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THE FROBENIUS THEOREM ON N-DIMENSIONAL QUANTUM HYPERPLANE

C. CIUPALĂ

Abstract. In this paper we introduce the universal ρ-differential calculus on a ρ-algebra and we prove the universality of
the construction. We also present submanifolds, distributions, linear connections and two different ρ-differential calculi
on Sq

N : the algebra of forms and the algebra of universal differential forms of Sq
N . Finally we prove the Frobenius

theorem on the N -dimensional quantum hyperplane Sq
N in a general case, for any ρ-differential calculus on Sq

N .

1. Introduction

The basic idea of noncommutative geometry is to replace an algebra of smooth functions defined on a smooth
manifold by an abstract associative algebra A which is not necessarily commutative. In the context of noncom-
mutative geometry the basic role is the generalization of the notion of differential forms (on a manifold). A
(noncommutative) differential calculus over the associative algebra A is a Z-graded algebra Ω(A) = ⊕n≥0Ωn(A)
(where Ωn(A) are A-bimodules and Ω0(A) = A) together with a linear operator d : Ωn(A) → Ωn+1(A) satisfying
d2 = 0 and d(ωω′) = (dω)ω′ + (−1)nωdω′ where ω ∈ Ωn(A).

There are studied some differential calculi associated to A, here we recall two of them: the algebra of forms
of A in [8] and the algebra of universal differential forms of A in [2]. These two differential calculi are studied
even in the case when A is a superalgebra in [10] and in [11], but when A is a ρ-algebra there is studied only the
algebra of forms of A in [1].
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In this paper we introduce the notion of universal derivation of the order (α, β) , we construct the algebra of
universal differential forms of a ρ-algebra A and we prove the universality of the construction. We apply this to
the particular case of the N -dimensional quantum hyperplane Sq

N and thus we obtain a new differential calculus
Ωα (Sq

N ) on Sq
N , denoted the algebra of universal differential forms of Sq

N .
On the other hand we present submanifolds algebra on Sq

N in the context of noncommutative geometry, we also
define linear connections, distributions on Sq

N and we prove the Frobenius theorem on Sq
N , for any ρ-differential

calculus ΩSq
N on Sq

N .

2. Differential calculus on ρ-algebras

In this section we define the differential calculus on a ρ-algebra A and we give two examples of such differential
calculus on A: the algebra of forms Ω (A) of a ρ-commutative algebra A from [1] and the algebra of universal
differential forms Ωα (A) of a ρ-algebra A. We briefly review the basic notions of ρ-algebras and ρ-modules on
ρ-algebras. (see [1], [3], [5] and [6] for details).

First we review the basic notions about ρ-algebras, ρ-bimodules over a ρ-algebra and the derivations on ρ-
bimodules.

Let G be an abelian group, additively written, and let A be a G-graded algebra. A is a ρ-algebra if there is a
map ρ : G×G → k which satisfies the relations

ρ(a, b) = ρ(b, a)−1 and ρ(a + b, c) = ρ(a, c)ρ(b, c), for any a, b, c ∈ G.(1)

The G-degree of a (nonzero) homogeneous element f of A is denoted by |f | . The ρ-algebra A is ρ-commutative
if fg = ρ (|f | , |g|) gf for any f ∈ A|f | and g ∈ A|g|.

The morphism f : M → N between the ρ-bimodules M and N over the ρ-algebra A is of degree β ∈ G if
f : Mα → Nα+β for any α ∈ Ġ, f(am) = ρ(α, |a|)af(m) and f(ma) = f(m)a for any a ∈ A|a| and m ∈ M.

Definition 1. Let α, β ∈ G and M a ρ-bimodule over the ρ-algebra A. A ρ-derivation of order (α, β) on M
(ρ-derivation of degree α and of G-degree β) is a linear map X : A → M , which fulfils the properties:
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1. X : A∗ → M∗+β ,

2. X(fg) = (Xf)g + ρ(α, |f |)f(Xg),for any f ∈ A|f | and g ∈ A.

The left product fX : A → M between the element f ∈ A and a ρ-derivation X of the order (α, β) is defined
in a natural way: by (fX)(g) = fX(g), for any g ∈ A.

