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TRIANGULAR MAPS WITH THE CHAIN RECURRENT
POINTS PERIODIC

JIŘÍ KUPKA

Abstract. Forti and Paganoni [Grazer Math. Ber. 339 (1999), 125–140] found a triangular map F (x, y) = (f(x), gx(y))

from I × I into itself for which closed set of periodic points is a proper subset of the set of chain recurrent points. We
asked whether there is a characterization of triangular maps for which every chain recurrent point is periodic. We answer
this question in positive by showing that, for a triangular map with closed set of periodic points and any positive real ε,
every ε-chain from a chain recurrent point to itself may be represented as a finite union of ε-chains whose all points
either are periodic or form a nontrivial ε-chain of some one-dimensional map gx.

1. Introduction and the theorem

Denote by I the closed interval [0, 1] ⊆ R with the induced topology, by I2 the Cartesian product I × I ⊆ R2, by
X an arbitrary compact metric space. If A,B ⊆ X then A, int(A) and dist(A,B) is the closure, the interior of A
and the distance of A and B, respectively.

The set of continuous mappings of a compact metric space X into itself is denoted by C(X, X). For ϕ ∈ C(X, X)
and x ∈ X, define inductively the nth iteration of ϕ by ϕ0(x) = x, and ϕn(x) = ϕ(ϕn−1(x)); n is a member
of positive integer set N. The orbit Orb(A) of a set A ⊆ X is the set of its images under ϕ. The trajectory
of x is the sequence {ϕn(x)}∞n=0, and the set ωϕ(x) of limit points of the trajectory of x is the ω-limit set of x.
Let ω(ϕ) =

⋃
x∈I ωϕ(x). The α-limit point of x is the limit point of some sequence {xn}∞n=0 such that x0 = x
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and ϕ(xn) = xn−1. Let αϕ(x) be the set of all α-limit points of x and let Fix(ϕ) = {x ∈ I |ϕ(x) = x} be the set
of fixed points of ϕ. A point x is a periodic point of ϕ, if ϕp(x) = x for some p ∈ N. The orbit of a periodic
point x is a cycle and its cardinality is its period. Denote by P (ϕ) the set of periodic points of ϕ. A point x
is nonwandering if for every open neighborhood U of x there is an n ∈ N such that ϕn(U) ∩ U 6= ∅. Let Ω(ϕ)
denote the set of nonwandering points of ϕ.

Let ε > 0 be given and let x, y be points of X. An ε-chain from x to y is a finite sequence {x0, x1, . . . , xn}
of points of X with x = x0, y = xn and dX(ϕ(xk−1), xk) < ε for k = 1, 2, . . . , n. An ε-chain E is nontrivial if
at least one point of E is nonperiodic. A point x is chain recurrent if and only if, for every ε > 0, there is an
ε-chain from x to itself (x →ε x). Let CR(ϕ) denote the set of all chain recurrent points of ϕ.

The relations between the above-mentioned sets are given by the next proposition which can be found, e.g., in
[1].

Theorem 1.1. If X is a compact metric space and ϕ ∈ C(X, X) then

(1) Fix(ϕ) ⊆ P (ϕ) ⊆ ω(ϕ) ⊆ Ω(ϕ) ⊆ CR(ϕ).

The mentioned sets are equal if f ∈ C(I, I) satisfies some assumptions; a long list of such assumptions can be
found, e.g. in [4]. The next proposition which can be found, e.g. in [3], displays a few of them.

Theorem 1.2. [3] f ∈ C(I, I). Then the following conditions are equivalent:

(i) P (f) = P (f).
(ii) P (f) = Ω(f).
(iii) P (f) = CR(f).

Our paper is devoted to triangular maps of the square, i.e., continuous maps F : I2 → I2 of the form
F (x, y) =

(
f(x), gx(y)

)
; the function f is called the base function of F . Denote by T (I2, I2) the set of triangular

maps I2 → I2 and by d the max metric on I2. In 1990 L. S. Efremova proved the next result (in a more strong
form).
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Theorem 1.3. [2] Let F ∈ T (I2, I2) and P (F ) be closed. Then P (F ) = Ω(F ).

