THE FROBENIUS THEOREM ON N-DIMENSIONAL QUANTUM HYPERPLANE

C. CIUPALĂ

Abstract. In this paper we introduce the universal ρ-differential calculus on a ρ-algebra and we prove the universality of the construction. We also present submanifolds, distributions, linear connections and two different ρ-differential calculi on S_{N}^{q} : the algebra of forms and the algebra of universal differential forms of S_{N}^{q}. Finally we prove the Frobenius theorem on the N-dimensional quantum hyperplane S_{N}^{q} in a general case, for any ρ-differential calculus on S_{N}^{q}.

1. Introduction

The basic idea of noncommutative geometry is to replace an algebra of smooth functions defined on a smooth manifold by an abstract associative algebra A which is not necessarily commutative. In the context of noncommutative geometry the basic role is the generalization of the notion of differential forms (on a manifold). A (noncommutative) differential calculus over the associative algebra A is a \mathbb{Z}-graded algebra $\Omega(A)=\oplus_{n \geq 0} \Omega^{n}(A)$ (where $\Omega^{n}(A)$ are A-bimodules and $\Omega^{0}(A)=A$) together with a linear operator $d: \Omega^{n}(A) \rightarrow \Omega^{n+1}(A)$ satisfying $d^{2}=0$ and $d\left(\omega \omega^{\prime}\right)=(d \omega) \omega^{\prime}+(-1)^{n} \omega d \omega^{\prime}$ where $\omega \in \Omega^{n}(A)$.

There are studied some differential calculi associated to A, here we recall two of them: the algebra of forms of A in [8] and the algebra of universal differential forms of A in [2]. These two differential calculi are studied even in the case when A is a superalgebra in [10] and in [11], but when A is a ρ-algebra there is studied only the algebra of forms of A in [1].

[^0]2000 Mathematics Subject Classification. Primary 81R60, 16W99, 53C04.
Key words and phrases. noncommutative geometry, linear connections, submanifolds, distributions, quantum hyperplane.

In this paper we introduce the notion of universal derivation of the order (α, β), we construct the algebra of universal differential forms of a ρ-algebra A and we prove the universality of the construction. We apply this to the particular case of the N-dimensional quantum hyperplane S_{N}^{q} and thus we obtain a new differential calculus $\Omega_{\alpha}\left(S_{N}^{q}\right)$ on S_{N}^{q}, denoted the algebra of universal differential forms of S_{N}^{q}.

On the other hand we present submanifolds algebra on S_{N}^{q} in the context of noncommutative geometry, we also define linear connections, distributions on S_{N}^{q} and we prove the Frobenius theorem on S_{N}^{q}, for any ρ-differential calculus ΩS_{N}^{q} on S_{N}^{q}.

2. Differential calculus on ρ-ALGEBRAS

In this section we define the differential calculus on a ρ-algebra A and we give two examples of such differential calculus on A : the algebra of forms $\Omega(A)$ of a ρ-commutative algebra A from [1] and the algebra of universal differential forms $\Omega_{\alpha}(A)$ of a ρ-algebra A. We briefly review the basic notions of ρ-algebras and ρ-modules on ρ-algebras. (see [1], [3], [5] and [6] for details).

First we review the basic notions about ρ-algebras, ρ-bimodules over a ρ-algebra and the derivations on ρ bimodules.

Let G be an abelian group, additively written, and let A be a G-graded algebra. A is a ρ-algebra if there is a map $\rho: G \times G \rightarrow k$ which satisfies the relations

$$
\begin{equation*}
\rho(a, b)=\rho(b, a)^{-1} \text { and } \rho(a+b, c)=\rho(a, c) \rho(b, c), \text { for any } a, b, c \in G . \tag{1}
\end{equation*}
$$

The G-degree of a (nonzero) homogeneous element f of A is denoted by $|f|$. The ρ-algebra A is ρ-commutative if $f g=\rho(|f|,|g|) g f$ for any $f \in A_{|f|}$ and $g \in A_{|g|}$.