Proposition 1. If is X a ρ-derivation of order (α, β) on M and f ∈ A|f |, then fX is a derivation of the
order (|f |+ α, |f |+ β) on M if and only if the algebra A is ρ-commutative.

Proof. We have to show that (fX)(gh) = ((fX)g)h + ρ(|f | + α, |g|)g(fX)h and fX : A∗ → M∗+|f |+|X|, for
any h ∈ A|h| and f ∈ A|f |.

(fX) (gh) = f(X(gh)) = f(X(g)h + ρ(α, |g|)gX(h))

= (fX)(g)h + ρ(α, |g|)fgX(h) = (fX)(g)h + ρ(α, |g|)ρ(|f | , |g| gfX(h)

= (fX)(g)h + ρ(α, |f |+ |g|)g(fX)(h).

The second relation is obvious. �

The linear map X : A → A is a ρ-derivation on A if it is a ρ-derivation of the order (|X| , |X|) . Next we denote
by ρ-Der(A) the ρ-bimodule over A of the all ρ-derivations on A.

Definition 2. Let A be a ρ-algebra. We say that Ω (A) = ⊕
(n,β)∈Z×G

Ωn
β (A) is a ρ-differential calculus on A if

Ω (A) is a Z×G-graded algebra, Ω (A) is a ρ-bimodule over A, Ω0 (A) = ⊕
β∈G

Ω0
β (A) = A and there is an element

α ∈ G and ρ-derivation d : Ω (A) → Ω (A) of the order ((1, α) , (1, 0)) such that d2 = 0.

The first example of a ρ-differential calculus over the ρ-commutative algebra A is the algebra of forms (Ω(A), d)
of A from [1].

The second example of a ρ-differential calculus over a ρ-algebra is the universal differential calculus of A from
the next subsection.
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2.1. The algebra of universal differential forms of a ρ-algebra

In this subsection we define the algebra of universal differential forms of the ρ-algebra A and we prove the
universality of the construction. First we introduce the universal derivation of the order (α, β) , α, β ∈ G.

Definition 3. Let M be a ρ-bimodule over A. The ρ-derivation D : A → M of the order (α, β) is universal
if for ρ-derivation D′ : A → N of the order (α, 0) , there is an unique morphism Φ : M → N of ρ-bimodules of
degree β such that D′ = Φ ◦D.

Next we will construct an universal derivation over the ρ-algebra A.
Let α ∈ G, µ : A⊗A → A be the map µ (x⊗ y) = ρ (α, |y|) xy and Ω1

αA = ker (µ).
We define the map

d : A → Ω1
αA(2)

by

dx = 1⊗ x− ρ (α, |x|) x⊗ 1,(3)

for any x ∈ A.

Proposition 2. Ω1
αA is a ρ-bimodule over A and the map d : A → Ω1

αA is an universal derivation of the order
(α, 0) .

Proof. We have to show that a(b ⊗ c) ∈ Ω1
αA, (b ⊗ c)a ∈ Ω1

αA and (a(b ⊗ c))d = a((b ⊗ c)d), for any a, d ∈ A
and b⊗ c ∈ Ω1

αA. Indeed

µ(a(b⊗ c)) = µ(ab⊗ c) = ρ(α, |ab|)abc = ρ(α, |a|)a(ρ(α, |b|)bc) = 0.

The other relations are obvious.
It is easy to see that Ω1

αA is the space {xdy : x, y ∈ A and d from (3)} .
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Now we show that d : A → Ω1
αA is a ρ-derivation of the order (α, 0):

(da)b + ρ(α, |a|)adb = (1⊗ a− ρ(α, |a|)a⊗ 1)b + ρ(α, |a|)a(1⊗ b− ρ(α, |b|)b⊗ 1)

= 1⊗ ab− ρ(α, |a|)a⊗ b+ρ(α, |a|)a⊗ b− ρ(α, |a|+|b|)ab⊗ 1

= 1⊗ (ab)− ρ(α, |ab|)(ab)⊗ 1 = d(ab).