Let (i)–(iii) be the properties displayed in Proposition 1.2 considered for a triangular map F . Since the set
Ω(F ) is closed, the Proposition 1.3 and (1) give (i)⇔(ii). Moreover, Forti and Paganoni in [3] found a triangular
map F with closed set of the periodic points such that CR(F ) \ ω(F ) 6= ∅. By (1), ω(F ) ⊆ Ω(F ) ⊆ CR(F ), so
there is a problem to characterize triangular maps F with closed set P (F ) such that P (F ) = CR(F ). The wanted
characterization follows from the next theorem which is the main result of our paper.

Definition 1.4. Let z1 = (x, y1), z2 = (x, y2) be periodic points of F . The point z1 is accessible from z2

(z2 →a z1) if there is an ε-chain from z2 to z1 by the map F restricted to IOrb(x) =
⋃

y∈Orb(x){y} × I for any
ε > 0. The point z1 is nontrivially accessible from z2 (z2 →n z1) if z2 →a z1 and for any sufficiently small
ε > 0 any ε-chain from z2 to z1 by the map F restricted to IOrb(x) is nontrivial.

Let K1,K2 be subsets of P (F ). Then K1 is accessible from K2 (K2 →a K1) if z2 →a z1 for some z1 ∈ K1

and z2 ∈ K2.

Definition 1.5. Points z1, z2 ∈ P (F ) form a t-pair if (i) z2 →n z1 and, for any δ > 0, (ii) there exists a
finite number of connected components Ki, i = 1, 2, . . . ,m, of P (F ) such that z1 ∈ K1, z2 ∈ Km and, for all
i = 1, 2, . . . ,m− 1, either Ki →a Ki+1 or dist(Ki,Ki+1) < δ.

Theorem 1.6. Main theorem Let F ∈ T (I2, I2) and P (F ) be closed. Then CR(F ) \ P (F ) 6= ∅ if and only
if there exists a t-pair.

2. Known facts

For a map F ∈ T (I2, I2), let A(F ) Denote any of the sets Fix(F ), P (F ), ω(F ), Ω(F ) and CR(F ) and let π be the
canonical projection (x, y) 7→ x.

Theorem 2.1. [4] Let F ∈ T (I2, I2), let f be the base function of F . Then π
(
A(F )

)
= A(f).
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We already know that CR(ϕ) is closed for any ϕ ∈ C(X, X). Of course, CR(ϕ) enjoy a number of other
general properties used later.

Theorem 2.2. [1] Let ϕ ∈ C(X, X). Then, for any n ∈ N, CR(ϕ) = CR(ϕn) and P (ϕ) = P (ϕn).

Theorem 2.3. [1] Let ϕ ∈ C(X, X). Then CR(ϕ) = CR(ϕ|CR(ϕ)), i.e. every chain recurrent point remains
chain recurrent for the restriction of ϕ to CR(ϕ).

Let ϕ ∈ C(X, X). A nonempty closed set A contained in X is Lyapunov stable if, for each open set U
containing A, there exists an open set V containing A such that ϕn(V ) ∈ U for all n ∈ N. A nonempty closed set
A is an attractor if there exists an open set B containing A such that ωϕ(x) ⊆ A for every x ∈ B. If a nonempty
closed set A is both Lyapunov stable and an attractor, we say that A is asymptotically stable.

Theorem 2.4. [1] Let ϕ ∈ C(X, X). If A ⊆ X is an asymptotically stable set, then there exists an open set
W containing A such that ϕ(W ) ⊆ W Moreover, for any open upset U of A we can choose W so that W ⊆ U .

Denote by Q(x, ϕ) the intersection of all asymptotically stable sets containing ωϕ(x).