The morphism $f: M \rightarrow N$ between the ρ-bimodules M and N over the ρ-algebra A is of degree $\beta \in G$ if $f: M_{\alpha} \rightarrow N_{\alpha+\beta}$ for any $\alpha \in \dot{G}, f(a m)=\rho(\alpha,|a|) a f(m)$ and $f(m a)=f(m) a$ for any $a \in A_{|a|}$ and $m \in M$.

Definition 1. Let $\alpha, \beta \in G$ and M a ρ-bimodule over the ρ-algebra A. A ρ-derivation of order (α, β) on M (ρ-derivation of degree α and of G-degree β) is a linear map $X: A \rightarrow M$, which fulfils the properties:

1. $X: A_{*} \rightarrow M_{*+\beta}$,
2. $X(f g)=(X f) g+\rho(\alpha,|f|) f(X g)$, for any $f \in A_{|f|}$ and $g \in A$.

The left product $f X: A \rightarrow M$ between the element $f \in A$ and a ρ-derivation X of the order (α, β) is defined in a natural way: by $(f X)(g)=f X(g)$, for any $g \in A$.

Proposition 1. If is X a ρ-derivation of order (α, β) on M and $f \in A_{|f|}$, then $f X$ is a derivation of the order $(|f|+\alpha,|f|+\beta)$ on M if and only if the algebra A is ρ-commutative.

Proof. We have to show that $(f X)(g h)=((f X) g) h+\rho(|f|+\alpha,|g|) g(f X) h$ and $f X: A_{*} \rightarrow M_{*+|f|+|X|}$, for any $h \in A_{|h|}$ and $f \in A_{|f|}$.

$$
\begin{aligned}
(f X)(g h) & =f(X(g h))=f(X(g) h+\rho(\alpha,|g|) g X(h)) \\
& =(f X)(g) h+\rho(\alpha,|g|) f g X(h)=(f X)(g) h+\rho(\alpha,|g|) \rho(|f|,|g| g f X(h) \\
& =(f X)(g) h+\rho(\alpha,|f|+|g|) g(f X)(h)
\end{aligned}
$$

The second relation is obvious.
The linear map $X: A \rightarrow A$ is a ρ-derivation on A if it is a ρ-derivation of the order $(|X|,|X|)$. Next we denote by ρ - $\operatorname{Der}(A)$ the ρ-bimodule over A of the all ρ-derivations on A.

Definition 2. Let A be a ρ-algebra. We say that $\Omega(A)=\underset{(n, \beta) \in \mathbb{Z} \times G}{\oplus} \Omega_{\beta}^{n}(A)$ is a ρ-differential calculus on A if $\Omega(A)$ is a $\mathbb{Z} \times G$-graded algebra, $\Omega(A)$ is a ρ-bimodule over $A, \Omega^{0}(A)=\underset{\beta \in G}{\oplus} \Omega_{\beta}^{0}(A)=A$ and there is an element $\alpha \in G$ and ρ-derivation $d: \Omega(A) \rightarrow \Omega(A)$ of the order $((1, \alpha),(1,0))$ such that $d^{2}=0$.

The first example of a ρ-differential calculus over the ρ-commutative algebra A is the algebra of forms $(\Omega(A), d)$ of A from [1].

The second example of a ρ-differential calculus over a ρ-algebra is the universal differential calculus of A from the next subsection.
2.1. The algebra of universal differential forms of a ρ-algebra

In this subsection we define the algebra of universal differential forms of the ρ-algebra A and we prove the universality of the construction. First we introduce the universal derivation of the order $(\alpha, \beta), \alpha, \beta \in G$.

Definition 3. Let M be a ρ-bimodule over A. The ρ-derivation $D: A \rightarrow M$ of the order (α, β) is universal if for ρ-derivation $D^{\prime}: A \rightarrow N$ of the order $(\alpha, 0)$, there is an unique morphism $\Phi: M \rightarrow N$ of ρ-bimodules of degree β such that $D^{\prime}=\Phi \circ D$.

