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GROUPS OF PERIODS FOR ARBITRARY MAPS ON GROUPS

N. C. BONCIOCAT and A. ZAHARESCU

Abstract. We investigate various properties of groups of periods associated to arbitrary maps defined on groups.

1. Introduction

Let G, G′ be abelian groups and let f : G → G′ be a homomorphism. In the usual additive notation for the
group law, if t belongs to the kernel of f , then

f(x + t) = f(x),

for any x ∈ G. That is to say, the map f is periodic with period t. The group of periods of f coincides with
ker f . If we replace G′ by an arbitrary non-empty set S and let f be any map from G to S, the notion of
period still make sense, and one can again talk about the group of periods of f . Naturally, one has a richer
structure to work with in the case when f is a homomorphism than in the case of a general map from G to an
arbitrary set. Nevertheless, there are many important examples of periodic maps defined on groups which are
not homomorphisms. For instance, let G be the additive group of real numbers. Trigonometric polynomials are
maps of the form

f(x) =
N∑

n=−N

ane2πinx,
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where the coefficients an are complex numbers, and they play an important role in many problems in number
theory (see [9], [5], [7]). If ak = 1 for some k and an = 0 for n 6= k, in other words if f(x) = e2πikx, then f is a
homomorphism to the multiplicative group of nonzero complex numbers, with kernel 1

k Z. A general trigonometric
polynomial is not a homomorphism, and yet it has a nonzero group of periods.

Another important class of examples is provided by elliptic functions (see [1], [15]). Such a function f is
meromorphic and doubly periodic. If we let the poles of f be sent to the point at infinity, then f will be defined
everywhere on the complex plane C, with values in C ∪ {∞}, and will have as group of periods a lattice in C.

For another example, let K be a number field, which is an abelian extension of the field Q of rational numbers,
and let G = Gal(K/Q). Any element α ∈ K gives rise to a natural map fα : G → K, defined by

fα(σ) := σ(α),

for any σ ∈ G. In general fα is not a homomorphism, although the group of periods of fα may be nontrivial. To
be precise, the group of periods of fα coincides with the Galois group Gal(K/Q(α)).

In the present paper we take a general point of view. We consider a group G, which does not need to be
abelian, a non-empty set S, a map f : G → S, and investigate some properties of the corresponding groups of
periods. Since G is no more assumed to be abelian, we first need to give a precise definition of what we mean by a
group of periods in this more general context. There are several subgroups of G that one can consider in this case,
namely the groups of left or right periods, as well as their normal and characteristic interior, which will be defined
in the following section. An alternative point of view is to define these groups and investigate their properties by
considering the partition induced by f on the underlying set of G, and the stabilizers of this partition with respect
to the actions of left and right multiplication with elements in G. Groups acting on partitioned sets have been
studied by a number of authors (see [2], [3], [4], [10], [13], [14] and [16]). Their properties have been extensively
used in the computational study of finite permutation groups.

Subgroups appear in many cases in group theory as kernels, images or inverse images of group homomorphisms.
Our first purpose is to show how the subgroups of an arbitrary group G may be regarded as groups of periods of
arbitrary maps on G. The normal subgroups and the characteristic subgroups of G are then found to be precisely
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the normal interior and the characteristic interior of such groups of periods, respectively. This could be a source
of new examples of subgroups, as well as a tool to study their properties. Another goal is to investigate the
groups of periods in the case when G factorizes as a product of two subgroups with trivial intersection. Lastly,
we consider modules and rings instead of groups and show how one can describe their submodules and ideals as
appropriate kernels of arbitrary maps.

2. Notations and definitions

Let G be a group, P(G) the set of its non-empty subsets and α, β the actions of G on P(G) by left and right
multiplication, respectively. Let now I be a set of indices and consider a partition P = {Ai}i∈I of G, that is

G =
⋃
i∈I

Ai,

where Ai are pairwise disjoint non-empty subsets of G. To any such partition of G we then associate the following
four subgroups of G:

LS(P ) =
⋂
i∈I

Stab α(Ai),

RS(P ) =
⋂
i∈I

Stab β(Ai),

NS(P ) =
⋂
g∈G

g · LS(P ) · g−1,

CS(P ) =
⋂

ϕ∈Aut (G)

ϕ(LS(P )).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Definition 1. We call these subgroups the left stabilizer of P , the right stabilizer of P , the normal stabilizer
of P and the characteristic stabilizer of P , respectively.

