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SOME CHANGE OF VARIABLE FORMULAS
IN INTEGRAL REPRESENTATION THEORY

L. MEZIANI

Abstract. Let X, Y be Banach spaces and let us denote by C(S, X) the space of all X-valued continuous functions on
the compact Hausdorff space S, equipped with the uniform norm. We shall write C(S, X) = C(S) if X = R or C. Now,
consider a bounded linear operator T : C(S, X) → Y and assume that, due to the effect of a change of variable performed
by a bounded operator V : C(S, X) → C(S), the operator T takes the product form T = θ ·V , with θ : C(S) → Y linear
and bounded. In this paper, we prove some integral formulas giving the representing measure of the operator T , which
appeared as an essential object in integral representation theory. This is made by means of the representing measure of
the operator θ which is generally easier. Essentially the estimations are of the Radon-Nikodym type and precise formulas

are stated for weakly compact and nuclear operators.

1. Introduction

Let S be a compact Hausdorff space and BS the σ-field of the Borel sets of S. In all what follows, X and Y will
be fixed Banach spaces and we consider the Banach space C (S, X) of all X-valued continuous functions on S,
with the uniform norm; we write C (S, X) = C (S) when X = R or C. In this work, we will be concerned with
the integral analysis of bounded operators T : C (S, X) → Y , taking the form:

(1.1) T = θ · V
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due to the effect of a change of variable performed by a bounded operator V : C (S, X) → C (S); θ being
a bounded operator on C (S) with values into Y . When the operators T and V are given, we will show how to get
the operator θ : C (S) → Y , satisfying the product form (1.1). Then we determine the structure of the additive
operator valued measure G : BS → L (X, Y ∗∗) attached to the operator T via the integral representation:

(1.2) f ∈ C (S, X) , T f =
∫

S

f dG.

According to the Theorem of Dinculeanu [2, §19], L (X, Y ∗∗) is the Banach space of all bounded operators from
X into the second conjugate space Y ∗∗ of Y . In doing the computations, we shall make use of the integral form

(1.3) g ∈ C (S) , θg =
∫

S

g dµ

of the operator θ, given by Bartle-Dunford-Schwartz, [3, VI-7]; in this context µ is a vector set function on BS

with values in Y ∗∗ (resp. a vector measure with values in Y , if θ is weakly compact). As we will see, the relations
between G and µ are, in some sense, of the Radon-Nikodym type. We shall compute explicitly the derivatives
arising from these relations. The most precise results about the vector measure G are obtained for weakly compact
and nuclear operators T .

The paper is organized as follows. In Section 2 we will make precise the change of variable V : C (S, X) → C (S)
leading to the product form (1.1). Also we recall some facts from integral representation theory giving (1.2) and
(1.3). In Section 3 we give a general estimation formula for the measure G by means of the set function µ. We
examine in section 4 the case of weakly compact operators T , which allows an improvement of the estimation
made in Section 3. We consider nuclear operators T in Section 5. If T takes the form (1.1) by a change of variable
V : C (S, X) → C (S), we show how we can recover the nuclear property for the component θ. Then we prove
that the measure G is a Bochner integral with respect to a bounded scalar measure. A simple example is given
in Section 6, where all computations of Sections 2 – 5 are performed explicitly. Finally, Section 7 is intended to
a remark about another estimation of G made elsewhere [5, §5].
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2. The change of variable V : C (S, X) → C (S).

In all what follows, we will always assume that C (S, X) is mapped onto C (S) by the operator

(2.1) C (S, X) is mapped onto C (S) by the operator V.

We need this hypothesis in constructing the component θ : C (S) → Y as a bounded operator giving the product
form T = θ · V . The operator V in (2.1) may be considered as performing a change of variable from the space
C (S, X) to the space C (S).

One usefull fact about V is:

Proposition 1. There exists a constant K > 0, such that for every h ∈ C (S), there is a solution f ∈ C (S, X)
of h = V f , satisfying ‖f‖ ≤ K ‖h‖.