Next we will construct an universal derivation over the ρ-algebra A.
Let $\alpha \in G, \mu: A \otimes A \rightarrow A$ be the map $\mu(x \otimes y)=\rho(\alpha,|y|) x y$ and $\Omega_{\alpha}^{1} A=\operatorname{ker}(\mu)$.
We define the map

$$
\begin{equation*}
d: A \rightarrow \Omega_{\alpha}^{1} A \tag{2}
\end{equation*}
$$

by

$$
\begin{equation*}
d x=1 \otimes x-\rho(\alpha,|x|) x \otimes 1 \tag{3}
\end{equation*}
$$

for any $x \in A$.
Proposition 2. $\Omega_{\alpha}^{1} A$ is a ρ-bimodule over A and the map $d: A \rightarrow \Omega_{\alpha}^{1} A$ is an universal derivation of the order $(\alpha, 0)$.

Proof. We have to show that $a(b \otimes c) \in \Omega_{\alpha}^{1} A,(b \otimes c) a \in \Omega_{\alpha}^{1} A$ and $(a(b \otimes c)) d=a((b \otimes c) d)$, for any $a, d \in A$ and $b \otimes c \in \Omega_{\alpha}^{1} A$. Indeed

$$
\mu(a(b \otimes c))=\mu(a b \otimes c)=\rho(\alpha,|a b|) a b c=\rho(\alpha,|a|) a(\rho(\alpha,|b|) b c)=0
$$

The other relations are obvious.
It is easy to see that $\Omega_{\alpha}^{1} A$ is the space $\{x d y: x, y \in A$ and d from (3) $\}$.

Now we show that $d: A \rightarrow \Omega_{\alpha}^{1} A$ is a ρ-derivation of the order $(\alpha, 0)$:

$$
\begin{aligned}
(d a) b+\rho(\alpha,|a|) a d b & =(1 \otimes a-\rho(\alpha,|a|) a \otimes 1) b+\rho(\alpha,|a|) a(1 \otimes b-\rho(\alpha,|b|) b \otimes 1) \\
& =1 \otimes a b-\rho(\alpha,|a|) a \otimes b+\rho(\alpha,|a|) a \otimes b-\rho(\alpha,|a|+|b|) a b \otimes 1 \\
& =1 \otimes(a b)-\rho(\alpha,|a b|)(a b) \otimes 1=d(a b)
\end{aligned}
$$

Let M be a ρ-bimodule over A and $D: A \rightarrow M$ a ρ-derivation of the order (α, β). We define the map $\Phi: \Omega_{\alpha}^{1} A \rightarrow M$ in the following way:

$$
\Phi(a \otimes b)=\rho(\alpha,|a|) a D(b)
$$

for any $a \otimes b \in \Omega_{\alpha}^{1} A$.
Now we show that Φ is a morphism of ρ-bimodules over A :

$$
\begin{aligned}
\Phi(a(b \otimes c)) & =\phi((a b) \otimes c)=\rho(\alpha,|a b|) a b D(c) \\
& =\rho(\alpha,|a|) a[\rho(\alpha,|b|) b D(c)]=\rho(\alpha,|a|) a \Phi(b \otimes c)
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\Phi((a \otimes b) c) & =\Phi(a \otimes(b c))=\rho(\alpha,|a|) a D(b c) \\
& =\rho(\alpha,|a|) a[D(b) c+\rho(\alpha,|b|) b D(c)] \\
& =\rho(\alpha,|a|) a D(b) c+\rho(\alpha,|b|)[\rho(\alpha,|a|) a b] D(c) \\
& =\rho(\alpha,|a|) a D(b) c+\rho(\alpha,|b|) \mu(a \otimes b) D(c) \\
& a \otimes b \in \operatorname{ker}(\mu) \\
= & (\alpha,|a|) a D(b) c=\Phi(a \otimes b) c .
\end{aligned}
$$

Finally we get

$$
\begin{aligned}
(\Phi \circ d)(a) & =\Phi(1 \otimes a-\rho(\alpha,|a|) a \otimes 1) \\
& =\rho(\alpha,|1|) D(a)-\rho(\alpha,|a|) \rho(\alpha,|a|) a D(1)=D(a)
\end{aligned}
$$

so we have proved that $\Phi \circ d=D$.
Let

$$
\Omega_{\alpha}^{n} A=\underbrace{\Omega_{\alpha}^{1} A \underset{A}{\otimes} \ldots \otimes_{A}^{\otimes} \Omega_{\alpha}^{1} A}_{n \text { times }}, \quad \Omega_{\alpha}^{0} A=A \quad \text { and } \quad \Omega_{\alpha} A=\underset{n \geq 0}{\oplus} \Omega_{\alpha}^{n} A .
$$

