CONTINUOUS SELECTIONS FOR LIPSCHITZ MULTIFUNCTIONS

I. KUPKA

AbStract. In [11] an example presented a Hausdorff continuous, u.s.c. and l.s.c. multifunction from $\langle-1,0\rangle$ to \mathbb{R} which had no continuous selection. The multifunction was not locally Lipschitz. In this paper we show that a locally Lipschitz multifunction from \mathbb{R} to a Banach space, which has "locally finitely dimensional" closed values does have a continuous selection.

1. InTRODUCTION

The research in the selection theory was started by Michael in 1956 (see for example [15], [16]) by proving several continuous selection theorems. Then, the problem of the existence of selections of various types - linear e.g. [7], measurable [13], Carathéodory [8], quasicontinuous [10], [14], Lipschitz [3], [6] etc. - was studied in many papers. A Lipschitz selection theorem for compact-valued multifunctions defined on a closed interval, with values in a metric space, was proved in [5]. Recent results concerning selections are listed in [18].

In general, there is no guarantee that a "nice" multifunction will have a continuous selection. Even closedvalued continuous multifunctions defined on compact interval and with values in \mathbb{R} need not have a continuous selection (see[11]). In this paper, we show, in particular, that if such a multifunction is locally Lipschitz, it does have a continuous selection. This will be a consequence of a more general assertion, Theorem 3.

[^0]
2. Notation and terminology

For definiton of basic notions: multifunction, selection, l.s.c. u.s.c. and Hausdorff continuous multifunction, Hausdorff metric etc see e.g. [12] and [17].

In what follows we denote by \mathbb{N} the set of all positive integers, by \mathbb{R} the real line with its usual topology and by \mathbb{B} an arbitrary Banach space over \mathbb{R}. If X is a metric space, $x \in X$ and r is a positive real number, we denote the closed ball with the center x and diameter r by $B(x, r)$. Throughout this paper we consider only multifinctions with nonvoid values.

If K is a positive real number, and $(X, d),(Y, \varrho)$ are metric spaces, we say that a multifunction F from X to Y is K-Lipschitz if for every x_{1}, x_{2} from X the inequality $H_{\varrho}\left(F\left(x_{1}\right), F\left(x_{2}\right)\right) \leq K d\left(x_{1}, x_{2}\right)$ is true. (By H_{ϱ} we denote a Hausdorff metric on $2^{Y}-\{\emptyset\}$ derived in a natural way from ϱ).

Before proving our main results we need the following technical lemma:
Lemma 1. Let Y be a Banach space over \mathbb{R}. Let $a \in \mathbb{R}$, let m be a positive real number. Let $I=\langle a, a+m\rangle$ $(I=\langle a-m, a\rangle) \subset \mathbb{R}$. Let $F: I \rightarrow Y$ be a K-Lipschitz multifunction. Let $r>0, r<K$. Let $b \in F(a)$. Then there exists an M-Lipschitz function $f: I \rightarrow Y$ such that $M=(K+r), f(a)=b$ and for each x in I

$$
d(f(x), F(x))=\inf \{d(f(x), t) ; t \in F(x)\}<r .
$$

Moreover $f(I) \subseteq B(b, 2 K m)$ holds.
Proof. Let us consider the case $I=\langle a, a+m\rangle$. The case $I=\langle a-m, a\rangle$ is symmetrical.
Let $n \in N$ be such that $K \frac{m}{n}<\frac{r}{6}$ and $\frac{m}{n}<\frac{1}{3}$. Let us define $x_{i}=a+\frac{m}{n} i$ for $i=0,1,2, \ldots n$. Denote $b=y_{0}$. Since F is K-Lipschitz, there exists a point $y_{1} \in F\left(x_{1}\right)$ such that

$$
\begin{aligned}
d\left(y_{0}, y_{1}\right) & \leqq H\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)+\frac{r m}{2 n} \\
& \leqq K d\left(x_{0}, x_{1}\right)+\frac{r m}{2 n} \leqq K \frac{m}{n}+\frac{r m}{2 n} \leqq\left(K+\frac{r}{2}\right) \frac{m}{n}
\end{aligned}
$$

