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COMPONENTS AND LOCAL PREHOMOGENEITY

S. AL GHOUR

Abstract. Prehomogeneous components are introduced. Then the concept of local

prehomogeneity as a generalization of both prehomogeneity and local homogeneity

is introduced. As a generalization of local prehomogeneity, the concept of prelocal
prehomogeneity is also introduced. Many results concerning these concepts are
obtained. Several counter examples regarding the relations obtained in this paper

are given. Many open questions are also proposed.

1. Introduction

Let A be a subset of a space (X, τ). We denote the complement of A in X by
X−A, the closure and the interior of A respectively by A and Int(A), the relative
topology on A by τ |A, A is preopen [6] if A ⊆ Int(A). PO(X, τ) is the family
of all preopen sets in X. The topology on X with the subbase PO(X, τ) will be
denoted by τ∗ and is called the topology generated by preopen sets [7]. The union
of all preopen subsets of X contained in A is called the preinterior of A and is
denoted by pInt(A). The complement of a preopen set is called preclosed. A is
called preclopen if it is both preopen and preclosed. (X, τ) is called preconnected
[2] if X can not be written as union of two non empty disjoint preopen sets. A is
α-set [8] if A ⊆ Int(Int(A)). The family of all α-sets in a space (X, τ), denoted
by τα is again a topology on X satisfying τ ⊆ τα. The complement of an α-
set is called α-closed. A is called α-clopen if it is both α-set and α-closed. A
function f : (X, τ) → (X, τ) is preirresolute [2] if f−1(A) ∈ PO(X, τ1) for all
A ∈ PO(Y, τ2). f is a prehomeomorphism [7] if f is bijective and A ∈ PO (X, τ1)
iff f (A) ∈ PO(Y, τ2), i.e., f is a bijection and both f and f−1 are preirresolute. f
is an α-homeomorphism [7] if f is bijective and A ∈ τα iff f(A) ∈ τα. If (X, τ)
is a space, then PH (X, τ) will denote the group of all prehomeomorphisms from
(X, τ) onto itself.

Sierpinski [9], introduced the notion of homogeneity as follows:
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Definition 1.1. A space (X, τ) is homogeneous if for any two points x, y ∈ X
there exists an autohomeomorphism f on (X, τ) such that f (x) = y.

Afterwards, many modifications of homogeneity were introduced.

Definition 1.2. [3] A space (X, τ) is called LH (locally homogeneous) at x in
X provided that there exists an open set U in X containing x such that for any
y ∈ U there is a homeomorphism f : (X, τ) → (X, τ) such that f (x) = y. A space
(X, τ) is called LH if it is LH at each x ∈ X.

Let v be a relation defined on X by x v y if there is an autohomeomorphism f
on (X, τ) such that f (x) = y. This relation is an equivalence relation on X. The
equivalence class C (X, τ, x) = {y ∈ X : x v y} is called homogeneous component
of X at x. Homogeneous components are invariants under homeomorphisms and
indeed homogeneous subspaces of X. It is clear that (X, τ) is homogeneous iff it
has only one homogeneous component.

Homogeneous components have played a vital role in homogeneity research.
The author in [3] has used homogeneous components in characterizing LH spaces.

In [1], Al Ghour defines prehomogeneity as a generalization of homogeneity as
follows:

Definition 1.3. A space (X, τ) is prehomogeneous if for any two points x, y ∈ X
there exists f ∈ PH (X, τ) such that f (x) = y.

He obtained many results concerning prehomogeneity.
In the present paper, prehomogeneous components are introduced and studied.

Then the concept of local prehomogeneity as a generalization of both prehomo-
geneity and local homogeneity is introduced. As a generalization of local preho-
mogeneity, prelocal prehomogeneity is introduced. Homogeneous components and
prehomogeneous components will characterize local prehomogeneity and prelocal
prehomogeneity respectively. Some open questions regarding the concepts of this
paper are proposed.

