem, there is a countable set {I(xi,n, n)} such that Ec
n ⊂ ∪∞i=1I(xi,n, n). Set

A = E ∪ (∪∞n=1 ∪∞i=1 A(xi,n, n)) .

We are now in a position to complete the proof that 2. ⇒ 3. To this end, assume f ∈ CNR and let A denote
the countable set defined above and let T = I \ A. We show that f |T is continuous. Let xo ∈ T and ε > 0 be
given. Choose n so that 1

n < ε. Since xo ∈ T , xo 6∈ En and so there is an i ∈ N such that xo ∈ I(xi,n, n). Choose
δ > 0 sufficiently small that (xo−δ, xo +δ) ⊂ I(xi,n, n). Then if |x−xo| < δ and x ∈ Ac, x ∈ I(xi,n, n)\A(xi,n, n)
and by Claim 2 there is an interval J depending only on the indices i and n such that |J | = 1

n and f(x) ∈ J .
But xo ∈ I(xi,n, n)\A(xi,n, n) as well as x so that f(xo) ∈ J . Hence, |f(x)− f(xo)| ≤ 1

n < ε. This completes the
proof of the Theorem 4.3. �
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At this point the reader should fully expect that we will conclude this paper by showing that SCR = CSR
and providing a characterization of this subclass of the Baire 1 functions. Unfortunately, the best we can state is
that

(3) A ⊂ SCR ⊆ CSR ⊂ B,

where A is the set of all functions f having the property that there is a co-scattered set T ⊆ I such that f |T is
continuous and B is the set of Baire 1 functions f having the property that there is a co-countable set T ⊆ I such
that f |T is continuous. The first two inclusions in (3) are immediate and the third follows from Theorem 2.2 and
Theorem 4.3. Furthermore, notice that Dirichlet’s familiar example of a function which is continuous at precisely
the irrationals shows that the first inclusion is proper. To see that the third inclusion is proper, we offer the
following

Example 4.1. There is a Baire one function f and a co-countable set T such that f |T is continuous, yet
f /∈ CSR.

Proof. Let K1 ≡ K \ {0, 1}, where K denotes the usual middle-thirds Cantor set. Enumerate the component
intervals of (0, 1) \K1 as {(a1,j , b1,j)}∞j=1 and let c1,j denote the midpoint of (a1,j , b1,j). Set C1 = {c1,j : j ∈ N}.

Place a copy of K1 in each interval (a1,j , c1,j) and (c1,j , b1,j) by mapping (0, 1) affinely onto each of these
intervals. Let K2 be the union of all these copies of K1 and enumerate the open components of (0, 1) \ K2 as
{(a2,j , b2,j)}∞j=1. For each j let c2,j denote the midpoint of (a2,j , b2,j) and set C2 = {c2,j : j ∈ N}.

Next, place a copy of K1 in each interval (a2,j , c2,j) and (c2,j , b2,j) by mapping (0, 1) affinely onto each of these
intervals. Let K3 be the union of all these copies of K1 and enumerate the open components of (0, 1) \ K3 as
{(a3,j , b3,j)}∞j=1. For each j let c3,j denote the midpoint of (a3,j , b3,j) and set C3 = {c3,j : j ∈ N}, and continue
this process inductively. Finally, let C = ∪∞n=1Cn and note that

1. Cn ∩ Cm = ∅ for n 6= m;
2. for each n, Cn is an isolated, and therefore scattered, set;
3. for each n, Cn is dense in Kn;
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4. C is dense in I and consequently is not scattered.

Let T = I \ C and define f : I → R by

f(x) =

{
1
n if x ∈ Cn

0 if x ∈ T
.

Since each Cn is scattered and f |T ≡ 0, we clearly have that f is Baire one and f |T is continuous. To argue by
contradiction, suppose f ∈ CSR. Let D be a support set which consistently very nearly recovers f . For each n,
let Sn = Cn ∩D and Wn = Cn \D.

As a first case, suppose that for each n we have Wn dense in Kn. Then ∪∞n=1Wn is dense in I and is consequently
not scattered, but clearly no ordering of D can recover f(x) at any x ∈ ∪∞n=1Wn, yielding a contradiction.

Thus, there must exist an n for which Wn is not dense in Kn. Fix such an n for the remainder of this proof
and let P be a nonempty portion of Kn for which Kn ∩Wn = ∅. Since Cn is dense in Kn, we must have that Sn

is dense in P . Let E = {e1, e2, . . . , ej , . . . } be a non-scattered denumerable subset of P \D. We shall define an
ordering x of D such that x fails to recover f(x) for each x ∈ E. To this end, let d = {dk}∞k=1 be an arbitrary
but fixed enumeration of D. Let s denote the infinite subsequence of d lying in Sn. Note that even though s is
not a true trajectory, the symbol r(s,Bε(x)) is well-defined for each x ∈ E and each ε > 0. We shall construct x
in inductively in stages.
Stage 1: Let x1 = d1, ε1 = min{1/2, |e1 − x1|/2}, x2 = r(s,Bε1(e1)), and i1 = 2.
Inductive Stage: Let m ∈ N and assume that the segment {x1, x2, . . . xim

} of x has been determined. If dm+1 /∈
{x1, x2, . . . xim}, append it as xim+1 and let i∗m = im +1. Otherwise, just let i∗m = im. Let εm+1 denote 1/2 times
the minimum of the set of numbers {|ei − ej | : 1 ≤ i 6= j ≤ m + 1} ∪ {|ej − xi| : 1 ≤ j ≤ m + 1, 1 ≤ i ≤ i∗m}.
Then append the m + 1 numbers r(s,Bεm+1(ej)), j = 1, 2, . . . m + 1, in any order to {x1, x2, . . . xi∗m}, beginning
with xi∗m+1. Set im+1 = i∗m + m + 1. Thus we have defined the initial segment {x1, x2, . . . xim+1} of x and this
completes the inductive stage.
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In this manner we have defined an ordering x of D with the property that for each x ∈ E the first return route
to x contains a subsequence from Sn. Thus x does not recover f(x) at each such x, completing the proof. �

Hence, the question of the equality of SCR and CSR remains open as does the problem of characterizing this
class (or these classes).

5. Open questions

In addition to the open problems mentioned at the end of the previous section, several others naturally emerge.
For example, in sections 2 through 4 we chose four specific types of small sets: the measure zero sets, the first
category sets, countable sets, and scattered sets. These seemed the be the natural exceptional sets to initially
consider and we were not disappointed with the richness of the results obtained. However, there are numerous
other candidates for classes of small sets: σ-porous sets, sets with small dimension in one sense or another, sets
with countable closures, etc. Perhaps an investigation of recovery or universal recovery or consistent recovery
except on some of these types of small sets will yield equally interesting and diverse results.
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9. Hausdorff, Über halfstetige Funktionen and deren Verallgemeimerung, Math. Z. 5 (1919), 292–309. F.

M. J. Evans, Department of Mathematics, Washington and Lee University, Lexington, Virginia 24450, USA, e-mail : evansm@wlu.edu

P. D. Humke, Department of Mathematics, St. Olaf College, Northfield, Minnesota 55057, USA, e-mail : humke@stolaf.edu