By final induction we can find a set $\left\{y_{0}, y_{1}, \ldots, y_{n}\right\}$ such that $\forall i=0,1,2, \ldots, n, y_{i} \in F\left(x_{i}\right)$ and

$$
d\left(y_{i}, y_{i+1}\right) \leqq\left(K+\frac{r}{2}\right) \frac{m}{n} \quad \text { for } \quad i \leqq n-1
$$

Let us define a continuous function $f:\langle a, a+m\rangle \rightarrow Y$ in this way: $f\left(x_{i}\right)=y_{i}, i=0,1,2, \ldots, n$

$$
f(x)=\frac{1}{m}\left[n\left(x-x_{i}\right) y_{i+1}+n\left(x_{i+1}-x\right) y_{i}\right] \quad \text { if } \quad x \in\left(x_{i}, x_{i+1}\right)
$$

We will prove that f is $\left(K+\frac{r}{2}\right)$-Lipschitz on $\langle a, a+m\rangle$.
(I) Let $x, x^{\prime} \in\left\langle x_{i}, x_{i+1}\right\rangle$, for some $i \in\{0,1, \ldots, n\}, x<x^{\prime}$. We obtain

$$
\begin{aligned}
& d\left(f(x), f\left(x^{\prime}\right)\right) \\
& \quad=\frac{1}{m}\left\|n\left(x^{\prime}-x_{i}\right) y_{i+1}+n\left(x_{i+1}-x^{\prime}\right) y_{i}-n\left(x-x_{i}\right) y_{i+1}-n\left(x_{i+1}-x\right) y_{i}\right\| \\
& \quad=\frac{n}{m}\left\|\left(x^{\prime}-x\right) y_{i+1}-\left(x^{\prime}-x\right) y_{i}\right\| \leqq \frac{n}{m}\left|x^{\prime}-x\right| \cdot\left\|\left(y_{i+1}-y_{i}\right)\right\| \\
& \quad \leqq \frac{n}{m}\left|\left(x^{\prime}-x\right)\right|\left(K+\frac{r}{2}\right) \frac{m}{n} \leqq\left(K+\frac{r}{2}\right)\left|x^{\prime}-x\right|
\end{aligned}
$$

(II) In general, if $x<x_{i}<x_{i+1} \ldots, x_{i+k}<x^{\prime}$ for some $i, k \in\{0,1, \ldots, n\}, i+k<n$ then, because of (I)

$$
\begin{aligned}
d(f(x), & \left.f\left(x^{\prime}\right)\right) \\
\leqq & d\left(f(x), f\left(x_{i}\right)\right)+d\left(f\left(x_{i}\right), f\left(x_{i+1}\right)\right)+\ldots+d\left(f\left(x_{i+k-1}\right), f\left(x_{i+k}\right)\right) \\
& \quad+d\left(f\left(x_{i+k}\right), f\left(x^{\prime}\right)\right) \\
\leqq & \left(\left(K+\frac{r}{2}\right)\left|x_{i}-x\right|+\left(K+\frac{r}{2}\right)\left|x_{i+1}-x_{i}\right|+\ldots+\left(K+\frac{r}{2}\right)\left|x^{\prime}-x_{i+k}\right|\right) \\
= & \left(K+\frac{r}{2}\right)\left|x^{\prime}-x\right|
\end{aligned}
$$

Now, let $x \in\langle a, a+m\rangle$, then $x \in\left\langle x_{i}, x_{i+1}\right\rangle$ for some $i \in\{0,1, \ldots, n\}$. So

$$
\begin{aligned}
d(f(x), F(x)) & =\inf \{d(f(x), t), t \in F(x)\} \\
& =\inf \left\{\left\|\frac{n}{m}\left(x-x_{i}\right) y_{i+1}+\frac{n}{m}\left(x_{i+1}-x\right) y_{i}-t\right\| ; t \in F(x)\right\}
\end{aligned}
$$