Naturally $\Omega_{\alpha} A$ is a ρ-bimodule over A and a algebra with the multiplication $(\omega, \theta) \mapsto \omega \underset{A}{\otimes} \theta$, for any $\omega, \theta \in \Omega_{\alpha} A$.
Remark 1. The algebra $\Omega_{\alpha} A$ may be identified with the algebra generated by the algebra A and the derivations $d a, a \in A$ which satisfies the following relations:

1. $d a$ is linear in a
2. the ρ-Leibniz rule: $d(a b)=d(a) b+\rho(\alpha,|a|) a d b$
3. $d(1)=0$.
$\Omega_{\alpha}^{n} A$ is the space of n-forms $a_{0} d a_{1} \ldots d a_{n}, a_{i} \in A$ for any $0 \leq i \leq n . \Omega_{\alpha}^{n} A$ is a ρ-bimodule over A with the left multiplication

$$
\begin{equation*}
a\left(a_{0} d a_{1} \ldots d a_{n}\right)=a a_{0} d a_{1} \ldots d a_{n} \tag{4}
\end{equation*}
$$

and with the right multiplication given by:

$$
\begin{aligned}
\left(a_{0} d a_{1} \ldots d a_{n}\right) a_{n+1}= & \sum_{i=1}^{n}(-1)^{n-i} \rho\left(\alpha, \sum_{j=i+1}^{n}\left|a_{j}\right|\right)\left(a_{0} d a_{1} \ldots d\left(a_{i} a_{i+1}\right) \ldots d a_{n+1}\right) \\
& +(-1)^{n} \rho\left(\alpha, \sum_{i=1}^{n}\left|a_{j}\right|\right) a_{0} a_{1} d a_{2} \ldots d a_{n+1} .
\end{aligned}
$$

The multiplication in the algebra $\Omega_{\alpha} A$ is:

$$
\left.\left(a_{0} d a_{1} \ldots d a_{n}\right)\left(a_{n+1} d a_{n+2} \ldots d a_{m+n}\right)=\left(\left(a_{0} d a_{1} \ldots d a_{n}\right) a_{n+1}\right) d a_{n+2} \ldots d a_{m+n}\right)
$$

for any $a_{i} \in A, 0 \leq i \leq n+m, n, m \in \mathbb{N}$.
We define the G-degree of the n-form $a_{0} d a_{1} \ldots d a_{n}$ in the following way

$$
\left|a_{0} d a_{1} \ldots d a_{n}\right|=\sum_{i=0}^{n}\left|a_{i}\right| .
$$

It is obvious that $\left|\omega_{n} \cdot \omega_{m}\right|=\left|\omega_{n}\right|+\left|\omega_{m}\right|$ for any homogeneous forms $\omega_{n} \in \Omega_{\alpha}^{n} A$ and $\omega_{m} \in \Omega_{\alpha}^{m} A$.
$\Omega_{\alpha} A$ is a $G^{\prime}=\mathbb{Z} \times G$-graded algebra with the G^{\prime} degree of the n-form $a_{0} d a_{1} \ldots d a_{n}$ defined by

$$
\left|a_{0} d a_{1} \ldots d a_{n}\right|^{\prime}=\left(n, \sum_{i=0}^{n}\left|a_{i}\right|\right) .
$$

We may define the cocycle $\rho^{\prime}: G^{\prime} \times G^{\prime} \rightarrow k$ on the algebra $\Omega_{\alpha} A$ thus:

$$
\begin{equation*}
\rho^{\prime}\left(\left|a_{0} d a_{1} \ldots d a_{n}\right|^{\prime},\left|b_{0} d b_{1} \ldots d b_{m}\right|^{\prime}\right)=(-1)^{n m} \rho\left(\sum_{i=0}^{n}\left|a_{i}\right|, \sum_{i=0}^{m}\left|b_{i}\right|\right) \tag{5}
\end{equation*}
$$

and thus we have that $\Omega_{\alpha} A$ is a ρ^{\prime}-algebra. It may be proved that the map $d: \Omega_{\alpha} A \rightarrow \Omega_{\alpha} A$ is a derivation of the order $((1, \alpha),(1,0))$. Concluding we have the following result:

Theorem 1. $\left(\Omega_{\alpha} A, d\right)$ is a ρ-differential calculus over A.
Example 1. In the case when the group G is trivial then A is the usual associative algebra and $\Omega_{\alpha} A$ is the algebra of universal differential forms of A.