Definition 2. Let S be a non-empty set. An arbitrary map f : G → S defines in a natural way a partition
of G if we consider P = {f−1(s)}s∈Im (f). In this case we denote the four subgroups associated to P by LP (f),
RP (f), Ker (f) and Char (f), and call them the group of left periods of f , the group of right periods of f , the
kernel of f and the characteristic kernel of f , respectively.

It is easy to see that these subgroups of G admit the following simple description:

LP (f) = {h ∈ G : f(hg) = f(g),∀g ∈ G},
RP (f) = {h ∈ G : f(gh) = f(g),∀g ∈ G},
Ker (f) = {h ∈ G : f(g1hg−1

1 · g2) = f(g2),∀g1, g2 ∈ G},
Char (f) = {h ∈ G : f(ϕ(h) · g) = f(g),∀g ∈ G,∀ϕ ∈ Aut (G)}.

In this definition we may obviously assume that f is a surjective map, and the values taken by f are irrelevant
as long as they preserve the same partition {f−1(s)}s∈Im (f) on G.

Remark. One can define the kernel and the characteristic kernel of f in the following equivalent way:

Ker (f) = {h ∈ G : f(g1hg2) = f(g1g2),∀g1, g2 ∈ G}
= {h ∈ G : f(g2 · g1hg−1

1 ) = f(g2),∀g1, g2 ∈ G},
Char (f) = {h ∈ G : f(g · ϕ(h)) = f(g),∀g ∈ G,∀ϕ ∈ Aut (G)}.

The following result shows that the definition of NS(P ) and CS(P ) does not depend on which action we
consider, α or β, and the same obviously holds for the definition of Ker (f) and Char (f).
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Proposition 1. For every partition P of a group G we have:

NS(P ) =
⋂
g∈G

g ·RS(P ) · g−1 and(1)

CS(P ) =
⋂

ϕ∈Aut (G)

ϕ(RS(P )).(2)

Proof. Let the partition of G be P = {Ai}i∈I , with I the set of indices. We associate to P the map f : G → I
given by f(g) = i for every g ∈ Ai, i ∈ I. Then we have LS(P ) = LP (f) and RS(P ) = RP (f). By double
inclusion it follows easily that⋂

g∈G

g · LP (f) · g−1 = {h ∈ G : f(g1hg−1
1 · g2) = f(g2),∀g1, g2 ∈ G},

⋂
g∈G

g ·RP (f) · g−1 = {h ∈ G : f(g2 · g1hg−1
1 ) = f(g2),∀g1, g2 ∈ G},

and (1) follows by the previous remark. Similarly,⋂
ϕ∈Aut (G)

ϕ(LP (f)) = {h ∈ G : f(ϕ(h) · g) = f(g),∀g ∈ G,∀ϕ ∈ Aut (G)},

⋂
ϕ∈Aut (G)

ϕ(RP (f)) = {h ∈ G : f(g · ϕ(h)) = f(g),∀g ∈ G,∀ϕ ∈ Aut (G)},

from which (2) follows using again the previous remark. �

We therefore see that NS(P ) is at the same time the core of LS(P ) in G and the core of RS(P ) in G. Similarly,
CS(P ) is both the characteristic interior of LS(P ) in G and the characteristic interior of RS(P ) in G.
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Remarks. 1. If S is a group and f : G → S is a group homomorphism, then LP (f), RP (f) and Ker (f)
coincide with the usual kernel of f , and Char (f) =

⋂
ϕ∈Aut (G) ϕ(Ker (f)), the characteristic interior of Ker (f).

2. For an arbitrary map f : G → S we have the following inclusions:

Char (f) ⊆ Ker (f) ⊆ LP (f) ∩RP (f),

and for h ∈ LP (f) or h ∈ RP (f) we have f(h) = f(1), so all these subgroups are contained in the set f−1(1).

3. In general LP (f) 6= RP (f). To see this we consider the dihedral group G = {1, x, x2, y, xy, x2y} with
x3 = y2 = 1 and yx = x2y, and a set S with 3 elements: S = {a, b, c}. For the map f : G → S given by

f(1) = f(y) = a

f(x) = f(x2y) = b

f(x2) = f(xy) = c

we have LP (f) = {1, y} and RP (f) = {1}.

4. If f is an injective map we have LP (f) = RP (f) = Ker (f) = Char (f) = 1, and obviously Char (f) = G if
and only if f is constant.