Since F is K-Lipschitz there exists a point p from $F(x)$ such that $d\left(p, y_{i+1}\right) \leqq\left(K+\frac{r}{2}\right)\left(x_{i+1}-x\right)$ therefore

$$
\begin{aligned}
d(f(x), p) & \leqq d\left(f(x), y_{i}\right)+d\left(y_{i}, y_{i+1}\right)+d\left(y_{i+1}, p\right) \\
& \leqq\left(K+\frac{r}{2}\right)\left(x-x_{i}\right)+\left(K+\frac{r}{2}\right) \frac{m}{n}+\left(K+\frac{r}{2}\right)\left(x_{i+1}-x\right) \\
& \leqq\left(K+\frac{r}{2}\right)\left(x_{i+1}-x_{i}\right)+\left(K+\frac{r}{2}\right) \frac{m}{n} \leqq 2\left(K+\frac{r}{2}\right) \frac{m}{n} \leqq 2 \frac{r}{6}+r \frac{m}{n}<r
\end{aligned}
$$

so $d(f(x), F(x))<r$ for each x from $\langle a, a+m\rangle$.
Now, since $f(a)=b$ and f is a $(K+r)$-Lipschitz function, for r such that $r<K$ and for each x from $\langle a, a+m\rangle$ we have

$$
d(b, f(x))=d(f(a), f(x)) \leqq(K+r)|x-a| \leqq 2 K|a+m-a| \leqq 2 K m
$$

so $f(\langle a, a+m\rangle) \subseteq B(b, 2 K m)$.
Theorem 1. Let \mathbb{B} be a finitely dimensional Banach space. Let $a \in \mathbb{R}$, let l be a positive real number. Let $I=\langle a, a+l\rangle(\langle a-l, a\rangle)$. Let $F: I \rightarrow \mathbb{B}$ be a K-Lipschitz multifunction with closed values. Then F has a K-Lipschitz selection on I.

Proof. We will prove the Theorem only for the case $I=\langle a, a+l\rangle$. According to Lemma 1 there exists a sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ of functions $f_{i}:\langle a, a+l\rangle \rightarrow \mathbb{B}$ such that for each index i from \mathbb{N} and each x from $\langle a, a+l\rangle d\left(f_{i}(x), F(x)\right)<\frac{1}{i}$ is true. Moreover each function f_{i} is $\left(K+\frac{1}{i}\right)$-Lipschitz and $f_{i}(\langle a, a+l\rangle) \subset B(b, 2 K l)$. This implies that for every x from X the set $\left\{f_{i}(x) ; i=1,2, \ldots\right\}$ is precompact.

Since \mathbb{B} is finitely dimensional, according to Arzela-Ascoli theorem the set $M=\left\{f_{i} ; i \in 1,2, \ldots\right\}$ is precompact. So there exists a continuous function $f:\langle a, a+l\rangle \rightarrow \mathbb{B}$ such that f is a uniform limit of a sequence $\left\{f_{i_{j}}\right\}_{j=1}^{\infty}$ (a subsequence of $\left\{f_{i}\right\}_{i=1}^{\infty}$) of functions from M.

Let us consider an $\varepsilon>0$. As we have proved above there exists an index k such that $f_{i_{j}}$ is $(K+\varepsilon)$-Lipschitz for each $j \geqq k$. That means that the function f is also $(K+\varepsilon)$-Lipschitz. f is proved to be K-Lipschitz.

Now it is simple to realize that f is a selection of F. For each $\varepsilon>0$ there exists an index m such that for each x from X

$$
d\left(f_{i_{m}}(x), F(x)\right)<\varepsilon \quad \text { and } \quad \sup _{x \in\langle a, a+l\rangle}\left|f_{i_{m}}(x)-f(x)\right|<\varepsilon .
$$

So for every x from $X \quad d(f(x), F(x))<2 \varepsilon$. Since ε was an arbitrary positive real number, for each x from X $d(f(x), F(x))=0$ is true. F has closed values so f is a selection of F.

3. Main Results

Theorem 2. Let \mathbb{B} be a finitely dimensional Banach space over \mathbb{R}. Let $F: \mathbb{R} \rightarrow \mathbb{B}$ be a K-Lipschitz multifunction with closed values. Then F has a K-Lipschitz selection on \mathbb{R}.

Proof. This is a simple consequence of Theorem 1 so we will only give an outline of the proof. Let b be an element of the set $F(0)$. Using Theorem 1, we can define by induction K-Lipschitz selections $f_{1}, f_{2}, \ldots f_{2 i}, f_{2 i+1}, \ldots$ of F such that for each nonnegative integer i the function $f_{2 i}\left(f_{2 i+1}\right)$ is defined on $\langle 2 i, 2 i+2\rangle(\langle-2 i-2$, $-2 i\rangle)$ and $f_{2 i}(2 i+2)=f_{2(i+1)}(2 i+2) \quad\left(f_{2 i+1}(-2 i-2)=f_{2(i+1)+1}(-2 i-2)\right)$ and such that $f_{1}(0)=f_{2}(0)=b$. It is easy to see that a function $f: \mathbb{R} \rightarrow \mathbb{B}$ defined by $f(x)=f_{2 i}(x)$ if $x \in\langle 2 i, 2 i+2\rangle$ and $f(x)=f_{2 i+1}(x)$ if $x \in\langle-2 i-2,-2 i\rangle$ is correctly defined and it is a K-Lipschitz selection of F.