Example 2. If the group G is \mathbb{Z}_{2} and the cocycle ρ is defined by $\rho(a, b)=(-1)^{a b}$ then A is a superalgebra. In the case when $\alpha=1 \Omega_{\alpha} A$ is the superalgebra of universal differential forms of A from [11].

3. The Frobenius theorem on quantum hyperplane

In this section we give the Frobenius theorem on the N-dimensional quantum hyperplane S_{N}^{q} and we give the equations of any globally integrable distributions and parallel with respect to a connection ∇. These results are valid for any ρ-differential calculus on S_{N}^{q}. In the first subsection we present two different ρ-differential calculi on S_{N}^{q} : the first one is the algebra of forms $\Omega\left(S_{N}^{q}\right)$ on S_{N}^{q} form [1] and the second one is the algebra of universal differential forms $\Omega_{\alpha}\left(S_{N}^{q}\right)$ on S_{N}^{q}. Both of these ρ-differential calculi on S_{N}^{q} are different by differential calculus on S_{N}^{q} of Wess and Zumino [15]. In the second subsection we present submanifolds on S_{N}^{q}, in the third subsection we review the basic notions about linear connections on S_{N}^{q} and finally we will give the main results of this paper.

3.1. Differential calculi on S_{N}^{q}

First we review the basic notions about the N-dimensional quantum hyperplane S_{N}^{q}. For more details see [1] and [3].

The N-dimensional quantum hyperplane S_{N}^{q} is the k-algebra generated by the unit element and N linearly independent elements x_{1}, \ldots, x_{N} satisfying the relations: $x_{i} x_{j}=q x_{j} x_{i}, i<j$ for some fixed $q \in k, q \neq 0$.
S_{N}^{q} is a \mathbb{Z}^{N}-graded algebra

$$
S_{N}^{q}=\bigoplus_{n_{1}, \ldots, n_{N}}^{\infty}\left(S_{N}^{q}\right)_{n_{1} \ldots, n_{N}}
$$

with $\left(S_{N}^{q}\right)_{n_{1}, \ldots, n_{N}}$ the one-dimensional subspace spanned by products $x^{n_{1}} \ldots \ldots x^{n_{N}}$. The \mathbb{Z}^{N}-degree of $x^{n_{1}} \cdot \ldots \cdot x^{n_{N}}$ is $n=\left(n_{1}, \ldots, n_{N}\right)$. The cocycle $\rho: \mathbb{Z}^{N} \times \mathbb{Z}^{N} \rightarrow k$ is

$$
\rho\left(n, n^{\prime}\right)=q^{\sum_{j, k=1}^{N} n_{j} n_{k}^{\prime} \alpha_{j k}},
$$

with $\alpha_{j k}=1$ for $j<k, 0$ for $j=k$ and -1 for $j>k$.
It may be proved that the N-dimensional quantum hyperplane S_{N}^{q} is a ρ-commutative algebra.

Remark that the space of ρ-derivations $\rho-\operatorname{Der}\left(S_{N}^{q}\right)$ is a free S_{N}^{q}-module of rank N with $\partial / \partial x_{1}, \ldots, \partial / \partial x_{N}$ as the basis, where $\partial / \partial x_{i}\left(x_{j}\right)=\delta_{i j}$.

Remark 2. Let $\left(\Omega S_{N}^{q}, d\right)$ a ρ-differential calculus on S_{N}^{q}, with $d: \Omega S_{N}^{q} \rightarrow \Omega S_{N}^{q}$ a ρ-derivation of the order $((1, \alpha),(1,0))$, where $\alpha, .0 \in \mathbb{Z}^{N}$ It is easy to see that ΩS_{N}^{q} is generated by $\left\{x_{1}, \ldots, x_{N}\right\}$ and there differentials $\left\{y_{1}=d x_{1}, \ldots, y_{N}=d x_{N}\right\}$ with some relations between them.