5. If G is an abelian group, then LP (f) = RP (f) = Ker (f), which is the group of periods of f , if we consider
the additive notation for the group law.

6. If G/ Ker (f) is abelian, then f is a central map and LP (f) = RP (f) = Ker (f).

7. For a group G and a partition P = {Ai}i∈I of G we may consider N(P ) = ∩i∈ING(Ai) and call it the
normalizer of the partition P . Here NG(Ai) stands for the normalizer of Ai in G. For a finite group G, a
non-empty set S and an arbitrary map f : G → S, the set

N(f) = {h ∈ G : f(hg) = f(gh),∀g ∈ G}
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is a subgroup of G. Obviously N(f) is closed under multiplication, 1 ∈ N(f), and for h ∈ N(f) we have

f(h−1g) = f(hh−2g) = f(h−2gh) = f(hh−3gh) = f(h−3gh2) = . . .

= f(h−o(h)gho(h)−1) = f(gh−1),

where o(h) is the order of h. This shows that h−1 ∈ N(f). It is easy to see that N(f) is actually the normalizer of
the partition P = {f−1(s)}s∈Im (f). We obviously have the inclusions LP (f)∩RP (f) ⊆ N(f) and Z(G) ⊆ N(f).

Examples. 1. For the power functions fn : G → G given by fn(g) = gn, n ∈ N , we have:

Ker (fn) = {h ∈ G : (g1hg2)n = (g1g2)n,∀g1, g2 ∈ G}
= {h ∈ G : (hg2g1)n−1hg2 = (g2g1)n−1g2,∀g1, g2 ∈ G}
= {h ∈ G : (hg2g1)n−1hg2g1 = (g2g1)n,∀g1, g2 ∈ G}
= {h ∈ G : (hg2g1)n = (g2g1)n,∀g1, g2 ∈ G} = LP (fn)

and

Ker (fn) = {h ∈ G : (g1hg2)n = (g1g2)n,∀g1, g2 ∈ G}
= {h ∈ G : (hg2g1)n−1h = (g2g1)n−1,∀g1, g2 ∈ G}
= {h ∈ G : g2g1(hg2g1)n−1h = (g2g1)n,∀g1, g2 ∈ G}
= {h ∈ G : (g2g1h)n = (g2g1)n,∀g1, g2 ∈ G} = RP (fn).

Moreover, for h ∈ Ker (fn) and ϕ ∈ Aut (G) we have (ϕ(h)ϕ(g))n = (ϕ(g))n, for all g ∈ G, and therefore ϕ(h)
∈ Ker (fn). This shows that for every n, Ker (fn) is a characteristic subgroup of G. We therefore have

Char (fn) = Ker (fn) = RP (fn) = LP (fn)
= {h ∈ G : (hg)n = (g)n,∀g ∈ G}.
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Note that the order of any element belonging to Ker (fn) must be a divisor of n. It is then easily seen that
Ker (f2) is the subgroup of involutions of Z(G).

For two natural numbers m and n we have:

Ker (fm) ∩Ker (fn) = Ker (fgcd(m,n)),
Ker (fm) ·Ker (fn) ⊆ Ker (flcm(m,n)),

Thus if m divides n we have Ker (fm) ⊆ Ker (fn), and if G is a finite group of exponent e, we have Ker (fn) =
Ker (fgcd(n,e)).

2. Let x be a fixed element of a group G. For the commutator map given by fx(g) = gxg−1x−1 we have:

LP (fx) = Ker (fx) = CG(Cx), RP (fx) = CG(x),

Char (fx) =
⋂

ϕ∈Aut (G)

ϕ(CG(Cx)),

where Cx is the conjugacy class of x.

3. Groups of periods

The methods to prove that a given subset of a group is a subgroup are omnipresent tools and can be found in all
the classical texts of group theory. It is worth-mentioning a less known result due to G. Horrocks (see [12, p. 42])
stating that if a finite set X = {x1, . . . , xn} of a group G has the property that xixj ∈ X whenever 1 ≤ i ≤ j ≤ n,
then it is necessarily a subgroup of G.

In what follows we prove that the subgroups, the normal subgroups and the characteristic subgroups of an
arbitrary group may be regarded as groups of periods, kernels and characteristic kernels of arbitrary maps,
respectively.
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Theorem 1. A non-empty subset H of a group G is a subgroup (a normal subgroup, or a characteristic
subgroup) of G if and only if there exist a set S and a map f : G → S such that H = LP (f) (H = Ker (f),
or H = Char (f), respectively). The same characterization for the subgroups of G holds if we replace LP (f) by
RP (f).