Definition 1.4. [1] Let (X, τ) be a space. A non empty preopen set A of X is
called a minimal preopen set in X if any preopen set in X which is contained in
A is ∅ or A.

Definition 1.5. [2] A space (X, τ) is locally indiscrete if every open subset of
X is closed.

The following Lemmas will be used in the sequel.

Lemma 1.1. [5] Every homeomorphism is a prehomeomorphism but not con-
versely.

Lemma 1.2. [1] Let (X, τ) be a space and A ⊆ X, then A is a minimal preopen
set in X iff A ∈ PO(X, τ) and A is a singleton.

Lemma 1.3. [2] Let (X, τ) be a space. If A ⊆ B ⊆ X and A ∈ PO(X, τ), then
A ∈ PO(B, τ |B ).
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Lemma 1.4. [2] For a space (X, τ) the following are equivalent.
a) (X, τ) is locally indiscrete.
b) Every singleton in X is preopen.

Lemma 1.5. [2] Let (X, τ) be a space and A,B ⊆ X such that A ∈ PO(B, τ |B )
and B ∈ PO(X, τ). Then A ∈ PO(X, τ).

Lemma 1.6. If f : (X, τ1) → (Y, τ2) is a prehomeomorphism, A ∈ PO(X, τ1)
and f (A) ∈ PO(Y, τ2), then the restriction function of f on A f|A : (A, τ1 |A ) →
(f (A) , τ2 |f (A) ) is a prehomeomorphism.

Proof. Lemmas 1.3 and 1.5. �

Lemma 1.7. [1] Let (X, τ) be a space which contains a minimal preopen set.
Then the following are equivalent.

a) (X, τ) is prehomogeneous.
b) (X, τ) is locally indiscrete.

Lemma 1.8. [5] If X, Y are T1 spaces, then the classes of prehomeomorphisms
and α-homeomorphisms from X onto Y coincide.

Lemma 1.9. [3] A space (X, τ) is locally homogeneous at x ∈ X iff C (X, τ, x)
is open in X.

Lemma 1.10. [3] A space (X, τ) is locally homogeneous iff C (X, τ, x) is clopen
in X for all x ∈ X.

Lemma 1.11. [3] Every connected LH space is homogeneous.

Lemma 1.12. [2] Let (X, τ) be a space and A,B ⊆ X. If A ∈ τα and B ∈
PO(X, τ), then A ∩B ∈ PO(X, τ).

Lemma 1.13. Let (X, τ) be a space and let A be an α-clopen subset of X.
Suppose that f1 ∈ PH (A, τ |A ) and f2 ∈ PH (X −A, τ |X −A ), and define f :
(X, τ) → (X, τ) by

f (x) =
{

f1 (x) if x ∈ A
f2 (x) if x ∈ X −A

Then f ∈ PH (X, τ).

Proof. Follows from the definition and Lemma 1.12. �

Lemma 1.14. [4] Let (X, τ) be a space. Then PO(X, τ) = PO (X, τα).

2. Prehomogeneous Components

Definition 2.1. Let (X, τ) be a space. We define the equivalence relation p̃ on
X as follows. For x1, x2 ∈ X, we say x1 p̃ x2 iff there exists f ∈ PH (X, τ) such
that f (x1) = x2.

Definition 2.2. A subset of a space (X, τ) which has the form pC(X, τ, x) =
{y ∈ X : x p̃ y} is called the prehomogeneous component of X at x.
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The following result follows easily.

Proposition 2.1. A space (X, τ) is prehomogeneous iff it has exactly one pre-
homogeneous component.

Proposition 2.2. Let (X, τ) be a space and x ∈ X. Then C (X, τ, x) ⊆
pC(X, τ, x) for all x ∈ X.

Proof. Lemma 1.1. �

The following proposition will be needed in the sequel.

