SOME RESULTS ON INCREMENTS OF THE WIENER PROCESS

A. BAHRAM

ABSTRACT. Let $\lambda_{(T,a_T,\alpha)} = \left\{ 2a_T \left[\log \frac{T}{a_T} + \alpha \log \log T + (1-\alpha) \log \log a_T \right] \right\}^{-\frac{1}{2}}$ where $0 \le \alpha \le 1$ and $\{W(t), t \ge 0\}$ be a standard Wiener process. This paper studies the almost sure limiting behaviour of $\sup_{0 \le t \le T - a_T} \lambda_{(T,a_T,\alpha)} |W(t+a_T) - W(t)|$ as $T \longrightarrow \infty$ under varying conditions on a_T and $\frac{T}{a_T}$.

1. Introduction

Let $\{W(t), t \geq 0\}$ be a standard Wiener process. Suppose that a_T is a nondecreasing function of T such that $0 < a_T \leq T$ and $\frac{T}{a_T}$ is nondecreasing. Csörgő and Révész [2], [3] etablished the following theorem.

Theorem 1.1. Let a_T for $T \geq 0$ satisfy

- $a_T \quad is \ nondecreasing,$
- $(2) 0 < a_T \le T,$
- (3) $\frac{a_T}{T}$ is nonincreasing.

Received June 6, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 60J65.

Key words and phrases. Wiener process, increments of a Wiener process, a law of the iterated logarithm.

Define $\beta_T = (2a_T(\log \frac{T}{a_T} + \log \log T))^{-\frac{1}{2}}$. Then

(4)
$$\limsup_{T \longrightarrow \infty} \sup_{0 \le t \le T - a_T} \beta_T |W(T + a_T) - W(t)| = 1 \quad a.s.$$

(5)
$$\limsup_{T \longrightarrow \infty} \sup_{0 \le t \le T - a_T} \sup_{0 \le s \le a_T} \beta_T |W(t+s) - W(t)| = 1 \quad a.s.$$

If, in addition,

(6)
$$\lim_{T \longrightarrow \infty} \frac{\log \frac{T}{a_T}}{\log \log T} = \infty,$$

then "limsup" may be replaced by "lim" in both equations (4) and (5).

Here and in the sequel we shall define for each u > 0 the functions

$$Lu = \log u = \log(\max(u, 1)),$$

and

$$L_2u = \log\log(\max(u, e)).$$

 ε stands for a positive number given arbitrarily, and C will be understood as a positive constant independent of n, which can take different values on each appearance.

To simplify the notation, we will set

$$A(T, a_T, \alpha) = \sup_{0 \le t \le T - a_T} \lambda_{(T, a_T, \alpha)} |W(t + a_T) - W(t)|,$$

$$B(T, a_T, \alpha) = \sup_{0 \le t \le T - a_T} \sup_{0 \le s \le a_T} \lambda_{(T, a_T, \alpha)} |W(t + s) - W(t)|,$$

where

$$\lambda_{(T,a_T,\alpha)} = \left\{ 2a_T \left[L \frac{T}{a_T} + \alpha L_2 T + (1-\alpha) L_2 a_T \right] \right\}^{-\frac{1}{2}} \quad \text{and} \quad 0 \le \alpha \le 1.$$

2. Main result

In this section we shall investigate the analogous problem when β_T is replaced by $\lambda_{(T,a_T,\alpha)}$. Our goal is to prove the following result.

Theorem 2.1. Under assumptions (2) and (3) of Theorem 1.1, we have

(7)
$$\limsup_{T \longrightarrow \infty} A(T, a_T, \alpha) = 1 \quad a.s.,$$

(8)
$$\limsup_{T \to \infty} B(T, a_T, \alpha) = 1 \quad a.s.$$

If we also have

(*)
$$\lim_{T \to \infty} \frac{L \frac{T}{a_T}}{L((LT)^{\alpha} (La_T)^{1-\alpha})} = \infty,$$

then

(9)
$$\lim_{T \longrightarrow \infty} A(T, a_T, \alpha) = 1 \quad a.s.,$$

(10)
$$\lim_{T \longrightarrow \infty} B(T, a_T, \alpha) = 1 \quad a.s.$$

Remark 2.1. Let us mention some particular cases .