Theorem 2 is true for certain multifunctions with non-convex and non-compact values. It is a generalization of a result, obtained for multifunctions with convex compact values:

Corollary 1. [6, Corollary 2] Let n be a positive integer, let $\mathbb{B}=R^{n}$. Let $F: \mathbb{R} \rightarrow \mathbb{B}$ be a K-Lipschitz multifunction with convex compact (and nonvoid) values. Then F has a K-Lipschitz selection on \mathbb{R}.

In the following lemma we shall use the following assumption concerning a multifunction F from \mathbb{R} to a Banach space \mathbb{B} :

Assumption LFD. For every x from \mathbb{R} there exists an open neighborhood $O_{x} \subset \mathbb{R}$ and a finitely dimensional set $B_{x} \subset \mathbb{B}$ such that $F\left(O_{x}\right) \subset B_{x}$.

We say that a multifunction $F: \mathbb{R} \rightarrow \mathbb{B}$ is locally Lipschitz if for every real x there exists an open interval U_{x} and a positive real constant K_{x} such that $x \in U_{x}$ and F is K_{x}-Lipschitz on U_{x}.

Lemma 2. Let \mathbb{B} be a Banach space. Let $F: \mathbb{R} \rightarrow \mathbb{B}$ be a locally Lipschitz mutifunction with closed values. Let F satisfy the assumption LFD. Let $a \in \mathbb{R}$ and $b \in F(a)$. Then for every real $c, d, c<d$ satifying $c \leq a \leq d$ there exists a Lipschitz selection $f:\langle c, d\rangle \rightarrow \mathbb{B}$ of F such, that $f(a)=b$.

Proof. It suffices to show that F is Lipschitz on $\langle c, d\rangle$ and that there exists a finitely dimensional subset Z of \mathbb{B} such that $F(\langle c, d\rangle) \subset Z$. After that we can apply Theorem 1.

We proceed by a usual "locally on compact implies globally on compact" procedure. Obviously for every x from $\langle c, d\rangle$ there exists an open interval U_{x}, a positive real number K_{x} and a finitely dimensional subset B_{x} of \mathbb{B} such that $x \in U_{x}, F\left(U_{x}\right) \subset B_{x}$ and F is K_{x}-Lipschitz on U_{x}.

Consider the following open cover C of $\langle c, d\rangle: C=\left\{U_{x} ; x \in\langle c, d\rangle\right\}$. There exists a finite subcover S of C and a positive integer n such that $S=\left\{U_{x_{1}}, U_{x_{2}}, \ldots, U_{x_{n}}\right\}$. Let us denote $M=\max \left\{K_{x_{1}}, K_{x_{2}}, \ldots, K_{x_{n}}\right\}$. Then F is M-Lipschitz on each interval $U_{x_{i}}$ for $i \in\{1,2, \ldots, n\}$. The fact $\langle c, d\rangle \subset U:=\bigcup_{i=1}^{n} U_{x_{i}}$ implies F is M-Lipschitz on $\langle c, d\rangle$.

Moreover, $F(\langle c, d\rangle) \subset F(U) \subset Z:=\bigcup_{i=1}^{n} B_{x_{i}}$, and we can see that Z is finitely dimensional.
If $c<a<d$ Theorem 1 implies F has an M-Lipschitz selection $h(g)$ on $\langle c, a\rangle \quad(\langle a, d\rangle)$ such that $g(a)=$ $h(a)=b$. So if $c<a<d$ the function $f:\langle c, d\rangle \rightarrow \mathbb{B}$ defined by $f(x)=g(x)$ on $\langle c, a\rangle$ and $f(x)=h(x)$ on $\langle a, d\rangle$ is a Lipschitz selection of F on $\langle c, d\rangle$. The proof for the cases $a=c, a=d$ is even easier.