Proof. Since V is onto, then by the open mapping Theorem, the open unit ball B of C (S, X) maps onto a set V B
which contains some relative open ball {u ∈ V B : ‖u‖ < α}, with α > 0. Thus, for 0 6= h ∈ V C (S, X) = C (S),
the vector α

2
h

‖h‖ is the image under V of a vector g, with ‖g‖ < 1. Hence if we put f = 2‖h‖·g
α , we have V f = h

and ‖f‖ ≤ 2
α ‖h‖, which proves the proposition with K = 2

α . �

The effect of a change of variable V : C (S, X) → C (S) is given by:

Theorem 1. A bounded operator T : C (S, X) → Y factors as T = θ · V , where θ : C (S) → Y is a bounded
operator, if and only if the following condition is satisfied:

(2.2) KerV ⊂ KerT

Proof. The necessity of the condition is clear. To see that it is sufficient, we first proceed to the construction of
θ. Let h ∈ C (S), then citing (2.1) gives an f ∈ C (S, X) such that h = V f ; let us put θh = Tf . Then θ is a well
defined mapping; for, if V f1 = V f2 = h, where f1, f2 ∈ C (S, X), then we have f1 − f2 ∈ KerV which implies
f1−f2 ∈ KerT by (2.2); so Tf1 = Tf2. It is clear that θ is linear and that we have Tf = θ·V f , for all f ∈ C (S, X).
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We must show that θ is bounded. By Proposition 1 there exists K > 0 such that for every h ∈ C (S) we can
choose a solution f of h = V f so that ‖f‖ ≤ K ‖h‖. Therefore we have ‖θh‖ = ‖Tf‖ ≤ ‖T‖ ‖f‖ ≤ ‖T‖K ‖h‖,
which gives the boundedness of θ. �

Remark 1. It is noteworthy that we may relax the assumption (2.1) if we require from V to be of closed range.
In this case we still have the validity of both Proposition 1 and Theorem 1, but with θ defined and bounded on
the range of V .

Before stating the Theorems we need in the context of vector integration, let us put some preliminaries and
facts for later use.

Definition 1. Let G : BS → L (X, Y ∗∗) be a finitely additive vector measure on BS with values in the Banach
space L (X, Y ∗∗). For each y∗ ∈ Y ∗, let us define the set function Gy∗ : BS → X∗ by:

(2.3) E ∈ BS , x ∈ X : Gy∗ (E) (x) = y∗G (E) (x)

that is, the functional G (E) (x) of Y ∗∗ applied to the vector y∗ ∈ Y ∗. Then it is a simple fact that Gy∗ is for
each y∗ ∈ Y ∗ a finitely additive X∗-valued measure on BS . The family of measures {Gy∗ , y∗ ∈ Y ∗} induces in
turn a family of scalar finitely additive measures

{
Mx

y∗ : x ∈ X , y∗ ∈ Y ∗} defined by:

(2.4) E ∈ BS , x ∈ X, y∗ ∈ Y ∗ : Mx
y∗ (E) = Gy∗ (E) (x) .

Let us recall also the notions of variation and semivariation of a measure:

Definition 2. Let Z be a Banach space and µ : BS → Z a vector measure (note that µ may be scalar). Then
(a) The variation of µ is the set function v(µ, ·) of BS in [0,+∞] defined by:

(2.5) E ∈ BS : v(µ,E) = sup
π

∑
A∈π

‖µ(A)‖

the sup is over all finite partitions π of E by sets in BS . Call v(µ, S) = v(µ), the variation of µ.
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(b) The semivariation of µ is the set function ‖µ‖ : BS → [0,+∞] defined by the formula:

(2.6) E ∈ BS : ‖µ‖ (E) = sup {v(z∗µ, E) : z∗ ∈ Z∗, ‖z∗‖ ≤ 1}

note that z∗µ is scalar for each z∗ ∈ Z∗.

Definition 3. We say that a vector measure µ : BS → Z is regular if for each E ∈ BS and ε > 0 there exist
an open set O and a compact set K such that, K ⊂ E ⊂ O and ‖µ‖ (O \K) < ε. If the measure µ is scalar this
inequality may be replaced by v(µ, O \ K) < ε [1, Chapter 1] for all relations between the set functions v(µ, ·)
and ‖µ‖ ).

With the ingredients above, we have:

Proposition 2. Suppose that the measure Gy∗ is bounded and regular for some y∗ ∈ Y ∗ then we have
(i) Gy∗ is countably additive.
(ii) The scalar measures Mx

y∗ are countably additive and regular for each x ∈ X.