Proposition 2.3. If f ∈ PH (X, τ), then f (pC(X, τ, x)) = pC(X, τ, x) for any
prehomogeneous component pC(X, τ, x).

Proof. If y ∈ f (pC(X, τ, x)), then y = f (s) for some s ∈ pC(X, τ, x). There-
fore, y p̃ s and s p̃ x and hence y p̃ x. Thus, y ∈ pC(X, τ, x). Conversely, let
y ∈ pC(X, τ, x) and choose s ∈ X such that f (s) = y, then s ∈ pC(X, τ, x)
and so y ∈ f (pC(X, τ, x)). �

Theorem 2.1. Let (X, τ) be a space, x ∈ X and

M = {y : {y} is a minimal preopen set in (X, τ)}.
Then the following are equivalent.

(a) {x} is a minimal preopen set in (X, τ).
(b) pC(X, τ, x) ⊆ M .
(c) pC(X, τ, x) ∈ PO(X, τ) and the subspace (pC(X, τ, x) , τ |pC(X, τ, x) ) is

locally indiscrete.

Proof. (a) ⇒ (b) Let y ∈ pC(X, τ, x), then there exists f ∈ PH (X, τ) such
that f (x) = y and so f ({x}) = {y}. Thus, {y} ∈ PO(X, τ) and so by Lemma 1.2,
it follows that {y} is a minimal preopen set. Therefore, y ∈ M .

(b) ⇒ (c) Since pC(X, τ, x) ⊆ M , then for each y ∈ pC(X, τ, x) , {y} ∈
PO (X, τ) and by Lemma 1.3, {y} ∈ PO (pC(X, τ, x) , τ |pC(X, τ, x) ). There-
fore, pC(X, τ, x) ∈ PO(X, τ) and by Lemma 1.4, it follows that the subspace
(pC(X, τ, x) , τ |pC(X, τ, x) ) is locally indiscrete.

(c) ⇒ (a) Since (pC(X, τ, x) , τ |pC(X, τ, x) ) is locally indiscrete, then by
Lemma 1.4, it follows that {x} is preopen in (pC(X, τ, x) , τ |pC(X, τ, x) ). Since
pC(X, τ, x) ∈ PO(X, τ), it follows by Lemma 1.5 that {x} ∈ PO(X, τ), and so by
Lemma 1.2, it follows that {x} is a minimal preopen set in (X, τ). �

In Theorem 2.1, the equality in (b) does not hold in general as the following
example shows.

Example 2.1. Let X = {a, b, c} with the topology τ = {∅, X, {a} , {b} , {a, b} ,
{a, c}}. Then the set M defined in Theorem 2.1 is M = {a, b}. However,
pC(X, τ, a) = {a}.

The following known result shows that homogenous components are homoge-
neous subspaces.
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Proposition 2.4. Let (X, τ) be a space and x ∈ X. Then the subspace
(C (X, τ, x) , τ |C (X, τ, x) ) is homogeneous.

Question 2.1. Is every prehomogeneous component of a space (X, τ) a preho-
mogeneous subspace?

The following theorem answers Question 2.1 partially.

Theorem 2.2. Let (X, τ) be a space and x ∈ X. If pC(X, τ, x) ∈ PO(X, τ),
then the subspace (pC(X, τ, x) , τ |pC(X, τ, x) ) is prehomogeneous.

Proof. Let x1, x2 ∈ pC(X, τ, x), then there are f1, f2 ∈ PH (X, τ) such that
f1 (x1) = x and f2 (x) = x2. Define f : (X, τ) → (X, τ) by f = f2 ◦ f1, then f ∈
PH (X, τ) and f (x1) = x2. Now by Proposition 2.3, f (pC(X, τ, x)) = pC(X, τ, x).
Therefore, since pC(X, τ, x) ∈ PO(X, τ), it follows by Lemma 1.6, that the re-
striction function

f|pC(X,τ,x) : (pC(X, τ, x) , τ |pC(X, τ, x) ) → (pC(X, τ, x) , τ |pC(X, τ, x) )

is a prehomeomorphism takes x1 to x2. �

The following theorem improves Theorem 3.11 of [1]. Their proofs are similar.