Proof. Let H be a subgroup of G and S a set with at least two elements, say a and b. If H = G, we take the
constant map f : G → S, f(g) = a for all g ∈ G and obviously H = G = LP (f).

If H 6= G, we consider the indicator map of H given by

(3) f(g) =
{

a if g ∈ H
b if g /∈ H

.

For h ∈ LP (f) we have f(hg) = f(g) for all g ∈ G and in particular for g ∈ H we have f(hg) = a, which
according to the definition of f means that hg ∈ H, that is h ∈ H. Therefore we have LP (f) ⊆ H. Conversely,
for h ∈ H we have

f(hg) =
{

a if hg ∈ H (⇔ g ∈ H)
b if hg /∈ H (⇔ g /∈ H)

=
{

a if g ∈ H
b if g /∈ H

= f(g),

for all g ∈ G, which shows that h ∈ LP (f). Therefore we have H = LP (f). The proof is similar if we consider
RP (f) instead of LP (f).

If H is a proper normal subgroup of G we consider again the indicator map of H given by (3). For h ∈ Ker (f)
we have f(g1hg2) = f(g1g2) for all g1, g2 ∈ G. In particular, for g1, g2 ∈ H we have f(g1hg2) = a, which shows
according to the definition of f that g1hg2 ∈ H, that is h ∈ H. Therefore we have Ker (f) ⊆ H. Conversely, for
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h ∈ H we have

f(g1hg2) =
{

a if g1hg2 ∈ H (⇔ g1hg−1
1 g1g2 ∈ H)

b if g1hg2 /∈ H (⇔ g1hg−1
1 g1g2 /∈ H)

=
{

a if g1g2 ∈ H
b if g1g2 /∈ H

= f(g1g2),

for all g1, g2 ∈ G, and therefore h ∈ Ker (f), that is H = Ker (f).
Finally, consider a proper characteristic subgroup H of G and f given by (3). For h ∈ Char (f) we have

f(ϕ(h)g) = f(g) for all g ∈ G and all ϕ ∈ Aut (G). In particular, for g ∈ H and ϕ = 1G we have f(hg) = f(g) = a,
which by (3) shows that hg ∈ H, that is h ∈ H. Therefore we have Char (f) ⊆ H. Conversely, for h ∈ H we have

f(ϕ(h)g) =
{

a if ϕ(h)g ∈ H (⇔ g ∈ H)
b if ϕ(h)g /∈ H (⇔ g /∈ H)

=
{

a if g ∈ H
b if g /∈ H

= f(g),

for all g ∈ G and all ϕ ∈ Aut (G). Thus H = Char (f), which completes the proof. �

This theorem (as well as its proof) may be alternatively rephrased in terms of partitions of G as follows:

Theorem 1′. A non-empty subset H of a group G is a subgroup (a normal subgroup, or a characteristic
subgroup) of G if and only if there exist a partition P of G such that H = LS(P ) (H = NS(P ), or H = CS(P ),
respectively). The same characterization for the subgroups of G holds if we replace LS(P ) by RS(P ).

We denote by {G/LP (f)}l and {G/RP (f)}l the sets of left cosets of LP (f) and RP (f) in G, respectively.
The following result may be regarded as an analogue for arbitrary maps of the fundamental theorem on homo-
morphisms.
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Proposition 2. Let G be a group, S a non-empty set and f : G → S an arbitrary map. Then |G/ Ker (f)| ≥
card {Im (f)}, and moreover we have card {G/LP (f)}l ≥ card {Im (f)} and card {G/RP (f)}l ≥ card {Im (f)}.

Proof. Consider φ : G/ Ker (f) → Im (f) given by φ(g Ker (f)) = f(g). The map φ is well defined: indeed, if
g1 Ker (f) = g2 Ker (f) then g−1

2 g1 ∈ Ker (f), which means that f(x1g
−1
2 g1x

−1
1 x2) = f(x2) for all x1, x2 ∈ G.