- 1. For $a_T = T$ we obtain the law of iterated logarithm.
- 2. If $\alpha = 1$, we obtain Csörgő-Révész theorem (see Theorem 1.1).

3. If $\alpha = 0$, under assumptions (2) and (3) of Theorem 1.1, then we also have

(11)
$$\limsup_{T \longrightarrow \infty} A(T, a_T, 0) = 1, \quad a.s.,$$

(12)
$$\limsup_{T \longrightarrow \infty} B(T, a_T, 0) = 1, \quad a.s.$$

If we also have $\lim_{T \to \infty} \frac{\log \frac{T}{a_T}}{\log \log a_T} = \infty$, then "lim sup" in Equation (11) and (12) may be replaced by "lim".

Proof of Theorem 2.1. Our proof will be given in three steps expressed by the following three lemmas.

Lemma 2.1. Let a_T be a nondecreasing function of T satisfying conditions (2) and (3) of Theorem 1.1. Then for any $\varepsilon > 0$ we have

(13)
$$\limsup_{T \longrightarrow \infty} A(T, a_T, \alpha) \ge 1 - \varepsilon.$$

Lemma 2.2. Let a_T be a nondecreasing function of T satisfying conditions (2) and (3) of Theorem 1.1. Then for any $\varepsilon > 0$ we have

(14)
$$\limsup_{T \longrightarrow \infty} B(T, a_T, \alpha) \le 1 + \varepsilon.$$

Lemma 2.3. Let a_T be a nondecreasing function of T satisfying conditions (2), (3) of Theorem 1.1 and (*) of Theorem 2.1. Then for any $\varepsilon > 0$ we have

$$\lim_{T \to \infty} \inf A(T, a_T, \alpha) \ge 1 - \varepsilon.$$

Proof of Lemma 2.1. Let

$$C(T) = \lambda_{(T,a_T,\alpha)} |W(T) - W(T - a_T)|.$$

Using the well known probability inequality

(16)
$$\frac{1}{\sqrt{2}\pi} \left(\frac{1}{x} - \frac{1}{x^3} \right) \exp\left(-\frac{x^2}{2} \right) \le P(W(1) \ge x) \le \frac{1}{\sqrt{2\pi}x} \exp\left(-\frac{x^2}{2} \right),$$

for $x \geq 0$, (see, e.g., [4, p.175]), it follows that

$$P(C(T) \ge 1 - \varepsilon) \ge \left(\frac{a_T}{T(LT)^{\alpha}(La_T)^{1-\alpha}}\right)^{1-\varepsilon} \ge \left(\left(\frac{a_T}{TLa_T}\right)\left(\frac{La_T}{LT}\right)^{\alpha}\right)^{1-\varepsilon}$$

$$\ge \left(\left(\frac{a_T}{TLa_T}\right)\left(\frac{La_T}{LT}\right)\right)^{1-\varepsilon} \ge \left(\frac{a_T}{TLT}\right)^{1-\varepsilon}$$

if T is big enough. We define the sequence $\{T_k\}$ as follows: Let $T_1 = 1$ and define T_{k+1} by

$$T_{k+1} - a_{T_{k+1}} = T_k$$
 if $\rho < 1$

and

$$T_{k+1} = \theta^{k+1} \qquad \text{if} \quad \rho = 1,$$

where $\theta > 1$ and $\lim_{T \to \infty} \frac{a_T}{T} = \rho$. The conditions (2) and (3) imply that a_T is a continuous function of T and that $\rho = 1$ if and only if $a_T = T$. Moreover $T - a_T$ is a strictly increasing function of T if $\rho < 1$. In the case $\rho = 1$ we refer to the law of the iterated logarithm. So we assume that $\rho < 1$, (13) follows from

(17)
$$\sum_{k=2}^{\infty} \frac{a_T}{T_k (LT_k)^{1-\varepsilon}} = \infty,$$

as was shown in Csáki, Csörgő, Földes and Révész [1, Lemma 3.2], and the r.v. $C(T_k)$ (k = 1, 2, ...) are independent.