Theorem 2.3. Let (X, τ) be a space and x ∈ X. Then pC(X, τ, x) =
pC(X, τα, x).

Corollary 2.1. Let (X, τ) be a space and x ∈ X. Then C (X, τα, x) ⊆
pC(X, τ, x).

In Example 2.2 below we shall see that the equality in Corollary 2.1 does not
hold in general. However, in T1 spaces the following result improves Theorem 3.13
of [1].

Theorem 2.4. If (X, τ) is a T1 space and x ∈ X, then C (X, τα, x) =
pC(X, τ, x).

Proof. Lemma 1.8. �

Lemma 2.1. Let (X, τ) be a space. Then PH (X, τ) ⊆ H (X, τ∗) where
H (X, τ∗) is the group of homeomorphisms from (X, τ∗) onto itself.

Proof. The proof is similar to that used in Theorem 3.14 of [1]. �

Theorem 2.5. Let (X, τ) be a space and x ∈ X. Then pC(X, τ, x) ⊆
C (X, τ∗, x).

Proof. Lemma 2.1. �

Example 3.15 of [1] shows that the equality in Theorem 2.5 does not hold in
general. However, we have the following easy to prove result.

Theorem 2.6. Let (X, τ) be a space and x ∈ X. Then⋃
y∈C(X,τ∗,x)

pC(X, τ, y) = C (X, τ∗, x) .
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Throughout Examples 2.2, 2.3 and 2.4 we are going to calculate homogeneous
and prehomogeneous components for some spaces. These examples will be also
used in the sequel.

Example 2.2. Let X = {a, b, c} with the topology τ = {∅, X, {a} , {b, c}}.
Then by Lemma 1.7, it is easy to see that (X, τ) is prehomogeneous and so by
Proposition 2.1, it follows that pC(X, τ, a) = X. On the other hand, it is not dif-
ficult to see that C (X, τ, a) = C (X, τα, a) = {a} and C (X, τ, b) = C (X, τα, b) =
{b, c}.

Example 2.3. Consider the usual Euclidean space X = (0, 2) ∪ {3} with
the usual topology. Then C (X, τ, 1) = pC(X, τ, 1) = (0, 2) and C (X, τ, 3) =
pC(X, τ, 3) = {3}.

Proof. It is not difficult to see that C (X, τ, 1) = (0, 2) and C (X, τ, 3) = {3}.
Now by Proposition 2.2, and the fact that prehomogeneous components form a
partition on X, we conclude that pC(X, τ, 1) = (0, 2) or pC(X, τ, 1) = X. If
pC(X, τ, 1) = X, then by Proposition 2.1, it follows that X is prehomogeneous.
Since {3} is a minimal preopen set, it follows using Lemma 1.7 that X is locally
indiscrete which is not true. Therefore, pC(X, τ, 1) = (0, 2) and pC(X, τ, 3) = {3}.

�

Example 2.4. Let R be the set of real numbers with the topology τ having
the family {[−a, a] : a ∈ R and a > 1} as a base. Then

(a) [−1, 1] ⊆ C (X, τ, 0).
(b) (1,∞) ⊆ C (X, τ, 2).
(c) (−∞,−1) ⊆ C (X, τ, 2).
(d) C (X, τ, 0) = pC(X, τ, 0) = [−1, 1] and C (X, τ, 2) = pC(X, τ, 2) =

R− [−1, 1].

Proof. (a) Let x ∈ [−1, 1]. Define f : (X, τ) → (X, τ) by f (x) = 0, f (0) = x,
and f (t) = t elsewhere. Then for each a > 1, f−1 ([−a, a]) = [−a, a] and so f
and f−1 = f are both continuous. Therefore, since f is a bijection, it follows that
f is a homeomorphism and so x ∈ C (X, τ, 0).