To realize that the assumptions of our final result, Theorem 3, can hardly be weakened let us compare the following three assertions:
(1) There exists a finitely valued Lipschitz multifunction from a unit circle into \mathbb{R}^{2} that has no continuous selection. (See Example 1. Of course, each multifunction with values in \mathbb{R}^{2} or \mathbb{R} automatically satisfies the assumption LFD.)
(2) There exists a Hausdorff continuous multifunction from the compact interval $\langle-1,0\rangle$ to \mathbb{R} with closed values, which is locally Lipschitz in every point of $\langle-1,0$) and has no continuous selection (See Example 2).
(3) Each locally Lipschitz multifunction with closed values from \mathbb{R} to a Banach space, satisfying the assumption LFD has a continuous selection. (See Theorem 3).
The examples presented below are based on ideas, used in examples published in [4] and [11].
Example 1. Let $K=\cos (t)+\mathrm{i} \cdot \sin (t) ; \quad t \in\langle 0,2 \pi)$ be the unit circle in the complex plane.
For each t from $\langle 0,2 \pi)$ let us denote

$$
\begin{gathered}
a_{t}=\cos (t)+\mathrm{i} \cdot \sin (t), \quad b_{t}=\cos \left(\frac{t}{2}\right)+\mathrm{i} \cdot \sin \left(\frac{t}{2}\right) \\
c_{t}=\cos \left(\pi+\frac{t}{2}\right)+\mathrm{i} \cdot \sin \left(\pi+\frac{t}{2}\right)
\end{gathered}
$$

Let us define a two-valued multifunction $F: K \rightarrow K$ by $F\left(a_{t}\right)=\left\{b_{t}, c_{t}\right\}$ for every t from $\langle 0,2 \pi)$.
This multifunction has compact (even finite) values and is Lipschitz.This can be seen by two ways.
An intuitive way is the easier one. If we draw a picture of our circle, we realize, that with t "moving" from 0 towards 2π the point a_{t} is moving from the point $[1,0]$ to $[0,1]$, then $[-1,0]$ and finally to $[1,0]$ again. In this time the two-tuple $\left[b_{t}, c_{t}\right]$ travels around the circle too, but its speed is the half of the speed of a_{t}.

Now we show in an exact way that F is 1 -Lipschitz. Let t_{1}, t_{2} be from $\langle 0,2 \pi), t_{1}>t_{2}$. We have

$$
\begin{aligned}
\left|a_{t_{1}}-a_{t_{2}}\right| & =\sqrt{\left(\cos \left(t_{1}\right)-\cos \left(t_{2}\right)\right)^{2}+\left(\sin \left(t_{1}\right)-\sin \left(t_{2}\right)\right)^{2}} \\
& =\sqrt{2-2 \cos \left(t_{1}\right) \cos \left(t_{2}\right)-2 \sin \left(t_{1}\right) \sin \left(t_{2}\right)}=\sqrt{2\left(1-\cos \left(t_{1}-t_{2}\right)\right)} \\
& =\sqrt{2} \sqrt{\left.1-\cos \left(t_{1}-t_{2}\right)\right)} .
\end{aligned}
$$

Similarly

$$
\left|b_{t_{1}}-b_{t_{2}}\right|=\sqrt{2} \sqrt{1-\cos \left(\frac{t_{1}-t_{2}}{2}\right)}
$$

And, of course,

$$
\left|c_{t_{1}}-c_{t_{2}}\right|=\left|b_{t_{1}}-b_{t_{2}}\right| .
$$

Moreover

$$
\left|b_{t_{1}}-c_{t_{2}}\right|=\left|c_{t_{1}}-b_{t_{2}}\right|=\sqrt{2} \sqrt{1-\cos \left(\frac{t_{1}-t_{2}}{2}-\pi\right)}=\sqrt{2} \sqrt{1+\cos \left(\frac{t_{1}-t_{2}}{2}\right)}
$$

Therefore

$$
\begin{aligned}
H\left(F\left(a_{t_{1}}\right), F\left(a_{t_{2}}\right)\right)=H\left(\left\{b_{t_{1}}, c_{t_{1}}\right\},\left\{b_{t_{2}}, c_{t_{2}}\right\}\right) & \leq \min \left\{\left|b_{t_{1}}-b_{t_{2}}\right|,\left|b_{t_{1}}-c_{t_{2}}\right|\right\} \\
& =\min \left\{\sqrt{2} \sqrt{1-\cos \left(\frac{t_{1}-t_{2}}{2}\right)}, \sqrt{2} \sqrt{1+\cos \left(\frac{t_{1}-t_{2}}{2}\right)}\right\}
\end{aligned}
$$