In particular, for x1 = x2 = g2 we find f(g1) = f(g2). Since obviously φ is a surjective map, we have
|G/ Ker (f)| ≥ card {Im (f)}. For the remaining two inequalities we consider the maps φ1 : {G/LP (f)}l → Im (f)
and φ2 : {G/RP (f)}l → Im (f) given by φ1(gLP (f)) = f(g−1) and φ2(gRP (f)) = f(g), which are also well
defined and surjective. Hence, if G is a finite group, we have

|Ker (f)| · card {Im (f)} ≤ |G| ,
|LP (f)| · card {Im (f)} ≤ |G| and(4)
|RP (f)| · card {Im (f)} ≤ |G| ,

or, equivalently:

|NS(P )| · card {I} ≤ |G| ,
|LS(P )| · card {I} ≤ |G| and
|RS(P )| · card {I} ≤ |G| ,

if we consider the same problem in terms of partitions of G. �

Inequalities (4) show that if we try to find maps f having nontrivial kernels or groups of periods, then we
have to ask for card {Im (f)} to be “small”. For instance, if |G| = pn1

1 pn2
2 . . . pnk

k with p1 < p2 < . . . < pk prime
numbers, n1 ≥ 1, . . . , nk ≥ 1 and card {Im (f)} > |G| /p1, then LP (f) = RP (f) = Ker (f) = 1. In particular, if
we choose f such that card {Im (f)} > |G| /2, then necessarily LP (f) = RP (f) = Ker (f) = 1.

For finite groups we can also establish the following connection between |LS(P )|, |RS(P )|, |NS(P )|, |CS(P )|
and {card {Ai}}i∈I .
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Proposition 3. Let G be a finite group and P = {Ai}n
i=1 a partition of G. Then |LS(P )|, |RS(P )|, |NS(P )|

and |CS(P )| are divisors of gcd(card {A1}, . . . , card {An}).

Proof. It will be sufficient to prove this assertion for |LS(P )|. Denote by γ the action of LS(P ) on G by left
multiplication. The length of the orbit of each element with respect to γ equals |LS(P )|. Since LS(P ) acts on G
and stabilizes each one of the Ai’s, it turns out that each Ai is a union of distinct orbits with respect to γ. Hence
|LS(P )| divides card {Ai} for every i, which completes the proof. �

This proposition shows that a nontrivial subgroup H of a finite group G can be a left or a right stabilizer only
for maps partitioning G into parts each of whose length is divisible by |H|.

Some properties of LP (f), RP (f), Ker (f) and Char (f) which are immediate from the definition are given by
the following:

Proposition 4. (i) Let fi : G → Si , i = 1, . . . , n be arbitrary maps. For the map f : G → S1× · · · ×Sn given
by f(g) = (f1(g), . . . , fn(g)) we have:

LP (f) =
n⋂

i=1

LP (fi), RP (f) =
n⋂

i=1

RP (fi),

Ker (f) =
n⋂

i=1

Ker (fi), Char (f) =
n⋂

i=1

Char (fi).

(ii) Let fi : Gi → Si, i = 1, ... , n be arbitrary maps. For the map f : G1 × · · · ×Gn → S1 × · · · × Sn given by
f(g1, . . . , gn) = (f1(g1), . . . , fn(gn)) we have:

LP (f) =
n∏

i=1

LP (fi), RP (f) =
n∏

i=1

RP (fi)

Ker (f) =
n∏

i=1

Ker (fi).
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Let us consider now the situation when G has subgroups H and K such that G = K · H and H ∩ K = 1.
Since H and K are not assumed to be normal subgroups of G, one might not expect to obtain an immediate
correspondent of Proposition 4, ii). Nevertheless, since every element g ∈ G may be expressed in a unique way
as a product of an element k ∈ K and an element h ∈ H, we may consider the two projections π : G → K and
ρ : G → H given by π(g) = k and ρ(g) = h, which are not necessarily group homomorphisms, but still play
an important role when we study the subgroups of G. We proceed now to describe the groups of periods and
the kernels of these projections. For this we first recall a construction introduced by M. Takeuchi in [17], which
characterizes in terms of group actions the groups which can be expressed as internal product of two subgroups
with trivial intersection. His construction has also nice applications in the study of Hopf algebras structure,
developed in [8].