(b) Let x > 1. Define f : (X, τ) → (X, τ) by

f (t) =

 (x− 1) (t + 1)− 1 if t < −1
t if −1 ≤ t ≤ 1
(x− 1) (t− 1) + 1 if t > 1

Then for each a > 1, f−1 ([−a, a]) = [−α, α] where α = a+x−2
x−1 . Since a > 1,

a + x − 2 > x − 1 and so α > 1. Therefore, f−1 ([−a, a]) ∈ τ and hence f is
continuous. Also if b > 1, then f ([−b, b]) = [−β, β] where β = (x− 1) (b− 1) + 1.
Since x > 1 and b > 1, (x− 1) (b− 1) > 0 and so β > 1. Therefore, f ([−b, b]) ∈ τ
and hence f is open. It is not difficult to see that f is a bijection. Therefore, f is
a homeomorphism with f (2) = x and so x ∈ C (X, τ, 2).
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(c) Let x < −1. Define f : (X, τ) → (X, τ) by

f (t) =

 (x + 1) (t + 1) + 1 if t < −1
−t if −1 ≤ t ≤ 1
(x + 1) (t− 1)− 1 if t > 1

By a similar proof to that used in (c), we can show that f : (X, τ) → (X, τ) is a
homeomorphism with f (2) = x. Therefore, x ∈ C (X, τ, 2).

(d) Let M ={y : {y} is a minimal preopen set in (X, τ)}, then it is not difficult to
see that M = [−1, 1] and so by Theorem 2.1, it follows that pC(X, τ, 0) ⊆ [−1, 1].
Therefore, by Proposition 2.2 and (a) we conclude that C (X, τ, 0) = pC(X, τ, 0) =
[−1, 1]. On the other hand, by (b), (c) and the fact that pC(X, τ, 0) = [−1, 1],
it follows that R − [−1, 1] ⊆ C (X, τ, 2) ⊆ pC(X, τ, 2) ⊆ R − [−1, 1] and so
C (X, τ, 2) = pC(X, τ, 2) = R− [−1, 1]. �

3. Local Prehomogeneity

Definition 3.1. A space (X, τ) is called LPH (locally prehomogeneous) at x
in X provided that there exists an open set U in X containing x such that for any
y ∈ U there is f ∈ PH (X, τ) such that f (x) = y. A space (X, τ) is called LPH if
it is LPH at each x ∈ X.

Remark 3.1. Let (X, τ) be a space and x ∈ X. Then (X, τ) is LPH at x iff
x ∈ Int(pC(X, τ, x)).

The proof of each of the following two theorems follows from the definitions.

Theorem 3.1. Every locally homogeneous space is locally prehomogeneous.

Theorem 3.2. Every prehomogeneous space is locally prehomogeneous.

The converse of Theorem 3.1 is not true in general as the following example
shows.

Example 3.1. Consider the set of natural numbers N with the topology τ =
{∅} ∪ {{n, n + 1, n + 2, . . .} : n ∈ N}. Then (N, τ) is LPH but not LH.

Proof. We proved in [1] that (N, τ) is a prehomogeneous space and so by The-
orem 3.2, it is an LPH space. On the other hand, since (N, τ) is a connected non
homogeneous space, it follows by Lemma 1.11, that (N, τ) is not LH. �

In Example 2.3, the homogeneous components are clopen, so by Lemma 1.10,
it follows that the space is an LH. Therefore, by Theorem 3.1 it must be LPH.
However, it is not prehomogeneous because of Proposition 2.1. This shows that
the converse of Theorem 3.2 is not true in general.

As in the case of local homogeneity, Example 2.1 shows that local prehomo-
geneity at some point does not imply local prehomogeneity in general.