Theorem 2.5. [1] Let ϕ ∈ C(X, X). If y ∈ Q(x, ϕ), then Q(y, ϕ) ⊆ Q(x, ϕ).

Theorem 2.6. [1] Let ϕ ∈ C(X, X). If y ∈ Q(x, ϕ), then there is an ε-chain from x to y by ϕ for any ε > 0.

3. Lemmas and proofs

Let ϕ ∈ C(X, X) and K, L ⊆ X. Denote by Sε(K, L) the closure of {z ∈ X | z is a member of an ε-chain from a
point of K to a point of L by ϕ}. If K →ε L for any ε > 0, the set Sϕ(K, L) =

⋂
ε>0 Sε(K, L) is clearly nonempty

and closed. If z0 ∈ CR(ϕ), the set Sϕ(z0, z0) is the independent set of z0.

Lemma 3.1. Let ϕ ∈ C(X, X) and z0 ∈ CR(ϕ). Then the independent set S := Sϕ(z0, z0) is strongly
invariant, i.e. ϕ(S) = S.
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Proof. This easily follows from the continuity of ϕ and the definition of S. �

Lemma 3.2. Let ϕ ∈ C(X, X) and z0 ∈ CR(ϕ). Then any point of the independent set S := Sϕ(z0, z0) is
chain recurrent for the restriction of ϕ to S, i.e. S = CR(ϕ|S).

Proof. It is easy to see, CR(ϕ|S) ⊆ S. We prove the converse inclusion.
Clearly S ⊆ CR(ϕ). Let z be a chain recurrent point lying in S. At first we show that for any open

neighborhood U of S and any ε > 0 there is an ε-chain from z to z in U . Assume, contrary to what we wish to
show, that there exists an open neighborhood U of S and ε > 0 such that every ε-chain from z to itself contains
a point in the complement of U . Let {εn} be a decreasing sequence of positive numbers tending to 0. Then, for
each n ∈ N, there is a point zn of an εn-chain lying outside U . Denote by z̃ an accumulation point of {zn}n∈N.
Evidently, z̃ 6∈ U . But z →ε z̃ and z̃ →ε z for every ε > 0 and, by the definition of S and z ∈ S, this implies
z̃ ∈ S, which is a contradiction.

It remains to show that for any ε > 0 there is an ε-chain from z to itself within S. By the continuity of ϕ, we
can choose δ > 0, 0 < δ < ε

3 , so that dX(x, y) < δ implies dX(ϕ(x), ϕ(y)) < ε
3 . Let U be an open δ-neighborhood

of S and let {z0, z1, . . . , zk} be an ε
3 -chain from z to z lying in U . There exist points s0, s1, . . . , sk in S with

s0 = sk = z and dX(zj , sj) < δ for 1 ≤ j ≤ k. Then for each j = 1, 2, . . . , k

dX(ϕ(sj−1), sj) < dX(ϕ(sj−1), ϕ(zj−1)) + dX(ϕ(zj−1), zj) + dX(zj , sj) < ε,

which already proves S = CR(ϕ|S). �

Lemma 3.3. Let F ∈ T (I2, I2), P (F ) be closed and z = (x, y) ∈ CR(F ) \ P (F ). If x is a fixed point of the
base map f , then the independent set Sf (x, x) is a nondegenerate closed interval of P (f).

Proof. Let the assumptions be fulfilled. Clearly,

(2) π(SF (z, z)) ⊆ Sf (x, x).
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Denote S := SF (z, z) and D := Sf (x, x). Since any independent set is closed, strongly invariant and the fixed
point x belongs to D, D is closed interval.

We show that D is nondegenerate. Assume, on the contrary, D = {x}. By (2), S ⊆ {x} × I and hence,
with respect to Lemma 3.2, y ∈ CR(gx) since z ∈ S. On the other hand, z 6∈ P (F ) implies y 6∈ P (gx), i.e.
y ∈ CR(gx) \ P (gx). So, by Proposition 1.2, P (gx) is not closed, which contradicts P (F ) = P (F ).