Next we give some examples of ρ-differential calculi on S_{N}^{q}.
3.1.1. The algebra of forms $\Omega\left(S_{N}^{q}\right)$ of $S_{N}^{q} . \Omega\left(S_{N}^{q}\right)$ ([1], [3]) is the algebra determined by the elements x_{1}, \ldots, x_{N} and $y_{1}=d x_{1}, \ldots, y_{N}=d x_{N}$ with the relations

$$
\begin{equation*}
x_{j} x_{k}=q^{\alpha_{j k}} x_{k} x_{j}, \quad y_{j} y_{k}=-q^{\alpha_{j k}} y_{k} y_{j}, \quad x_{j} y_{k}=q^{\alpha_{j k}} y_{k} x_{j} . \tag{6}
\end{equation*}
$$

3.1.2. The algebra of universal differential forms $\Omega_{\alpha}(A)$ of S_{N}^{q}. Next we will apply the construction of the algebra of the universal differential forms of a ρ-algebra from the remark 1 to the ρ-algebra S_{N}^{q} and, thus, we will give a new differential calculus on S_{N}^{q} denoted by $\Omega_{\alpha}\left(S_{N}^{q}\right)$.

Let $\alpha=\left(n_{1}, \ldots, n_{N}\right)$ be an arbitrary element from \mathbb{Z}^{N}. $\Omega_{\alpha}\left(S_{N}^{q}\right)$ is the algebra generated by $a \in S_{N}^{q}$ and the symbols $d a$, which satisfies the following relations:

1. $d a$ is linear in a.
2. the ρ-Leibniz rule: $d(a b)=(d a) b+\rho(n,|a|) a d b$.
3. $d(1)=0$.

Next we present the structure of the algebra $\Omega_{\alpha}\left(S_{N}^{q}\right)$.
We use the following notations $y_{i}=d x_{i}$, for any $i \in\{1, \ldots, N\}$. By an easy computation we get the following lemmas:

Lemma 1. $y_{i} x_{j}=\rho\left(\alpha+\left|x_{i}\right|,\left|x_{j}\right|\right) x_{j} y_{i}$, for any $i, j \in\{1, \ldots, N\}$.
Lemma 2. $y_{j} y_{i}=\rho\left(\alpha,\left|x_{i}\right|\right) \rho\left(n+\left|x_{i}\right|,\left|x_{j}\right|\right) y_{i} y_{j}$, for any $i, j \in\{1, \ldots, N\}$.

Lemma 3. $d\left(x_{i}^{m}\right)=m \rho^{m-1}\left(\alpha,\left|x_{i}\right|\right) x_{i}^{m-1} y_{i}$, for any $m \in \mathbb{N}$ and $i \in\{1, \ldots, N\}$.
Putting together the previous lemmas we obtain the following theorem which gives the structures of the algebra $\Omega_{\alpha}\left(S_{N}^{q}\right):$

Theorem 2. $\Omega_{\alpha}\left(S_{N}^{q}\right)$ is the algebra spanned by the elements x_{i} and y_{i} with $i \in\{1, \ldots, N\}$ which satisfies the following relations:

1. $x_{i} x_{j}=\rho\left(\left|x_{i}\right|,\left|x_{j}\right|\right) x_{j} x_{i}$,
2. $y_{i} x_{j}=\rho\left(\alpha+\left|x_{i}\right|,\left|x_{j}\right|\right) x_{j} y_{i}$,
3. $y_{j} y_{i}=\rho\left(,\left|x_{i}\right|\right) \rho\left(\alpha+\left|x_{i}\right|,\left|x_{j}\right|\right) y_{i} y_{j}$, for any $i, j \in\{1, \ldots, N\}$.

3.2. Submanifolds in S_{N}^{q}

In this section we use the definition of submanifolds algebra in noncommutative geometry from [11] to introduce submanifolds in the quantum hyperplane.