Now it is sufficient to show that

$$
\min \left\{\sqrt{1-\cos \left(\frac{t_{1}-t_{2}}{2}\right)}, \sqrt{1+\cos \left(\frac{t_{1}-t_{2}}{2}\right)}\right\} \leq \sqrt{1-\cos \left(t_{1}-t_{2}\right)}=\frac{1}{\sqrt{2}}\left|a_{t_{1}}-a_{t_{2}}\right|
$$

for all $t_{1}, t_{2}, 2 \pi>t_{1}>t_{2} \geq 0$.

So the last thing we need to verify is that for all $l \in\langle 0,2 \pi)$

$$
\min \left\{1-\cos \left(\frac{l}{2}\right), 1+\cos \left(\frac{l}{2}\right)\right\} \leq 1-\cos (l)
$$

or equivalently $\forall l \in\langle 0,2 \pi)$:

$$
\begin{equation*}
\cos \left(\frac{l}{2}\right)-\cos (l) \geq 0 \quad \text { or } \quad \cos \left(\frac{l}{2}\right)+\cos (l) \leq 0 . \tag{*}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \cos \left(\frac{l}{2}\right)-\cos (l)=2 \sin \left(\frac{3}{4} l\right) \sin \left(\frac{l}{4}\right) \\
& \cos \left(\frac{l}{2}\right)+\cos (l)=2 \cos \left(\frac{3}{4} l\right) \cos \left(\frac{l}{4}\right)
\end{aligned}
$$

it is easy to verify that

$$
\begin{array}{ll}
\cos \left(\frac{l}{2}\right)-\cos (l) \geq 0 & \forall l \in\left\langle 0, \frac{4}{3} \pi\right\rangle \\
\cos \left(\frac{l}{2}\right)+\cos (l) \leq 0 & \forall l \in\left\langle\frac{2}{3} \pi, 2 \pi\right\rangle
\end{array}
$$

Therefore $(*)$ is verified and for all t_{1}, t_{2} from $\langle 0,2 \pi), t_{1}>t_{2}$,

$$
H\left(F\left(a_{t_{1}}\right), F\left(a_{t_{2}}\right)\right) \leq\left|a_{t_{1}}-a_{t_{2}}\right| .
$$

F is proved to be 1-Lipschitz.

Nevertheless, F has no continuous selection on K. It has two natural continuous selections on each $K_{\varepsilon} \subset K$ where the set K_{ε} is defined by $K_{\varepsilon}=\left\{a_{t} ; t \in\langle 0,2 \pi-\varepsilon)\right\}$ for every positive $\varepsilon<2 \pi$. These selections are: $f\left(a_{t}\right)=b_{t}$ and $g\left(a_{t}\right)=c_{t}$ for each a_{t} from K_{ε}.

However, no of these selections can be prolonged to K, For example $f\left(a_{0}\right)=b_{0}=[1,0]$, but $\lim _{t \rightarrow 2 \pi^{-}} f\left(a_{t}\right)=$ $\lim _{t \rightarrow 2 \pi^{-}} b_{t}=[-1,0]$.

Example 2. [11] Let $F:\langle-1,0\rangle \rightarrow \mathbb{R}$ be defined as follows:

$$
\begin{aligned}
& F(0)=\mathbb{R} \\
& F(x)=\left\{\frac{n(n+1)}{2} x+\frac{k}{2^{n}} ; k \in \mathbb{Z}\right\} \cup\left\{n(n+1) \frac{2^{n}+1}{2^{n+1}} x+\frac{n+1}{2^{n+1}}+\frac{k}{2^{n}} ; k \in \mathbb{Z}\right\}
\end{aligned}
$$

for every positive integer n and every $x \in\left\langle-\frac{1}{n},-\frac{1}{n+1}\right\rangle$.
In other words: the intersection of the graph of F with the set $\left\langle-\frac{1}{n},-\frac{1}{n+1}\right\rangle \times \mathbb{R}$ is a system of segments joining the following couples of points: the point $\left[\frac{-1}{n}, \frac{m}{2^{n}}\right]$ with the point $\left[-\frac{1}{n+1}, \frac{m}{2^{n}}+\frac{1}{2}\right]$ and $\left[-\frac{1}{n}, \frac{m}{2^{n}}\right]$ with the point $\left[-\frac{1}{n+1}, \frac{m}{2^{n}}+\frac{1}{2}+\frac{1}{2^{n+1}}\right]$ where m is an arbitrary integer.