Finally, we show D ⊆ P (f). By Lemma 3.2, any point of D is chain recurrent. Recall that P (F ) is closed and
the projection of any closed set is closed. Hence, by Propositions 1.2 and 2.1, D ⊆ P (f). �

Lemma 3.4. Let F ∈ T (I2, I2), P (F ) be closed and f be the base map of F . Let z = (x, y) 6∈ P (F ) be such
that x ∈ Fix(f). If any z1 ∈ ωF (z), z2 ∈ αF (z) lie in the same connected component of P(F), then z1, z2 form a
t-pair. Otherwise z2 →n z1.

Proof. Let the assumptions be fulfilled. Clearly, z1 = (x, y1), z2 = (x, y2) are periodic points of F . We show
that y1 6= y2. Really, by the choice of z1, z2, for any ε > 0, y →ε y1 and y2 →ε y by gx. Hence y1 = y2 implies
y ∈ CR(gx) and, accordingly, CR(gx) \ P (gx) 6= ∅. So, by Proposition 1.2, P (gx) is not closed, a contradiction.

It is easy to see that z2 →a z1. Hence z1, z2 form a t-pair if they lie in the same connected component of P (F ).
In the opposite case, z2 →n z1. �

Proof of the main theorem. Let F be a triangular map and f its base map. The existence of a t-pair clearly
implies the existence of nonperiodic chain recurrent point. Let us prove the converse implication.

Let z0 = (x0, y0) be a nonperiodic chain recurrent point, S := SF (z0, z0) and D := Sf (x0, x0). We show that
there is a t-pair in S. Clearly, any t-pair of some iteration of F is t-pair of F . Moreover, by Proposition 2.2,
z0 ∈ CR(Fn) \ P (Fn) for any n ∈ N. So we may consider some convenient iteration of F instead of F . Thus
we may assume x0 ∈ Fix(f), since, by Propositions 1.2 and 2.1, x0 ∈ P (f). Obviously, S ⊆ D × I, where, by
Lemma 3.3, D is a closed nondegenerate interval of P (f). But any interval of P (f) containing a fixed point has
only periodic points of period ≤ 2. So we find more convenient iteration of F and may assume π(S) ⊆ Fix(f).
Moreover, by Lemma 3.2, z0 ∈ CR(F |S) \ P (F |S).
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In the rest of the proof put F := F |S and P := P (F )∩ S. Since the complement of P is open, there is a δ > 0
such that an open δ-neighborhood of z0 contains no periodic point. Since S is strongly invariant, P is nonempty
and hence we can define a relation ∼ :=∼ (δ) on the set of all connected components of P in the following way:
K ∼ L if and only if K →δ L by F restricted to P . It is easy to see that ∼ is an equivalence relation on P .
Members of the decomposition P |∼ are δ-components . The distance d(v, w) ≥ δ if v ∈ K, w ∈ L are points of
distinct δ-components K, L and hence, by the compactness of S, there is only a finite number of δ-components
Hi, i = 1, 2, . . . k.

Lemma 3.5. Let H be a δ-component and u, w ∈ H. Then there are connected components L1, L2, . . . , Lr of
H such that u ∈ L1, w ∈ Lr and dist(Li, Li+1) < δ for every i = 1, 2, . . . , r − 1.

Proof. Obvious. �

By Lemma 3.1, ωF (z0) ⊆ P and αF (z0) ∩ P 6= ∅ since z0 ∈ S. Choose z1 ∈ ωF (z0). We show that there is a
z2 := z2(δ) ∈ αF (z0) ∩ P such that z1 and z2 satisfy the condition (ii) of Definition 1.5 (z2 →t

δ z1). With respect
to Lemma 3.4, we may assume z2 →n z1. By Lemma 3.5, it is sufficient to find δ-components K1,K2, . . . ,Km

such that z1 ∈ K1, z2 ∈ Km and

(3) Ki →a Ki+1 for i = 1, 2, . . . ,m− 1.