Proof. Let E ∈ BS and ε > 0, then there exist an open set O and a compact set K such that, K ⊂ E ⊂ O and
‖Gy∗‖ (O \K) < ε. Since Gy∗ is X∗-valued, we have

‖Gy∗‖ (O \K) = sup {v(x∗∗Gy∗ , O \K) : x∗∗ ∈ X∗∗, ‖x∗∗‖ ≤ 1} < ε

by (2.6). This implies that the family of scalar set functions

{x∗∗Gy∗ : x∗∗ ∈ X∗∗, ‖x∗∗‖ ≤ 1}

is uniformly regular; since they are additive, we deduce, by the Theorem III.5.13 in [3], that x∗∗Gy∗ is countably
additive for each x∗∗ ∈ X∗∗, ‖x∗∗‖ ≤ 1 and then also for all x∗∗ ∈ X∗∗. Consequently Gy∗ is countably additive
by the Orlicz-Pettis Theorem. To see part (ii), let γ : X → X∗∗ denote the canonical isomorphism of X into X∗∗,
and let us observe that Mx

y∗ = γ (x) Gy∗ , by formula (2.4); therefore we deduce that the scalar measure Mx
y∗ is

countably additive and regular for each x ∈ X. �
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Now we turn to the integral representation Theorems we shall need in the sequel.

Theorem 2. Let T : C (S, X) → Y be a linear bounded operator. Then there exists a unique additive operator
valued measure G : BS → L (X, Y ∗∗) such that:

(2.7) Tf =
∫

S

f (s) dG

(we call G the representing measure of the operator T ).

Moreover, for each y∗ ∈ Y ∗, Gy∗ is a regular countably additive bounded X∗-valued measure and we have

(2.8) T ∗y∗ = Gy∗

where T ∗ is the adjoint of T and where the identification, between the dual space C (S, X)∗ and the Banach space
rcab (BS , X∗) of X∗-valued measures on BS is used.

Because of the equation (2.8) we shall call the family of measures {Gy∗ , y
∗ ∈ Y ∗}, the adjoint family of G or of

T . For the proof see reference [2, § 19].

Theorem 3. Let θ : C(S) → Y be a bounded linear operator. Then there exists a unique set function
µ : BS → Y ∗∗ such that
(a) µ(·)y∗ is a regular countably additive scalar measure on BS for all y∗ ∈ Y ∗ (in symbols µ(·)y∗ ∈ rca(S)).

(b) y∗θf =
∫

S

f (s) dµ (s) y∗ for all y∗ ∈ Y ∗ and f ∈ C(S).

We call µ the representing measure of θ.
Moreover, if the operator θ is weakly compact, then µ is a true countably additive measure with values in Y such
that
(a′) y∗µ is a regular scalar measure for all y∗ ∈ Y ∗.

(b′) θf =
∫

S

f (s) dµ (s) for all f ∈ C(S).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

On the other hand, if θ∗ : Y ∗ → C∗(S) is the adjoint of θ then we have θ∗y∗ = y∗µ for all y∗ ∈ Y ∗.

For the proof see [3, VI.7.2 and VI.7.3].

3. General estimation of the representing measures

Let T : C (S, X) → Y and V : C (S, X) → C (S) be bounded operators and suppose that T factors as T = θ · V ,
where θ : C(S) → Y is bounded. In this section, we will prove a general formula between the representing
measures G and µ of the operators T and θ. We will see that the resulting relations between G and µ are of the
Radon-Nikodym type and we will give the expression of the derivatives by means of the operator V . To make
the estimation tractable we shall impose on the operator V the following condition

(3.1) ∀g ∈ C(S),∀h ∈ C (S, X) : V (g · h) = g · V (h) .

In the computations below, we need condition (3.1) to be satisfied only for the constant functions h ∈ C (S, X).
Here is an example of a non trivial bounded V : C (S, X) → C (S) satisfying (3.1):

Example 1. Let K : S × S → R be a continuous function and let µ be a measure with bounded variation on
BS . Let us consider the operator φ : C(S) → C(S), defined by: φ (g) (s) =

∫
S

K (s, t) g (t) dµ (t). The fact that
K is continuous and µ of bounded variation makes it easy to prove that φ (g) is in C(S). Now take X = C(S)
and define V : C(S, X) → C(S), by

h ∈ C(S, X), V (h) (r) = φ (hr) (r) , for r ∈ S.