Proposition 3.1. Let (X, τ) be a space and let x, y ∈ X for which x ∼ y. Then
(X, τ) is locally prehomogeneous at x iff (X, τ) is locally prehomogeneous at y.
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Proof. Suppose that x ∼ y and (X, τ) is locally prehomogeneous at x. Let
f : (X, τ) → (X, τ) be a homeomorphism for which f (x) = y and let Ux be an
open set for which x ∈ Ux ⊆ pC(X, τ, x). Then y ∈ f (Ux) ⊆ f (pC(X, τ, x)), but
by Proposition 2.3, we have f (pC(X, τ, x)) = pC(X, τ, x). Therefore, (X, τ) is
locally prehomogeneous at y. The other direction is similar to the above one. �

By a similar method to that used in the proof of Proposition 3.1 one can obtain
the following result.

Proposition 3.2. Let (X, τ) be a space and let x, y ∈ X for which x ∼ y. Then
(X, τ) is locally homogeneous at x iff (X, τ) is locally homogeneous at y.

Question 3.1. Let (X, τ) be a space and let x, y ∈ X for which (X, τ) is LPH
at x and xp̃y. Is it true that (X, τ) is LPH at y?

Theorem 3.3. Let (X, τ) be a space, then the following are equivalent.
(a) (X, τ) is LPH.
(b) pC(X, τ, x) is clopen in X for all x ∈ X.
(c) For each x ∈ X, there exists an open set V containing x such that for any

y ∈ V , there is f ∈ PH (X, τ) such that f (x) = y and f (t) = t for all
t ∈ X − V .

Proof. (a) ⇒ (b) Since {pC(X, τ, x) : x ∈ X} forms a partition on X, it is
sufficient to show that pC(X, τ, x) is open in X for each x ∈ X. Let x ∈ X and
let y ∈ pC(X, τ, x). Since (X, τ) LPH at y, there exists an open set U in X such
that y ∈ U ⊆ pC(X, τ, y). Since y ∈ pC(X, τ, x) ∩ pC(X, τ, y), pC(X, τ, x) =
pC(X, τ, y). Therefore, y ∈ U ⊆ pC(X, τ, x) and hence pC(X, τ, x) is an open set
in X.

(b) ⇒ (c) Let x ∈ X, then by (b), pC(X, τ, x) is clopen in X. Take V =
pC(X, τ, x) and let y ∈ V , then there exists g ∈ PH (X, τ) such that g (x) = y.
Now according to Proposition 2.3, g (V ) = V . Define f : (X, τ) → (X, τ) by
f (x) = g (x) if x ∈ V and f (x) = x if x ∈ X−V . Then by Lemma 1.13, it follows
that f ∈ PH (X, τ). Moreover, f (x) = y and f (t) = t for all t ∈ X − V .

(c) ⇒ (a) Obvious. �

The following corollary says that the converse of Theorem 3.2 is true for con-
nected spaces.

Corollary 3.1. Every connected LPH space is prehomogeneous.

Theorem 3.4. If (X, τ) is an LPH space, then (X, τα) is LPH.

Proof. Theorems 2.3 and 3.3, and the fact that τ ⊆ τα. �

Question 3.2. Let (X, τ) be a space for which (X, τα) is either LPH or LH.
Is it true that (X, τ) is LPH?

Question 3.3. Let (X, τ) be an LPH space. Is it true that (X, τα) is LH?

Question 3.4. If we add the assumption that (X, τ) is a T1 space, which of
the implications in Questions 3.2 and 3.3 is true?
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Theorem 3.5. If (X, τ) is an LPH space then (X, τ∗) is LH.

Proof. Let x ∈ X, then by Theorem 2.6,

C (X, τ∗, x) =
⋃

y∈C(X,τ∗,x)

pC(X, τ, y) .