To show that F is locally Lipschitz on $\langle-1,0)$ it is sufficient to show that it is $n(n+1)$-Lipschitz on $I_{n}=$ $\left\langle\frac{-1}{n}, \frac{-1}{n+1}\right\rangle$ for every $n \in \mathbb{N}, n>0$.

Let $x_{1}, x_{2} \in I_{n}$. Let $y_{1} \in F\left(x_{1}\right)$. Then there exists an integer k such that

$$
y_{1}=\frac{n(n+1)}{2} x_{1}+\frac{k}{2^{n}} \quad \text { or } \quad y_{1}=n(n+1) \frac{2^{n}+1}{2^{n+1}} x_{1}+\frac{n+1}{2^{n+1}}+\frac{k}{2^{n}} .
$$

There exists also y_{2} from $F\left(x_{2}\right)$ such that

$$
y_{2}=\frac{n(n+1)}{2} x_{2}+\frac{k}{2^{n}} \quad \text { or } \quad y_{2}=n(n+1) \frac{2^{n}+1}{2^{n+1}} x_{2}+\frac{n+1}{2^{n+1}}+\frac{k}{2^{n}}
$$

so $\left|y_{1}-y_{2}\right|$ equals

$$
\frac{n(n+1)}{2}\left|x_{1}-x_{2}\right| \quad \text { or } \quad \frac{n(n+1)\left(2^{n}+1\right)}{2^{n+1}}\left|x_{1}-x_{2}\right| .
$$

In both cases we have

$$
\begin{equation*}
\left|y_{1}-y_{2}\right| \leq K_{n}\left|x_{1}-x_{2}\right|, \quad \text { where } \quad K_{n}=n(n+1) . \tag{**}
\end{equation*}
$$

In the same way we can pick an y_{2} from $F\left(x_{2}\right)$ first and find a y_{1} from $F\left(x_{1}\right)$ such that the inequality ($* *$) is true.

This means that for each x_{1}, x_{2} from $I_{n} H\left(F\left(x_{1}\right), F\left(x_{2}\right)\right) \leq K_{n}\left|x_{1}-x_{2}\right|$ is true.
We have just proved that F is locally Lipschitz on $\langle-1,0)$. The Hausdorff continuity of F on $\langle-1,0\rangle$ is proved in [11].
F has no continuous selection on $\langle-1,0\rangle$: every continuous selection f of F defined on the set $\langle-1,0)$ has the property $\lim _{t \rightarrow 0^{-}} f(t)=+\infty$.

Next we will prove our main theorem:
Theorem 3. Let \mathbb{B} be a Banach space over \mathbb{R}. Let $F: \mathbb{R} \rightarrow \mathbb{B}$ be a locally Lipschitz mutifunction with closed values. Let F satisfy the assumption LFD. Let $a \in \mathbb{R}$ and $b \in F(a)$. Then F has a continuous selection f on \mathbb{R} such that $f(a)=b$.

Proof. For $n=1,2,3 \ldots$ denote $I_{n}=\langle-n, n\rangle$. In what follows we procced by induction. Let us suppose, without loss of generality, that $a=0$.
(1) According to Lemma 2 there exists a Lipschitz selection $f_{1}: T_{1} \rightarrow \mathbb{B}$ of F on the interval I_{1} such that $f(a)=b$. Let us denote $f_{1}(-1)=b_{1}$ and $f_{1}(1)=c_{1}$.
(2) Let us suppose that for n in $\mathbb{N}, n=1,2, \ldots k$ there exist Lipschitz selections f_{n} of F on I_{n} such that if $l, m \in\{1,2, \ldots k\}, l>m$ then $f_{l}(x)=f_{m}(x)$ for each x from I_{m}.