Let M be a ρ-bimodule over A and D:A → M a ρ-derivation of the order (α, β) . We define the map Φ : Ω1
αA → M

in the following way:

Φ(a⊗ b) = ρ(α, |a|)aD(b),

for any a⊗ b ∈ Ω1
αA.

Now we show that Φ is a morphism of ρ-bimodules over A:

Φ(a(b⊗ c)) = φ((ab)⊗ c) = ρ(α, |ab|)abD(c)

= ρ(α, |a|)a[ρ(α, |b|)bD(c)] = ρ(α, |a|)aΦ(b⊗ c).

On the other hand
Φ((a⊗ b)c) = Φ(a⊗ (bc)) = ρ(α, |a|)aD(bc)

= ρ(α, |a|)a[D(b)c + ρ(α, |b|)bD(c)]

= ρ(α, |a|)aD(b)c + ρ(α, |b|)[ρ(α, |a|)ab]D(c)

= ρ(α, |a|)aD(b)c + ρ(α, |b|)µ(a⊗ b)D(c)
a⊗b∈ker(µ)

= ρ(α, |a|)aD(b)c = Φ(a⊗ b)c.

Finally we get

(Φ ◦ d)(a) = Φ(1⊗ a− ρ(α, |a|)a⊗ 1)

= ρ(α, |1|)D(a)− ρ(α, |a|)ρ(α, |a|)aD(1) = D(a)
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so we have proved that Φ ◦ d = D. �

Let
Ωn

αA = Ω1
αA⊗

A
. . .⊗

A
Ω1

αA︸ ︷︷ ︸
n times

, Ω0
αA = A and ΩαA = ⊕

n≥0
Ωn

αA.

Naturally ΩαA is a ρ-bimodule over A and a algebra with the multiplication (ω, θ) 7→ ω⊗
A

θ, for any ω, θ ∈ ΩαA.

Remark 1. The algebra ΩαA may be identified with the algebra generated by the algebra A and the derivations
da, a ∈ A which satisfies the following relations:

1. da is linear in a
2. the ρ-Leibniz rule: d(ab) = d(a)b + ρ(α, |a|)adb
3. d(1) = 0.

Ωn
αA is the space of n-forms a0da1...dan, ai ∈ A for any 0≤ i ≤ n. Ωn

αA is a ρ-bimodule over A with the left
multiplication

a(a0da1 . . . dan) = aa0da1 . . . dan,(4)

and with the right multiplication given by:

(a0da1 . . . dan)an+1 =
n∑

i=1

(−1)n−iρ(α,

n∑
j=i+1

|aj |)(a0da1 . . . d(aiai+1) . . . dan+1)

+ (−1)nρ(α,

n∑
i=1

|aj |)a0a1da2 . . . dan+1.

The multiplication in the algebra ΩαA is:

(a0da1 . . . dan)(an+1dan+2 . . . dam+n) = ((a0da1 . . . dan)an+1)dan+2 . . . dam+n),
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for any ai ∈ A, 0≤ i ≤ n + m, n, m ∈ N.

We define the G-degree of the n-form a0da1 . . . dan in the following way

|a0da1 . . . dan| =
n∑

i=0

|ai| .

It is obvious that |ωn · ωm| = |ωn|+ |ωm| for any homogeneous forms ωn ∈ Ωn
αA and ωm ∈ Ωm

α A.
ΩαA is a G′ = Z×G-graded algebra with the G′ degree of the n-form a0da1 . . . dan defined by

|a0da1 . . . dan|′ =

(
n,

n∑
i=0

|ai|

)
.

We may define the cocycle ρ′ : G′ ×G′ → k on the algebra ΩαA thus:

ρ′(|a0da1 . . . dan |′ , |b0db1 . . . dbm |′) = (−1)nmρ

(
n∑

i=0

|ai | ,
m∑

i=0

|bi |

)
(5)

and thus we have that ΩαA is a ρ′-algebra. It may be proved that the map d : ΩαA → ΩαA is a derivation of the
order ((1, α) , (1, 0)). Concluding we have the following result:

Theorem 1. (ΩαA, d) is a ρ-differential calculus over A.