Let us note that the value hr, of the function h at the point r, is in C(S) because h ∈ C(S, X), and X = C(S).
Note also, from the definition of φ, that we have V (h) (r) =

∫
S

K (r, t) hr (t) dµ (t). It is not difficult to show
that the function r → V (h) (r) is continuous and that V : C(S, X) → C(S) is a linear bounded operator with
‖V ‖ ≤ MK · v (µ), where MK = sup {|K (s, t)| , (s, t) ∈ S × S}. We prove that V satisfies (3.1).
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Let g ∈ C(S), h ∈ C(S, X), then we have

V (g · h)(r) =
∫

S

K(r, t)g(r) hr(t) dµ(t)

= g (r)
∫

S

K(r, t)hr(t) dµ (t)

= g (r) V (h) (r) .

(For an other example of operator satisfying (3.1), see Section 6 below.)

We now state and prove the general estimation Theorem. Recall the measures Gy∗ , Mx
y∗ in (2.3) and (2.4),

and µ(·)y∗ in Theorem 3(a).

Theorem 4. Under (2.1), (2.2), (3.1), the operator T factors as T = θ · V and we have

(3.2) Gy∗ (E) (x) =
∫

E

V (cx) (t) dµ (t) y∗.

for all E ∈ BS, y∗ ∈ Y ∗ and x ∈ X, where cx ∈ C (S, X) is the constant function S → X given by cx (t) ≡ x, x
being fixed in X.
In other words the measure Mx

y∗ is absolutely continuous with respect to µ(·)y∗, with Radon-Nikodym derivatives

given by
d Mx

y∗

d µ(·)y∗ = V (cx), so we may write (3.2) as d Mx
y∗ = V (cx) · d µ(·)y∗.

Proof. First let us apply the integral (2.7) to the function f ∈ C (S, X) of the form f (t) = g (t) · cx (t), with

g ∈ C (S) and x fixed in X. We obtain Tg · cx =
∫

S

g · cx dG, and for y∗ ∈ Y ∗

y∗Tg · cx =
∫

S

g · cx dGy∗ =
∫

S

g dMx
y∗ ,
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where the second equality results from (2.8) and the third one from standard integration tools, starting with
(2.4). Recall that Gy∗ is X∗-valued and then, for E ∈ BS , and x ∈ X, we have∫

E

x dGy∗ = Gy∗ (E) (x) = Mx
y∗ (E) .

On the other hand, since T = θ · V , we have Tg · cx = θ · V (g · cx) = θ · (g · V (cx)), where we are appealing to
(3.1) for the identity V (g · cx) = g · V (cx). By the first part of Theorem 3, it is clear that

y∗θ · (g · V (cx)) =
∫

S

g · V (cx) (t) d µ (t) y∗, for each y∗ ∈ Y ∗.

Now, comparing this integral to the one computed above for y∗Tg · cx, we get∫
S

g · V (cx) d µ(·)y∗ =
∫

S

g dMx
y∗ , for all g ∈ C (S) .

Since the scalar measures µ(·)y∗, Mx
y∗ are regular (the first one by Theorem 3 and the second by Proposition 2),

it results from the classical Riesz representation Theorem that Mx
y∗ (E) =

∫
E

V (cx) (t) d µ (t) y∗, which is exactly

(3.2). �

In the sequel, we want to improve the estimation formula (3.2), by suppressing its dependance with respect
to the functional y∗. We will reach an improvement with the help of the second part of Theorem 3, since the
formulas given there are more tractable in vector integration calculus. To achieve this program we must impose
a weak compactness assumption on the operator T .

4. Weakly compact Operators

Let T : E → F be a bounded operator of the Banach space E into the Banach space F and let B be the closed
unit ball of E. The operator T is said to be weakly compact if the weak closure of TB is compact in the weak
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topology of F . If T : C (S, X) → Y factors as T = θ · V , (see section 2), then we have the following interesting
property:

Proposition 3. The operator T is weakly compact iff the operator θ is weakly compact.