Without loss of generality, assume z1 ∈ H1. If αF (z0)∩H1 6= ∅, by Lemmas 3.4 and 3.5, z2 →t
δ z1 for every z2

from this intersection. So let αF (z0) ∩ (P \H1) 6= ∅ and K1 := H1. Clearly K →a L implies π(K) ∩ π(L) 6= ∅.
Hence we may restrict our attention to the set S1 := S ∩ (π(K1)× I) to show that there is a δ-component H such
that K1 →a H.

Lemma 3.6. K1 →a H for some H ∈ P |∼.

Proof. Assume, on the contrary, that

(4) K1 6→a H for each H ∈ P |∼ \K1.
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Fix x ∈ π(S1) ⊆ Fix(f). By Proposition 2.6, Q(y, gx) ∩ (P \K1) = ∅ for any (x, y) ∈ K1(x) := K1 ∩ Ix. Hence
Q(x)∩ P = K1, where Q(x) denotes

⋃
(x,y)∈K1(x) Q(y, gx). It is well known fact, that Q(·, ·) is an asymptotically

stable set. Generally, only a finite union of asymptotically stable sets must be asymptotically stable, see [1].
Consequently, it suffices to clarify that Q(x) is ”generated“ by a finite number of points of K1(x) to show that
Q(x) is asymptotically stable.

Since P (F ) is closed, K1 is closed and hence, any sequence {yi} ⊆ K1 has an limit point y ∈ K1(x). Because
Q(y, gx) is asymptotically stable, there exists N ∈ N such that yn ∈ Q(y, gx) for every n ≥ N . Moreover, if J is
subinterval of K1(x), J ⊆ Q(y, gx) for any (x, y) ∈ J . By these two facts, Proposition 2.5 and the compactness
of K1(x), Q(x) is asymptotically stable.

Accordingly, by (4), Q(x) is asymptotically stable for any x ∈ π(S1). Since we have restricted F to S1, there
is, by Proposition 2.4, an open set W containing K1 such that

(5) F (W ) ⊆ W.

Clearly, again by Proposition 2.4, we may assume z0 6∈ W . But we have shown that ωF (z0) ⊆ K1. Hence, for
a sufficiently small ε > 0, some point of any ε-chain from z0 to itself lies in W . On the other hand, since W is
a subset of any open neighborhood of K1, by (5), there is no ε-chain from H1 to z0 for some sufficiently small
ε > 0, a contradiction. �

Denote H ′
1 := K1. By Lemma 3.6, a set H ′

2 = {H ∈ P |∼ \H ′
1 |K1 →a H} is nonempty. If αF (z0) ∩H ′

2 6= ∅,
by Lemmas 3.4 and 3.5, there is a z2 := z2(δ) ∈ αF (z0) ∩ H ′

2 such that z2 →t
δ z1. If αF (z0) ∩ H ′

2 is empty,
we analogously define the set H ′

3 = {H ∈ P |∼ \ (H ′
1 ∪ H ′

2) | ∃L ∈ H ′
2 : L →a H} and similarly show that

H ′
3 6= ∅. Accordingly, since the cardinality of P |∼ is finite, there are nonempty sets H ′

1,H
′
2, . . . ,H

′
m, m ≤ k, of

δ-components of P such that αF (z0) ∩K 6= ∅ for some δ-component K ∈ H ′
m and, for any j ∈ {1, 2, . . . ,m− 1},

any member of H ′
j+1 is accessible from some member of H ′

j .
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This already proves that for any δ > 0 there is a z2 := z2(δ) ∈ αF (z0)∩ S such that z2 →t
δ z1. It is easy to see

that z2(δ) →t
τ z1 for any τ > δ. Accordingly, for any decreasing sequence of positive reals {δi} tending to 0 the

limit point z̃2 of the sequence {z2(δi)} and z1 is a t-pair. �
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