Example 1. In the case when the group G is trivial then A is the usual associative algebra and ΩαA is the
algebra of universal differential forms of A.

Example 2. If the group G is Z2 and the cocycle ρ is defined by ρ (a, b) = (−1)ab then A is a superalgebra.
In the case when α = 1 ΩαA is the superalgebra of universal differential forms of A from [11].
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3. The Frobenius theorem on quantum hyperplane

In this section we give the Frobenius theorem on the N -dimensional quantum hyperplane Sq
N and we give the

equations of any globally integrable distributions and parallel with respect to a connection ∇. These results are
valid for any ρ-differential calculus on Sq

N . In the first subsection we present two different ρ-differential calculi on
Sq

N : the first one is the algebra of forms Ω (Sq
N ) on Sq

N form [1] and the second one is the algebra of universal
differential forms Ωα (Sq

N ) on Sq
N . Both of these ρ-differential calculi on Sq

N are different by differential calculus
on Sq

N of Wess and Zumino [15]. In the second subsection we present submanifolds on Sq
N , in the third subsection

we review the basic notions about linear connections on Sq
N and finally we will give the main results of this paper.

3.1. Differential calculi on Sq
N

First we review the basic notions about the N -dimensional quantum hyperplane Sq
N . For more details see [1] and

[3].
The N -dimensional quantum hyperplane Sq

N is the k-algebra generated by the unit element and N linearly
independent elements x1, . . . , xN satisfying the relations: xixj = qxjxi, i < j for some fixed q ∈ k, q 6= 0.

Sq
N is a ZN -graded algebra

Sq
N =

∞⊕
n1 ,...,nN

(Sq
N )n1...,nN

,

with (Sq
N )n1,...,nN

the one-dimensional subspace spanned by products xn1 ·. . .·xnN . The ZN -degree of xn1 ·. . .·xnN

is n = (n1 , . . . , nN). The cocycle ρ : ZN × ZN → k is

ρ(n, n′) = q

N∑
j,k=1

njn′
kαjk

,

with αjk = 1 for j < k, 0 for j = k and −1 for j > k.
It may be proved that the N -dimensional quantum hyperplane Sq

N is a ρ-commutative algebra.
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Remark that the space of ρ-derivations ρ-Der(Sq
N ) is a free Sq

N -module of rank N with ∂/∂x1, . . . , ∂/∂xN as
the basis, where ∂/∂xi(xj) = δij .

Remark 2. Let (ΩSq
N , d) a ρ-differential calculus on Sq

N , with d : ΩSq
N → ΩSq

N a ρ-derivation of the order
((1, α) , (1, 0)) , where α, .0 ∈ ZN It is easy to see that ΩSq

N is generated by {x1, . . . , xN} and there differentials
{y1 =dx1, . . . , yN =dxN} with some relations between them.

Next we give some examples of ρ-differential calculi on Sq
N .

3.1.1. The algebra of forms Ω (Sq
N ) of Sq

N . Ω (Sq
N ) ([1], [3]) is the algebra determined by the elements

x1, . . . , xN and y1 = dx1, . . . , yN = dxN with the relations

xjxk = qαjkxkxj , yjyk = −qαjkykyj , xjyk = qαjkykxj .(6)

3.1.2. The algebra of universal differential forms Ωα (A) of Sq
N . Next we will apply the construction of

the algebra of the universal differential forms of a ρ-algebra from the remark 1 to the ρ-algebra Sq
N and, thus, we

will give a new differential calculus on Sq
N denoted by Ωα (Sq

N ) .
Let α = (n1, . . . , nN ) be an arbitrary element from ZN . Ωα (Sq

N ) is the algebra generated by a ∈ Sq
N and the

symbols da ,which satisfies the following relations:
1. da is linear in a.
2. the ρ-Leibniz rule: d(ab) = (da)b + ρ(n, |a|)adb.
3. d(1) = 0.

Next we present the structure of the algebra Ωα (Sq
N ) .