Proof. Assume θ weakly compact. Since B is bounded V B is bounded and then TB = θ · V B has a weakly
compact closure, so T is weakly compact. More important for us is the converse.
Assume T weakly compact. To prove that the same is true for θ, it is sufficient, by the Eberlein-Šmulian Theorem
[3, Theorem V 6.1.], to show that θA is weakly sequentially compact for every bounded set A ⊂ C(S). Let hn

be a sequence in A, and let fn ∈ C (S, X) be such that hn = V fn; then, citing Proposition 1, for some K > 0
we may choose fn so that ‖fn‖ ≤ K ‖hn‖ for all n. This shows that fn is uniformly bounded. Since T is weakly
compact, the Eberlein-Šmulian Theorem just cited, allows the extraction of a subsequence fni of fn such that
Tfni

will be weakly convergent. But Tfni
= θhni

, thus the sequence θhn contains a convergent subsequence,
proving that θA is weakly sequentially compact. �

Remark 2. It is proved in [3, VI.4.5], that for every weakly compact θ and every bounded V , the product θ ·V
is weakly compact. In the preceding Proposition we were able to get the converse, that is, θ is weakly compact
provided that θ · V is weakly compact and V is onto.

While Theorem 4 gives the structure of the adjoint family {Gy∗ , y∗ ∈ Y ∗·}, via formula (3.2), we now state an
improvement of this formula by imposing on the operator T a condition of weak compactness. Let γ : Y → Y ∗∗

denote the canonical isomorphism of Y into its bidual Y ∗∗.

Theorem 5. Let T : C (S, X) → Y be a bounded operator and assume that T is weakly compact and factors
as T = θ · V . Then there exists a unique countably additive vector measure µ on BS with values in Y , such that
the representing measure G of T has the following consolidated form:

(4.1) G (E) (x) =
∫

E

V (cx) (t) dγµ (t)
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for all E ∈ BS and all x ∈ X.

Proof. From Proposition 4, the operator θ is weakly compact since T is weakly compact. Therefore, by the
second part of Theorem 3, µ is a true vector measure on BS with values in Y . With this in mind, we proceed as
in the proof of Theorem 4 to get

y∗Tg · cx = y∗θ · (g · V (cx)) =
∫

S

g · V (cx) (t) d y∗µ (t) ,

where the second equality is from ( b′) of Theorem 3. But y∗Tg · cx =
∫

S

g · cx dGy∗ , thus we conclude that

G (E) (x) (y∗) =
∫

E

V (cx) (t) d y∗µ (t) ,(∗)

since g is arbitrary in C(S) (see the proof of Theorem 4). Let us put α for the right hand side of this last formula;

we have by Theorem IV.10.8(f), in [3], α = y∗
∫

S

V (cx) (t) d µ (t), and since the integral
∫

S

V (cx) (t) d µ (t)

is in Y , we get α = γ(
∫

S

V (cx) (t) d µ (t)) (y∗); now let us replace the integral in (∗) by this value, we obtain

G (E) (x) (y∗)=γ(
∫

S

V (cx) (t) d µ (t)) (y∗), for each y∗ ∈ Y ∗, and consequently G (E) (x)=γ(
∫

S

V (cx) (t) d µ (t)).

But the last transformed integral is exactly
∫

S

V (cx) (t) dγµ (t), by the Theorem just cited. This achieves the

proof of (4.1). �

There is an interesting class of operators for which formula (4.1) has a stronger meaning, because the integrals
will be of Bochner type. It is the class of nuclear operators which we consider in the following section.
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5. Nuclear Operators

Definition 4. Let E, F be Banach spaces. We say that a bounded linear operator T : E → F , from E
into F , is nuclear if there exist sequences (x∗n) in E∗ and (yn) in F such that

∑
n
‖x∗n‖ ‖yn‖ < ∞ and such

that T (x) =
∑
n

x∗n (x) yn for all x ∈ X.

The following Theorem gives an integral representation for a nuclear operator θ : C (S) → Y :

Theorem 6. (i) Every nuclear operator is compact and thus weakly compact.
(ii) A bounded linear operator θ : C(S) → Y is nuclear if and only if its representing measure µ is of bounded vari-

ation and has a Bochner integrable derivative g with respect to its variation v(µ, ·), that is µ (E) =
∫

E

g (s) v(µ, ds).

(Recall the variation of a measure in (2.5).)

For the proof see reference [1, p. 173].
We now turn to nuclear operators T : C (S, X) → Y which have the product form T = θ · V . We first give the

link with the nuclear property of the component θ.

Theorem 7. (a) Assume that θ is nuclear. Then there are sequences
(µn) ⊂ C (S, X)∗, (yn) ⊂ Y such that

∑
n
‖µn‖ ‖yn‖ < ∞ and Tf =

∑
n

µn (f) yn for all f ∈ C (S, X),

so T is nuclear. Moreover we have

V f = 0 =⇒ µn (f) = 0, for all n.