Proof of Lemma 2.2. Let $a_{T_k} = \theta^k$, $\theta > 1$ and $\varepsilon > 0$. Using the inequality

(18)
$$P\{\sup_{0 \le s', s \le T, 0 \le s - s' \le h} h^{-\frac{1}{2}} |W(s) - W(s')| \ge v\} \le \frac{CT}{h} \exp\left\{\frac{-v^2}{2 + \varepsilon}\right\},$$

where C is a positive constant depending only on ε (see in [2, Lemma 1*]), we have

$$\sum_{k=1}^{\infty} P(B(T_k, a_{T_k}, \alpha) \ge (1 + \varepsilon))$$

$$\leq C \sum_{k=1}^{\infty} \frac{T_k}{a_{T_k}} \exp\{-2\frac{(1 + \varepsilon)^2}{2 + \varepsilon} (\log \frac{T_k}{a_{T_k}} (LT_k)^{\alpha} (La_{T_k})^{(1 - \alpha)})\}$$

$$\leq C \sum_{k=1}^{\infty} \left(\frac{a_{T_k}}{T_k}\right)^{\varepsilon} \left(\frac{1}{(LT_k)^{\alpha} (La_{T_k})^{(1 - \alpha)}}\right)^{1 + \varepsilon}$$

$$\leq C \sum_{k=1}^{\infty} \left(\frac{a_{T_k}}{T_k}\right)^{\varepsilon} \left(\left(\frac{LT_k}{La_{T_k}}\right)^{1 - \alpha} \frac{1}{LT_k}\right)^{1 + \varepsilon}$$

$$\leq C \sum_{k=1}^{\infty} \left(\frac{a_{T_k}}{T_k}\right)^{\varepsilon} \left(\left(\frac{LT_k}{La_{T_k}}\right) \frac{1}{LT_k}\right)^{1 + \varepsilon}$$

$$= C \sum_{k=1}^{\infty} \left(\frac{a_{T_k}}{T_k}\right)^{\varepsilon} \frac{1}{(La_{T_k})^{1 + \varepsilon}} < \infty$$

and an application of Borel-Cantelli Lemma gives

(19)
$$\limsup_{k \to \infty} B(T_k, a_{T_k}, \alpha) \le 1 \quad a.s.$$

Notice that

(20)
$$1 \le \frac{\lambda_{(T_k, a_{T_k}, \alpha)}}{\lambda_{(T_{k+1}, a_{T_k}, \dots, \alpha)}} \le \theta$$

if k is big enough. When $T_k \leq T \leq T_{k+1}$, we have

$$\limsup_{T \longrightarrow \infty} B(T, a_T, \alpha) \leq \limsup_{k \longrightarrow \infty} B(T_{k+1}, a_{T_{k+1}}, \alpha) \frac{\lambda_{(T_k, a_{T_k}, \alpha)}}{\lambda_{(T_{k+1}, a_{T_{k+1}}, \alpha)}}$$

$$\leq \limsup_{k \longrightarrow \infty} B(T_{k+1}, a_{T_{k+1}}, \alpha) \limsup_{k \longrightarrow \infty} \frac{\lambda_{(T_k, a_{T_k}, \alpha)}}{\lambda_{(T_{k+1}, a_{T_{k+1}}, \alpha)}}.$$

Now choosing θ near enough to one, (14) follows from (19) and (20).

Proof of Lemma 2.3. We will set $D_T = \{A(T, a_T, \alpha) \leq 1 - \varepsilon\}$. Using inequality (18), for sufficiently large T, we have

$$\begin{split} P(D_T) &\leq P(\max_{0 \leq i \leq \lfloor \frac{T}{a_T} \rfloor - 1} \lambda_{(T, a_T, \alpha)} | W(i+1) a_T - W(ia_T) | \leq 1 - \varepsilon) \\ &\leq \left(1 - \left(\frac{a_T}{T(LT)^{\alpha} (La_T)^{1-\alpha}} \right)^{1-\varepsilon} \right)^{\lfloor \frac{T}{a_T} \rfloor} \leq 2 \exp\left\{ - \left(\frac{T}{a_T} \right)^{\varepsilon} \frac{1}{(LT)^{\alpha(1-\varepsilon)} (La_T)^{(1-\alpha)(1-\varepsilon)}} \right\}. \end{split}$$

Now, under condition (*) and for all sufficiently large T,

$$\frac{T}{a_T} \ge \{(LT)^{\alpha} (La_T)^{1-\alpha}\}^{\frac{3-\varepsilon}{\varepsilon}}.$$

Define $T_k = e^{a_{T_k}} = k$.