We use the following notations yi = dxi, for any i ∈ {1, . . . , N}. By an easy computation we get the following
lemmas:

Lemma 1. yixj = ρ(α + |xi| , |xj |)xjyi, for any i, j ∈ {1, . . . , N}.

Lemma 2. yjyi = ρ(α, |xi|)ρ(n + |xi| , |xj |)yiyj , for any i, j ∈ {1, . . . , N}.
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Lemma 3. d(xm
i ) = mρm−1(α, |xi|)xm−1

i yi, for any m ∈ N and i ∈ {1, . . . , N}.

Putting together the previous lemmas we obtain the following theorem which gives the structures of the algebra
Ωα (Sq

N ):

Theorem 2. Ωα (Sq
N ) is the algebra spanned by the elements xi and yi with i ∈ {1, . . . , N} which satisfies the

following relations:

1. xixj = ρ(|xi| , |xj |)xjxi,

2. yixj = ρ(α + |xi| , |xj |)xjyi,

3. yjyi = ρ(, |xi|)ρ(α + |xi| , |xj |)yiyj , for any i, j ∈ {1, . . . , N}.

3.2. Submanifolds in Sq
N

In this section we use the definition of submanifolds algebra in noncommutative geometry from [11] to introduce
submanifolds in the quantum hyperplane.

Let C be an ideal in Sq
N . We denote by Q = Sq

N/C the quotient algebra and by p : Sq
N → Q the quotient map.

We consider the following two Lie ρ-subalgebras of ρ-DerSq
N :

GC = {X ∈ ρ-DerSq
N/XC ⊂ C}

and

GA = {X ∈ ρ-DerSq
N/X(Sq

N ) ⊂ C}

We define the map π : GC → ρ-DerSq
N by π(X)p(a) = p(Xa) for any a ∈ Sq

N and X ∈ GC .

Definition 4. The quotient algebra Q = Sq
N/C is a submanifold algebra of Sq

N if the map π is sujective.
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In this situation we obtain the following the short exact sequence of ρ-Lie algebras.

0 → GA → GC → ρ-DerQ → 0(7)

Let C be the ideal from Sq
N generated by the elements x1, x2, . . . , xp with p ∈ {1, . . . , N}. Then the algebra Q

generated by the elements xp+1, . . . , xN and we have that A = C ⊕Q.

Theorem 3. GC = (ρ-Der Q)⊕GA.

Proof. Let X be a colour derivation from ρ-DerSq
N , then

X =
N∑

i=1

Xi
∂

∂xi
and Xi = XC

i + XQ
i

with XC
i ∈ C and XQ

i ∈ Q for any i ∈ {1, . . . , N}.
If X ∈ GC then X(c) ∈ C for any c ∈ C so

X(c) =
N∑

i=1

XC
i

∂c

∂xi
+

N∑
i=1

XQ
i

∂c

∂xi

=
N∑

i=1

XC
i

∂c

∂xi︸ ︷︷ ︸
∈C

+
p∑

i=1

XQ
i

∂c

∂xi
+

N∑
i=p+1

XQ
i

∂c

∂xi︸ ︷︷ ︸
∈C

∈ C

Results that XQ
i = 0 for any i ∈ {1, . . . , p}.

So any element X =
N∑

i=1

Xi ∂/∂xi from GC may be written is the following way

X = XGA + XQ
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where

XGA =
N∑

i=1

XC
i

∂

∂xi
∈ GA and XQ =

N∑
i=1

XQ
i

∂

∂xi
∈ ρ-DerQ

with XQ
i = 0 for i ∈ {1, . . . , p}. �

Corollary 1. Q is submanifolds algebra of Sq
N .

3.3. Linear connections on Sq
N

In this subsection we use the definition of linear connections on ρ-algebras from the paper [3]. Let (ΩSq
N , d) be

a ρ-differential calculus on Sq
N and n ∈ ZN . A linear connection along the field X=

N∑
i=1

Xi
∂

∂xi
on the ρ-bimodule

ΩnSq
N over Sq

N is a linear map

∇ : ρ-Der (Sq
N ) → End (ΩnSq

N )

of degree |X| such that

∇(X)(aω) = ∇X(aω) = ρ(|X| , |ω|)X(a)ω + a∇Xω

for any X ∈ ρ-DerSq
N , a ∈ Sq

N and ω ∈ ΩnSq
N .