(b) Assume that the operator T = θ · V is nuclear and write T as:
Tf =

∑
n

µn (f) yn, where f ∈ C(S, X), (µn) ⊂ C(S, X)∗, (yn) ⊂ Y and
∑
n
‖µn‖ ‖yn‖ < ∞.
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If the condition

Tf = 0 =⇒ µn (f) = 0, for all n.(N )

is satisfied then the operator θ is nuclear.

Proof. (a) Assume that θ is nuclear and let us write θ as θh =
∑
n

θn(h)yn, where (θn) ⊂ C(S)∗, (yn) ⊂ Y ,

h ∈ C(S) and
∑
n
‖θn‖ ‖yn‖ < ∞. If f ∈ C(S, X) then V f = h ∈ C(S) and Tf = θh =

∑
n

θnV f yn =
∑
n

µn(f)yn,

where we define the bounded linear operator µn on C(S, X) by µn(f) = θnV f . Since we have
∑
n
‖θn‖ ‖yn‖ < ∞,

it follows that
∑
n
‖µn‖ ‖yn‖ < ∞ and T is nuclear. On the other hand it is clear that: V f = 0 =⇒ µn(f) = 0,

for all n.
(b) The condition imposed to the µn and T reads Ker T ⊂

⋂
n

Kerµn. Then KerV ⊂
⋂
n

Kerµn and by

Theorem 1, Section 2, with Y = R, for each n there exists a bounded operator θn : C(S) → R such that µn(f) =
θn · V f for all f ∈ C(S, X). Let h ∈ C(S) and f ∈ C(S, X) be such that V f = h; then Tf = θh =

∑
n

µn(f)yn,

but µn(f) = θn · V f = θnh. Thus θh =
∑
n

θn(h)yn. Since
∑
n
‖µn‖ ‖yn‖ < ∞ it follows that

∑
n
‖θn‖ ‖yn‖ < ∞

and θ is nuclear. �

Theorem 8. Let T : C(S, X) → Y be a nuclear operator such that T = θ ·V . Assume that for all f ∈ C(S, X),
Tf =

∑
n

µn(f)yn, where (µn) ⊂ C(S, X)∗, (yn) ⊂ Y and
∑
n
‖µn‖ ‖yn‖ < ∞. If condition (N ) is satisfied for the

µn and T then the representing measure G of T is a Bochner integral with respect to a bounded scalar measure.

Proof. By Theorem 6 (i) T is weakly compact and so we have by (4.1):

G(E)(x) =
∫

E

V (cx)(t)dγµ(t),(∗∗)
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where µ is the representing measure of θ. From the condition imposed on T , we deduce that θ is nuclear

(Theorem 7) (b) and then µ(E) =
∫

E

g(s) v(µ, ds), for a v(µ, ds)-Bochner integrable function g : S → Y ,

(Theorem 6 (ii)). Applying the bounded operator γ to the preceding equality gives γµ(E) =
∫

E

γg(s) v(µ, ds).

On the other hand, by a simple argument of integration theory, we have∫
E

u(s) dγµ(s) =
∫

E

u(s)γg(s) v(µ, ds),

for every bounded scalar measurable function u on S. Therefore, taking u(s) = V (cx)(s) in formula (∗∗), we get

(5.1) G(E)(x) =
∫

E

V (cx)(s) γg(s) v(µ, ds)

which is the conclusion of the Theorem. �

6. Examples

We give now an example of a bounded operator V : C(S, X) → C(S), that meets condition (2.1) and then we
factorize under condition (2.2) a bounded operator T : C(S, X) → Y . In this context we will perform explicitly
the computations made in all of Sections 2 – 5.

Let z∗ be a fixed functional in the conjugate space X∗ of X. Then consider the operator Wz∗ : C(S, X) →
C(S), given by (Wz∗f)(s) = z∗(f(s)), f ∈ C(S, X), s ∈ S. It is a simple fact that Wz∗ is bounded and that
‖Wz∗‖ = ‖z∗‖. Moreover we have:

Lemma 1. The operators Wz∗ are onto for all z∗ 6= 0.
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Proof. Let α ∈ X be fixed such that z∗(α) 6= 0. Let h ∈ C(S) and let us put f(s) = h(s) · α
z∗(α) , s ∈ S. Then

it is clear that f ∈ C(S, X) and we have

(Wz∗f)(s) = z∗(f(s)) = h(s)z∗(
α

z∗(α)
) = h(s),

thus
Wz∗f = h.