Since (X, τ) is LPH, then by Theorem 3.3 it follows that pC(X, τ, y) ∈ τ for
each y ∈ C (X, τ∗, x). Thus, C (X, τ∗, x) ∈ τ ⊆ τ∗. Therefore, the homogeneous
components for (X, τ∗) are clopen in (X, τ∗) and hence by Lemma 1.10, it follows
that (X, τ∗) is an LH space. �

In Example 3.15 of [1] it is not difficult to see that pC(X, τ, c) = {c, d} and
so by Theorem 3.3 it follows that the space is not LPH. However, we had seen
that the space (X, τ∗) is homogeneous and so LH. This shows that the converse
of Theorem 3.5 is not true in general.

4. Prelocal Prehomogeneity

Definition 4.1. A space (X, τ) is called PLPH (prelocally prehomogeneous)
at x in X provided that there exists a preopen set A in X containing x such that
for any y ∈ A there is f ∈ PH (X, τ) such that f (x) = y. A space (X, τ) is called
PLPH if it is PLPH at each x ∈ X.

Remark 4.1. Let (X, τ) be a space and x ∈ X. Then (X, τ) is PLPH at x iff
x ∈ pInt(pC(X, τ, x)).

The following result shows that PLPH concept is a natural generalization for
the LPH concept.

Theorem 4.1. Every LPH space is PLPH.

Proposition 4.1. Let (X, τ) be a space and let x, y ∈ X for which xp̃y. Then
(X, τ) is PLPH at x iff (X, τ) is PLPH at y.

Proof. Mimic the proof of Proposition 3.1. �

Theorem 4.2. Let (X, τ) be a space and x ∈ X, then the following are equiv-
alent.

(a) (X, τ) is PLPH at x.
(b) pInt(pC(X, τ, x)) 6= ∅.
(c) pC(X, τ, x)is preopen.
(d) (X, τ)is PLPH at y for any y ∈ pC(X, τ, x).

Proof. (a) ⇒ (b) Remark 4.1.
(b) ⇒ (c) Suppose that pInt(pC(X, τ, x)) 6= ∅ and let y ∈ pC(X, τ, x). Choose

t ∈ pInt(pC(X, τ, x)). Since y, t ∈ pC(X, τ, x), then there exists f ∈ PH (X, τ)
such that f (t) = y. Therefore, y ∈ f (pInt (pC(X, τ, x))) ⊆ f (pC(X, τ, x)). Since
by Proposition 2.3 f (pC(X, τ, x)) = pC(X, τ, x), it follows that pC(X, τ, x) is
preopen.

(c) ⇒ (d) and (d) ⇒ (a) are obvious. �
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Corollary 4.1. Every prehomogeneous component is either preopen or has an
empty preinterior.

Corollary 4.2. Let (X, τ) be a space, then the following are equivalent.
(a) (X, τ) is PLPH.
(b) pInt (pC(X, τ, x)) 6= ∅ for all x ∈ X.
(c) pC(X, τ, x) is preclopen for all x ∈ X.

Corollary 4.3. Every preconnected PLPH space is prehomogeneous.

Now by Theorem 3.3 and Corollary 4.2, it follows that the space in Exam-
ple 2.4 is PLPH but not LPH. This shows that the converse of Theorem 4.1 is
not true in general. It is also an example of a connected PLPH space that is not
prehomogeneous.

Theorem 4.3. Let (X, τ) be a space. Then (X, τ) is PLPH iff (X, τα) is
PLPH.

Proof. Corollary 4.1, Theorem 2.3 and Lemma 1.14. �

Corollary 4.4. Let (X, τ) be a space. If (X, τα) is LPH, then (X, τ) is PLPH.

Note that Corollary 4.4 improves Theorem 4.1.
By Corollary 2.1 and the fact that C (X, τ, x) ⊆ C (X, τα, x) we can easily

conclude that the space (X, τα) in Example 2.4 is not LPH. Therefore, the converse
of Corollary 4.4 is not true in general.
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