Using the structure of the free bimodule ΩnSq
N we deduce that any such connection ∇ is well defined by the

connections coefficients Γj1,...,jn

i,i1,...,in
∈ Sq

N defined by

∇ ∂
∂xi

(yi1 . . . yin) = Γj1,...,jn

i,i1,...,in
yj1 . . . yjn .(8)

Remark 3. The connection coefficients Γj1,...,jn

i,i1,...,in
satisfy the some properties which depend on the choice of

the ρ-differential calculus (ΩSq
N , d) .
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Example 3. If (ΩSq
N , d) is the algebra of forms Ω (Sq

N ) of Sq
N we obtain that

Γj1,...,jn

i,i1,...,ik,ik+1,...,in
= −qαik,ik+1 Γj1,...,jn

i,i1,...,ik+1,ik,...,in
(9)

for any i, i1, . . . , in, j1, . . . , jn ∈ {1, . . . , n}.

Example 4. If (ΩSq
N , d) is the algebra of universal differential forms Ωα (Sq

N ) of Sq
N using an easy computation

we obtain that

Γj1,...,jm

i,i1,...,ik,ik+1,...,im
= ρ(α, |yik

|)ρ(α + |yik
| ,
∣∣yik+1

∣∣)Γj1,...,jm

i,i1,...,ik+1,ik,...,im
.(10)

3.4. Distributions in Sq
N

Next we introduce distributions on Sq
N . Let (ΩSq

N , d) be a ρ-differential calculus on Sq
N .

Definition 5. A distribution D on Sq
N is a Sq

N -subbimodule of Ω1Sq
N . The distribution D is globally integrable

if there is a subset B of Sq
N such that D is the subspace generated by Sq

Nd(B) and by d(B)Sq
N .

Definition 6. We say that the distribution D is parallel with respect to the connection ∇ : ρ-DerSq
N →

End(Ω1Sq
N ) if

∇X(m) = 0, for any X ∈ ρ-DerSq
N and for any m ∈ D.

Using the structure of ΩSq
N we obtain the following structure theorem of globally integrable distributions.

Theorem 4. Any globally integrable distributions D determined by Sq
Nd(B) and d(B)Sq

N where B is the subset
{x1, . . . , xp}. In this situation we say that the distribution D has the dimension p.

3.4.1. The Frobenius theorem for quantum hyperplane. In this section we will give a Frobenius theorem
for N -dimensional quantum hyperplane which is obvious from the previous results.
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Theorem 5. The Frobenius theorem for quantum hyperplane. Any globally integrable distribution from Sq
N

is given by a maximal submanifold algebra of Sq
N and conversely any submanifold algebra of Sq

N give a globally
integrable distribution with the same dimension.

Proof. Let D be a global integrable distribution from Sq
N . Then from the theorem 10, D is given by Sq

NdQ, where
Q is a subset with p elements from {x1, . . . xN} . If we denote by C the ideal of Sq

N generated by {x1, . . . xN} \Q
and using the Corollary 9 we obtain that Q=Sq

N/C is a submanifold algebra of Sq
N of the dimension p.

Conversely, if Q is a submanifold algebra of the dimension p of Sq
N results that there is an ideal C of the

dimension N − p of Sq
N such that Q = Sq

N/C. If we denote by {x1, . . . , xN−p} is the subset of {x1, . . . , xN} which
generates the ideal C then the set Q = {xN−p+1, . . . , xN} generates a distribution of the dimension p of Sq

N . �

We may find the equations of an globally integrable distributions and parallel with respect to a connection ∇.

Theorem 6. Any globally integrable and parallel distribution D with respect to a connection ∇ : ρ-DerSq
N →

End(Ω1Sq
N ) of dimension p is given by the following equations:

Γk
i,j = 0(11)

for a subset I of {1, . . . , N} with p elements and for any i ∈ {1, . . . , N}, j ∈ I, k ∈ {1, . . . , N} \ I.
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