The fact that for every element g ∈ G there exists a unique pair (k, h) ∈ K ×H such that g = k · h allows one
to define the maps α : H ×K → K and β : K ×H → H by

(5) α(h, k) = z and β(k, h) = y,

where (z, y) ∈ K ×H is the unique pair such that h · k = z · y. Then, the associativity relations

(h · h′) · k = h · (h′ · k)h · (k · k′) = (h · k) · k′

and the unit properties h · 1 = 1 ·h and 1 · k = k · 1 show that α is a left action of H on the set K and β is a right
action of K on the set H, satisfying the following conditions:

α(h, k · k′) = α(h, k) · α(β(k, h), k′)(6)
β(k, h · h′) = β(α(h′, k), h) · β(k, h′)(7)

and

α(h, 1) = 1 ,(8)
β(k, 1) = 1 .(9)
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The group law in G may be then regarded as

(k1h1) · (k2h2) = k1α(h1, k2) · β(k2, h1)h2,(10)

and the inverse of an element kh is easily seen to be α(h−1, k−1) · β(k−1, h−1).
Conversely, if α is a left action and β a right action satisfying (6) – (9), then the direct product set K × H

acquires the structure of a group denoted Kβ 1α H, when we define the multiplication law by:

(k1, h1) · (k2, h2) = (k1 · α(h1, k2), β(k2, h1) · h2) .

The unit element is (1, 1) and the inverse of the element (k, h) is (α(h−1, k−1), β(k−1, h−1)). Using the injective
homomorphisms i1 : K→Kβ 1α H and i2 : H → Kβ 1α H sending k to (k, 1) and h to (1, h), we can identify
the groups K and H with K1 = i1(K) and H1 = i2(H) respectively, and thus we have Kβ 1α H = K1 ·H1 and
K1 ∩H1 = (1, 1). Moreover, one can prove that if G = K ·H with K ∩H = 1, then G is isomorphic to Kβ 1α H,
with α and β given by (5) (the map θ : Kβ 1α H → G given by θ(k, h) = kh is an isomorphism).

We have the following description for the groups of periods and the kernels of π and ρ:

Lemma 1. Let H, K be subgroups of G such that G = K ·H, K ∩H = 1, and let π and ρ be the projections
of G onto K and H respectively. Then RP (π) = H, LP (π) = Ker (π) = Ker (α) = HG and LP (ρ) = K,
RP (ρ) = Ker (ρ) = Ker (β) = KG, with α, β given by (5).

Proof. According to the definition, RP (π) consists of those elements k2 · h2 ∈ G for which π(k1h1 · k2h2) =
π(k1h1) for all the elements k1 ·h1 ∈ G. Thus, by (10) we search for the elements k2 ·h2 such that k1α(h1, k2) = k1

for all k1 · h1 ∈ G. In particular, for h1 = 1 we find k2 = 1, which shows that RP (π) = H. Then we obviously
have

Ker (π) =
⋂
g∈G

g ·RP (π) · g−1 = HG.

Similarly, LP (π) consists of those elements k1 · h1 ∈ G for which π(k1h1 · k2h2) = π(k2h2) for all the elements
k2 · h2 ∈ G. Thus, by (10) we search for the elements k1 · h1 such that k1α(h1, k2) = k2 for all k2 ∈ K. In



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

particular, if we put k2 = k1, we must have α(h1, k1) = 1. Applying now α(h1, ·), we find k1 = α(h−1
1 , 1), which

by (8) is equal to 1. We therefore see that LP (π) consists of those h1 for which α(h1, k2) = k2 for all k2 ∈ K,
that is LP (π) = Ker (α) E H. By taking the normal interior in both sides, we see that Ker (π) = Ker (α)G. So
in order to prove that Ker (α) = HG we have to check that Ker (α) is actually a normal subgroup of G.

Let h2 ∈ Ker (α) and let k1 · h1 be an arbitrary element of G. Then we have

(k1h1) · h2 · (k1h1)−1 = (k1h1h2) · (α(h−1
1 , k−1

1 )β(k−1
1 , h−1

1 ))

= k1α(h1h2, α(h−1
1 , k−1

1 ))

· β(α(h−1
1 , k−1

1 ), h1h2)β(k−1
1 , h−1

1 ) (by (10))

= β(α(h−1
1 , k−1

1 ), h1h2)β(k−1
1 , h−1

1 ) (h2 ∈ Ker (α))

= β(k−1
1 , h1h2h

−1
1 ), (by (7))

and for an arbitrary k ∈ K we find

α(β(k−1
1 , h1h2h

−1
1 ), k) = α(h1h2h

−1
1 , k−1

1 )−1 · α(h1h2h
−1
1 , k−1

1 k) (by (7))
= k,

since h2 ∈ Ker (α) and Ker (α) E H. Therefore Ker (α) E G and Ker (π) = LP (π) = Ker (α) = HG.
In a similar way one can prove that LP (ρ) = K and Ker (ρ) = RP (ρ) = Ker (β) = KG. �

Proposition 5. Let H, K be subgroups of G such that G = K · H, K ∩ H = 1, and let π and ρ be the
projections of G onto K and H respectively. Let S1, S2 be non-empty sets, f1 : K → S1, f2 : H → S2 arbitrary
maps and f : G → S1 × S2 given by f(g) = (f1(k), f2(h)), with k ∈ K, h ∈ H uniquely determined by g = k · h.
Then
(i) If ρ(LP (f)) ⊆ HG, then LP (f) ⊆ LP (f1) · LP (f2) (in particular this holds if H E G); Conversely, if
LP (f2) = HG, then LP (f1) · LP (f2) ⊆ LP (f);
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(ii) If π(RP (f)) ⊆ KG, then RP (f) ⊆ RP (f1) · RP (f2) (in particular this holds if K E G); Conversely, if
H E G and RP (f1) ⊆ KG, then RP (f1) ·RP (f2) ⊆ RP (f).

Proof. (i) Let x = k1 ·h1 ∈ LP (f). Then for every k2 ·h2 ∈ G we have f(k1h1 ·k2h2) = f(k2h2), which in view
of (10) gives

f1(k1α(h1, k2)) = f1(k2) and
f2(β(k2, h1)h2) = f2(h2).

Our assumption that ρ(LP (f)) ⊆ HG shows that h1 ∈ HG, which according to Lemma 1 equals Ker (α). Therefore
the first equation becomes f1(k1k2) = f1(k2) for all k2 ∈ K, which shows that k1 ∈ LP (f1). Choosing k2 = 1, the
second equation above shows that h1 ∈ LP (f2). Assume now LP (f2) = HG = Ker (α) and let k1 ∈ LP (f1)
and h1 ∈ LP (f2). Then for arbitrary k2 · h2 ∈ G one finds

f(k1h1 · k2h2) = (f1(k1α(h1, k2)), f2(β(k2, h1)h2))
= (f1(α(h1, k2)), f2(β(k2, h1)h2)) (since k1 ∈ LP (f1))
= (f1(k2), f2(β(k2, h1)h2)) (since h1 ∈ Ker (α))
= (f1(k2), f2(h2)),

since by the definition of α and β one has h1 · k2 = α(h1, k2) · β(k2, h1), which for h1 ∈ Ker (α) becomes
β(k2, h1) = k−1

2 h1k2 ∈ Ker (α) = LP (f2).
(ii) The first assertion follows in a similar way. For the second one we use the fact that H E G forces α to be

trivial. �

In the finite case, an additional result relating the groups of periods of f1, f2 and f will be derived in Corollary
1, by using again the projections π and ρ. In the case when G is a direct product, these projections play an
important role in the study of the structure of its subgroups, as shown by the well-known:
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Theorem (Remak [11], Klein, Fricke [6]). Let K and H be normal subgroups of G such that G = K ×H, and
let π and ρ be the corresponding projections of G onto K and H, respectively. Let L be a subgroup of G. Then
(i) (L ∩K) E π(L) ≤ K, (L ∩H) E ρ(L) ≤ H, and π(L)/(L ∩K) ' ρ(L)/(L ∩H);
(ii) L = (L ∩K)× (L ∩H) if and only if π(L) = L ∩K (or if and only if ρ(L) = L ∩H).

For finite groups this result can be extended in the following way:

Theorem 2. Let H, K be subgroups of a finite group G such that G = K ·H, K ∩H = 1, and let π and ρ be
the projections of G onto K and H respectively. Let L be a subgroup of G. Then L ∩K ⊆ π(L), L ∩H ⊆ ρ(L)
and
(i) card (π(L))/|L ∩K| = card (ρ(L))/|L ∩H| = |L|/(|L ∩K| · |L ∩H|);
(ii) L = (L ∩K) · (L ∩H) if and only if π(L) = L ∩K (or if and only if ρ(L) = L ∩H).