Therefore

$$\sum_{k=2}^{\infty} P(D_{T_k}) \le 2 \sum_{k=2}^{\infty} \exp\{-(LT_k)^{2\alpha} (La_{T_k})^{2(1-\alpha)}\} = 2 \sum_{k=2}^{\infty} \exp\left\{-\left(\frac{LT_k}{La_{T_k}}\right)^{2\alpha} (La_{T_k})^2\right\}$$
$$\le 2 \sum_{k=2}^{\infty} \exp\{-(La_{T_k})^2\} \le 2 \sum_{k=2}^{\infty} a_{T_k}^{-2} = 2 \sum_{k=2}^{\infty} (Lk)^{-2} < \infty$$

which implies by Borel-Cantelli lemma that

(21)
$$\liminf_{k \to \infty} A(T_k, a_{T_k}, \alpha) \ge 1 - \varepsilon, a.s.$$

When $T_k \leq T \leq T_{k+1}$, we have $a_T - a_{T_k} \geq 0$ and by (3), it is easy to see that $a_T - a_{T_k} \leq \frac{a_{T_k}}{T_k} \leq \delta a_{T_k}$ for any $\delta > 0$. Thus

$$\begin{split} & \liminf_{T \longrightarrow \infty} A(T, a_T, \alpha) \ge \liminf_{k \longrightarrow \infty} \sup_{0 \le t \le T_k - a_{T_k}} \lambda_{(T_{k+1}, a_{T_{k+1}}, \alpha)} |W(t + a_{T_k}) - W(t)| \\ & - \limsup_{T \longrightarrow \infty} \sup_{0 \le t \le T - \delta a_T} \sup_{0 \le s \le \delta a_T} \lambda_{(T, a_T, \alpha)} |W(t + s) - W(t)| \\ & = \liminf_{k \longrightarrow \infty} \sup_{0 \le t \le T_k - a_{T_k}} \lambda_{(T_k, a_{T_k}, \alpha)} |W(t + a_{T_k}) - W(t)| \frac{\lambda_{(T_{k+1}, a_{T_{k+1}}, \alpha)}}{\lambda_{(T_k, a_{T_k}, \alpha)}} \\ & - \limsup_{T \longrightarrow \infty} \sup_{0 \le t \le T - \delta a_T} \sup_{0 \le s \le \delta a_T} \lambda_{(T, \delta a_T, \alpha)} |W(t + s) - W(t)| \frac{\lambda_{(T, a_T, \alpha)}}{\lambda_{(T, \delta a_T, \alpha)}}. \end{split}$$

By Lemma 2.2 we have

(22)
$$\limsup_{T \longrightarrow \infty} \sup_{0 \le t \le T - \delta a_T} \sup_{0 \le s \le \delta a_T} \lambda_{(T, \delta a_T, \alpha)} |W(t+s) - W(t)| \le 1, a.s.$$

We notice that

(23)
$$\limsup_{T \longrightarrow \infty} \frac{\lambda_{(T, a_T, \alpha)}}{\lambda_{(T, \delta a_T, \alpha)}} = \delta.$$

The proof of Lemma 2.3 will be completed by combining (21), (22) and (23).

- 1. Csáki E., Csörgő M., Földes A. and Révész, P., How big are the increments of the local time of a Wiener process? Ann. Probability 11 (1983), 593–608.
- 2. Csörgő M. and Révész P., How big are the increments of a Wiener process? Ann. Probability 7 (1979), 731-737.
- 3. _____, Strong approximation in probability and statistics. Academic Press, New York (1981).
- 4. Feller W., An introduction to probability theory and its applications. Vol 2, 2nd. Willy, New York (1968).

 $A.\ Bahram,\ Laboratoire\ de\ Math\'ematiques,\ Universit\'e\ Djillali\ Liab\`es,\ BP\ 89,\ 22000\ Sidi\ Bel\ Abb\`es,\ Algeria,\ \emph{e-mail}:\ \texttt{Abdelkader_bahram@yahoo.fr}$