It is noteworthy that, in general the vector f given above is not unique. �

Consider now a bounded operator T : C(S, X) → Y ; to factorize T through Wz∗ , with a bounded θ : C(S) → Y ,
we must assume condition (2.2) of Theorem 1. In this case, for each g ∈ C(S), T has the constant value θg on
the fiber W−1

z∗ (g) of C(S, X). As a simple example of this situation take X = Rn and z∗(y1, y2, . . . , yn) =
y1 + y2 + . . . + yn. Then (2.2) reads: f = (f1, f2, . . . , fn) ∈ C(S, Rn), f1 + f2 + . . . + fn ≡ 0 =⇒ Tf = 0, and we
have

Tf = θ(f1 + f2 + . . . + fn), for all f ∈ C(S, Rn).

Note also that Wz∗ satisfies condition (3.1). Now, if we want to compute the representing measure G of T , all
what we have to do , in view of (3.2), (4.1), and (5.1), is to compute the function V (cx) for V = Wz∗ . This is
a trivial matter since cx is a constant function with value x on S : V (cx)(s) = (Wz∗cx)(s) = z∗(cx(s)) = z∗(x).
Thus formulas (3.2), (4.1), (5.1), become respectively

Proposition 4. Let T and Wz∗ be as above and such that T = θ.Wz∗ where θ is bounded. Then we have:
(a) Gy∗(E) = (µ(E) · y∗) · z∗, for all E ∈ BS and y∗ ∈ Y ∗, that is the X∗-valued measure Gy∗ is generated by the
unique functional z∗ ∈ X∗.
(b) If T is weakly compact then G(E) = (γµ(E)) · z∗, for all E ∈ BS.
(c) If T is nuclear then G(E) = (

∫
E

γg(s) v(µ, ds)) · z∗, for all E ∈ BS.
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Now we give an example of a nuclear operator which satisfies condition (N ) of Theorem 7(b). To this end, let
us recall that if Y is finite dimensional then every linear operator T : C(S, X) → Y is said to be degenerate.

Proposition 5. If T : C(S, X) → Y is a bounded degenerate operator, then T is nuclear and satisfies condition
(N ) of Theorem 7(b).

Proof. By the [4, Theorem 2.13.3], a bounded degenerate operator T : C(S, X) → Y has a representation

of the form T (x) =
n∑
1

µk(x) yk where {yk , 1 ≤ k ≤ n } and {µk , 1 ≤ k ≤ n } are sets of linearly independent

elements in Y and C(S, X)∗, respectively. Therefore T is nuclear and by the representation above it satisfies
condition (N ) of Theorem 7(b). �

If dim Y = ∞, the question arises whether there exist nuclear operators T : C(S, X) → Y which satisfy
condition (N ) of Theorem 7(b). In this context, Proposition 5 allows the following conjecture:

Conjecture 1. If Y is a separable Hilbert space, then every nuclear operator T : C(S, X) → Y satisfies
condition (N ).

7. Remark

In this work we attempted to give some information about the representing measure G, which had occured in
the context of the integral representation (2.7). We obtained results for the class of factorizable Banach valued
operators on C(S, X). Let us point out that similar results had been obtained in [5, §5] for another special class
of operators, and we may summarize as follows. Consider a bounded operator T : C(S, X) → X which satisfies
the following condition: for x∗, y∗ ∈ X∗, f, g ∈ C(S, X), if x∗ ◦ f = y∗ ◦ g, then x∗ ◦ Tf = y∗ ◦ Tg. Then there
exists a unique bounded scalar regular measure on S, BS such that Tf =

∫
S

f dµ for all f ∈ C(S, X); that is the
operator T is a Bochner integral on the function space C(S, X), (See [5, §5] for more details). Now, according
to the integral form (2.7), the operator T has a representing vector measure G with values in the Banach space
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L(X, X∗∗). A comparison made by the author in [5, §5], between the measures G and µ, allowed the following
rather precise relation on the structure of the measure G :

(7.1) ∀E ∈ BS G(E) = µ(E) · γ
where γ is the canonical isomorphism of X into X∗∗.
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