Proof. (i) By (10) we see that π and ρ satisfy the relations

π(g1 · g2) = π(g1) · α(ρ(g1), π(g2))(11)
ρ(g1 · g2) = β(π(g2), ρ(g1)) · ρ(g2)(12)

with α and β given by (5). We obviously have

(π|L)−1(1) = {l ∈ L : π(l) = 1} = L ∩H and(13)
(ρ|L)−1(1) = {l ∈ L : ρ(l) = 1} = L ∩K.(14)

The set π(L) is not necessarily a group, but we can prove that [L : L ∩H] = card (π(L)). Let {L/L ∩H}l be
the set of left cosets of L∩H in H and ϕ : {L/L∩H}l → π(L) given by ϕ(g ·L∩H) = π(g). To check that ϕ is
a well defined map, assume that g1 ·L∩H = g2 ·L∩H, with g1, g2 ∈ L. Then g−1

1 g2 ∈ L∩H, so by (13) we have
π(g−1

1 g2) = 1, which by (11) gives 1 = π(g−1
1 ) ·α(ρ(g−1

1 ), π(g2)). This shows that π(g2) = α(ρ(g−1
1 )−1, π(g−1

1 )−1).
On the other hand, we have π(1) = 1, which by (11) gives 1 = π(g−1

1 g1) = π(g−1
1 )·α(ρ(g−1

1 ), π(g1)), or furthermore
π(g1) = α(ρ(g−1

1 )−1, π(g−1
1 )−1). We therefore have π(g1) = π(g2), so ϕ is a well defined map.
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The fact that ϕ is an injective map follows exactly in the reverse order, since if we assume π(g1) = π(g2), with
g1, g2 ∈ L, then by (11) we must have 1 = π(g−1

1 ) · α(ρ(g−1
1 ), π(g2)), that is π(g−1

1 g2) = 1, again by (11). Since
ϕ is obviously a surjective map, we must have [L : L ∩H] = card (π(L)). Similarly, using (12) and (14) we find
[L : L ∩K] = card (ρ(L)). Then

card (π(L))
|L ∩K|

=
card (ρ(L))
|L ∩H|

=
|L|

|L ∩K| · |L ∩H|
,

which also gives the proof of (ii), since (L ∩K) · (L ∩H) ⊆ L ⊆ π(L) · ρ(L). �

Corollary 1. Let H, K be subgroups of a finite group G such that G = K · H, K ∩ H = 1, and let π and
ρ be the projections of G onto K and H respectively. Let S1, S2 be non-empty sets, f1 : K → S1, f2 : H → S2

arbitrary maps and f : G → S1 × S2 given by f(g) = (f1(k), f2(h)), with k ∈ K, h ∈ H uniquely determined by
g = k · h. Then
(i) LP (f) = (LP (f) ∩K) · (LP (f) ∩H) if and only if π(LP (f)) = LP (f1);
(ii) RP (f) = (RP (f) ∩K) · (RP (f) ∩H) if and only if ρ(RP (f)) = RP (f2).

Proof. We use the fact that (LP (f) ∩K) = LP (f1) and (RP (f) ∩H) = RP (f2). �
We end by mentioning some similar results which allow one to describe submodules and ideals as apropriate

”kernels” of arbitrary maps. Thus, if R is a ring with unit, RM a left R-module, S a non-empty set and f : M → S
an arbitrary map, we define

Ker (f) = {x ∈ M : f(αx + y) = f(y), ∀y ∈ M, ∀α ∈ R}.

Similarly, if we replace RM by a right R-module MR we define

Ker (f) = {x ∈ M : f(xα + y) = f(y), ∀y ∈ M, ∀α ∈ R}

and have the following:
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Proposition 6. A non-empty subset N of a module M is a submodule of M if and only if there exists a
non-empty set S and a map f : M → S such that N = Ker (f).

In particular, if we replace R by a commutative field and M by a vector space V we obtain a similar
description for the subspaces of V . We note that if S is a topological space and f : V → S is a continuous map,
then Ker (f) is a closed subspace of V .

Finally, if R is a ring with unit, S a non-empty set and f : R → S an arbitrary map, we define:

Ker l(f) = {x ∈ R : f(ax + b) = f(b), ∀ a, b ∈ R},
Ker r(f) = {x ∈ R : f(xa + b) = f(b), ∀ a, b ∈ R},
Ker (f) = {x ∈ R : f(a1xa2 + b) = f(b), ∀ a1, a2, b ∈ R},

the left kernel, the right kernel and the kernel of f , respectively. These ideals obviously coincide if R is a
commutative ring. We then have:

Proposition 7. Let R be a ring with unit and I a proper non-empty subset of R. Then I is a left (right,
two-sided) ideal of R if and only if there exists a set S with at least two elements and a map f : R → S such that
I = Ker l(f) (I = Ker r(f), I = Ker (f), respectively).

The proof of these results is similar to the one of Theorem 1 and uses again the indicator map of the corre-
sponding subset.
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