For each of the n considered let us denote $f_{n}(-n)=b_{n}$ and $f_{n}(n)=c_{n}$.
Since $b_{k} \in F(-k)$ there exists a Lipschitz selection g_{k} of F on $\langle-k-1,-k\rangle$ such that $g_{k}(-k)=b_{k}$. Since $c_{k} \in F(k)$ there exists a Lipschitz selection h_{k} of F on $\langle k, k+1\rangle$ such that $h_{k}(k)=c_{k}$.

Let us define a function f_{k} on I_{k} by

$$
\begin{array}{ll}
f_{k}(x)=g_{k}(x) & \text { for } x \text { from }\langle-k-1,-k\rangle \\
f_{k}(x)=f_{k-1}(x) & \text { for } x \text { from }\langle-k, k\rangle \\
f_{k}(x)=h_{k}(x) & \text { for } x \text { from }\langle k, k+1\rangle .
\end{array}
$$

We have just constructed by induction a sequence of Lipschitz selections f_{k} of F on the intervals I_{k} such that if $k_{1}<k_{2}$ then $f_{k_{2}}(x)=f_{k_{1}}(x)$ for all x from $I_{k_{1}}$. All functions f_{k} are continuous selections of F on their domains.

Let us define a function $f: \mathbb{R} \rightarrow \mathbb{B}$ by

$$
\begin{array}{ll}
f(x)=f_{1}(x) & \text { for } x \in\langle-1,1\rangle, \\
f(x)=f_{k}(x) & \text { for } x \in\langle-k-1,-k\rangle \cup\langle k, k+1\rangle, k=1,2, \ldots
\end{array}
$$

The function f is a selection of F on \mathbb{R}. It is continuous because all functions f_{k} are continuous.

1. Bressan A., Directionally continuous selections and differential inclusions, Funkcialaj Ekvacioj 31 (1988), 459-470.
2. Bressan A. and Colombo G., Selections and representations of multifunctions in paracompact spaces, Studia Math. 102 (1992), 209-216.
3. Broucke M. and Arapostrathis A., Continuous Interpolation of Solutions of Lipschitz Inclusions, J. Math. Anal. Appl. 58 (2001), 565-573.
4. Carbone L., Selezioni continue in spazi non lineari e punti fissi, Rend. Circ. Mat. Palermo 25 (1976), 101-115.
5. Chistyakov V. V., Multi-Valued Mappings of Bounded Generalized Variation, Mathematical Notes 71(4) (2002), 556-575.
6. Guričan J. and Kostyrko P., On Lipschitz selections of Lipschitz Multifunctions, Acta Mathematica Universitatis Comenianae 66-67 (1985), 131-135.
7. Holá L. and Maličký P., Continuous linear selectors of linear relations, Acta Mathematica Universitatis Comenianae 48-49 (1986), 153-156.
8. Kucia A. and Nowak A., On Carathèodory Type Selectors in a Hilbert Space, Annales Mathematicae Silesiannae 14 (1986), 47-52.
9. Kupka I., Existence of Quasicontinuous Selections for the Space 2^{R}, Math. Bohem. 121 (1996), 157-163.
10. Kupka I., Quasicontinuous selections for compact-valued multifunctions, Math. Slovaca 43 (1993), 69-75.
11. Kupka I., Continuous multifunction from $\langle-1,0\rangle$ to \mathbb{R} having no continuous selection, Publ. Math. Debrecen 48(3-4) (1996), 367-370.
12. Kuratowski K. Topologie I., PWN, Warszawa 1952.
13. Ioffe A. D., Single-valued representation of set-valued mappings, Trans. Amer. Math. Soc. 252 (1979), 133-145.
14. Matejdes M., Sur les sélecteurs des multifonctions, Math. Slovaca 37 (1987), 110-124.
15. Michael E., Continuous selections I., Annals of Mathematics 63 (1956), 361-382 .
16. Michael E., Selected selection theorems, Amer. Math. Monthly 63, (1956), 233-238.
17. Nadler S. B., Hyperspaces of sets Marcel Dekker, Inc., New York and Bassel 1978.
18. Repovš D. and Semenov P. V., Continuous Selections of Multivalued Mappings, Recent Progress in General Topology II, NorthHolland 1978, 423-461.
I. Kupka, Faculty of Mathematics, Physics and Informatics of Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia, e-mail: kupka@fmph.uniba.sk

[^0]: Received January 15, 2004.
 2000 Mathematics Subject Classification. Primary 54C65; Secondary 54C30 .
 Key words and phrases. Continuous selection, Lipschitz multifunction.