Let C be an ideal in S_{N}^{q}. We denote by $Q=S_{N}^{q} / C$ the quotient algebra and by $p: S_{N}^{q} \rightarrow Q$ the quotient map. We consider the following two Lie ρ-subalgebras of ρ-Der S_{N}^{q} :

$$
G_{C}=\left\{X \in \rho-\operatorname{Der} S_{N}^{q} / X C \subset C\right\}
$$

and

$$
G_{A}=\left\{X \in \rho-\operatorname{Der} S_{N}^{q} / X\left(S_{N}^{q}\right) \subset C\right\}
$$

We define the map $\pi: G_{C} \rightarrow \rho-\operatorname{Der} S_{N}^{q}$ by $\pi(X) p(a)=p(X a)$ for any $a \in S_{N}^{q}$ and $X \in G_{C}$.
Definition 4. The quotient algebra $Q=S_{N}^{q} / C$ is a submanifold algebra of S_{N}^{q} if the map π is sujective.

In this situation we obtain the following the short exact sequence of ρ-Lie algebras.

$$
\begin{equation*}
0 \rightarrow G_{A} \rightarrow G_{C} \rightarrow \rho-\operatorname{Der} Q \rightarrow 0 \tag{7}
\end{equation*}
$$

Let C be the ideal from S_{N}^{q} generated by the elements $x_{1}, x_{2}, \ldots, x_{p}$ with $p \in\{1, \ldots, N\}$. Then the algebra Q generated by the elements x_{p+1}, \ldots, x_{N} and we have that $A=C \oplus Q$.

Theorem 3. $G_{C}=(\rho-\operatorname{Der} Q) \oplus G_{A}$.
Proof. Let X be a colour derivation from $\rho-\operatorname{Der} S_{N}^{q}$, then

$$
X=\sum_{i=1}^{N} X_{i} \frac{\partial}{\partial x_{i}} \quad \text { and } \quad X_{i}=X_{i}^{C}+X_{i}^{Q}
$$

with $X_{i}^{C} \in C$ and $X_{i}^{Q} \in Q$ for any $i \in\{1, \ldots, N\}$.
If $X \in G_{C}$ then $X(c) \in C$ for any $c \in C$ so

$$
\begin{aligned}
X(c) & =\sum_{i=1}^{N} X_{i}^{C} \frac{\partial c}{\partial x_{i}}+\sum_{i=1}^{N} X_{i}^{Q} \frac{\partial c}{\partial x_{i}} \\
& =\underbrace{\sum_{i=1}^{N} X_{i}^{C} \frac{\partial c}{\partial x_{i}}}_{\in C}+\sum_{i=1}^{p} X_{i}^{Q} \frac{\partial c}{\partial x_{i}}+\underbrace{\sum_{i=p+1}^{N} X_{i}^{Q} \frac{\partial c}{\partial x_{i}}}_{\in C} \in C
\end{aligned}
$$

Results that $X_{i}^{Q}=0$ for any $i \in\{1, \ldots, p\}$.
So any element $X=\sum_{i=1}^{N} X_{i} \partial / \partial x_{i}$ from G_{C} may be written is the following way

$$
X=X^{G_{A}}+X^{Q}
$$

where

$$
X^{G_{A}}=\sum_{i=1}^{N} X_{i}^{C} \frac{\partial}{\partial x_{i}} \in G_{A} \quad \text { and } \quad X^{Q}=\sum_{i=1}^{N} X_{i}^{Q} \frac{\partial}{\partial x_{i}} \in \rho-\operatorname{Der} Q
$$

with $X_{i}^{Q}=0$ for $i \in\{1, \ldots, p\}$.
Corollary 1. Q is submanifolds algebra of S_{N}^{q}.
3.3. Linear connections on S_{N}^{q}

In this subsection we use the definition of linear connections on ρ-algebras from the paper [3]. Let $\left(\Omega S_{N}^{q}, d\right)$ be a ρ-differential calculus on S_{N}^{q} and $n \in \mathbb{Z}^{N}$. A linear connection along the field $X=\sum_{i=1}^{N} X_{i} \frac{\partial}{\partial x_{i}}$ on the ρ-bimodule $\Omega^{n} S_{N}^{q}$ over S_{N}^{q} is a linear map

$$
\nabla: \rho-\operatorname{Der}\left(S_{N}^{q}\right) \rightarrow \operatorname{End}\left(\Omega^{n} S_{N}^{q}\right)
$$

of degree $|X|$ such that

$$
\nabla(X)(a \omega)=\nabla_{X}(a \omega)=\rho(|X|,|\omega|) X(a) \omega+a \nabla_{X} \omega
$$

for any $X \in \rho-\operatorname{Der} S_{N}^{q}, a \in S_{N}^{q}$ and $\omega \in \Omega^{n} S_{N}^{q}$.
Using the structure of the free bimodule $\Omega^{n} S_{N}^{q}$ we deduce that any such connection ∇ is well defined by the connections coefficients $\Gamma_{i, i_{1}, \ldots, i_{n}}^{j_{1}, \ldots, j_{n}} \in S_{N}^{q}$ defined by

$$
\begin{equation*}
\nabla_{\frac{\partial}{\partial x_{i}}}\left(y_{i_{1}} \ldots y_{i_{n}}\right)=\Gamma_{i, i_{1}, \ldots, i_{n}}^{j_{1}, \ldots, j_{n}} y_{j_{1}} \ldots y_{j_{n}} . \tag{8}
\end{equation*}
$$

Remark 3. The connection coefficients $\Gamma_{i, i_{1}, \ldots, i_{n}}^{j_{1}, \ldots, j_{n}}$ satisfy the some properties which depend on the choice of the ρ-differential calculus $\left(\Omega S_{N}^{q}, d\right)$.

Example 3. If $\left(\Omega S_{N}^{q}, d\right)$ is the algebra of forms $\Omega\left(S_{N}^{q}\right)$ of S_{N}^{q} we obtain that

$$
\begin{equation*}
\Gamma_{i, i_{1}, \ldots, i_{k}, i_{k+1}, \ldots, i_{n}}^{j_{1}, \ldots, j_{n}}=-q^{\alpha_{i_{k}}, i_{k+1}} \Gamma_{i, i_{1}, \ldots, i_{k+1}, i_{k}, \ldots, i_{n}}^{j_{1}, \ldots, j_{n}} \tag{9}
\end{equation*}
$$

for any $i, i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n} \in\{1, \ldots, n\}$.
Example 4. If $\left(\Omega S_{N}^{q}, d\right)$ is the algebra of universal differential forms $\Omega_{\alpha}\left(S_{N}^{q}\right)$ of S_{N}^{q} using an easy computation we obtain that

$$
\begin{equation*}
\Gamma_{i, i_{1}, \ldots, i_{k}, i_{k+1}, \ldots, i_{m}}^{j_{1}, \ldots, j_{m}}=\rho\left(\alpha,\left|y_{i_{k}}\right|\right) \rho\left(\alpha+\left|y_{i_{k}}\right|,\left|y_{i_{k+1}}\right|\right) \Gamma_{i, i_{1}, \ldots, i_{k+1}, i_{k}, \ldots, i_{m}}^{j_{1}, \ldots, j_{m}} \tag{10}
\end{equation*}
$$

3.4. Distributions in S_{N}^{q}

Next we introduce distributions on S_{N}^{q}. Let $\left(\Omega S_{N}^{q}, d\right)$ be a ρ-differential calculus on S_{N}^{q}.
Definition 5. A distribution \mathcal{D} on S_{N}^{q} is a S_{N}^{q}-subbimodule of $\Omega^{1} S_{N}^{q}$. The distribution \mathcal{D} is globally integrable if there is a subset B of S_{N}^{q} such that \mathcal{D} is the subspace generated by $S_{N}^{q} d(B)$ and by $d(B) S_{N}^{q}$.

Definition 6. We say that the distribution \mathcal{D} is parallel with respect to the connection $\nabla: \rho$-Der $S_{N}^{q} \rightarrow$ $\operatorname{End}\left(\Omega^{1} S_{N}^{q}\right)$ if

$$
\nabla_{X}(m)=0, \text { for any } X \in \rho-\operatorname{Der} S_{N}^{q} \text { and for any } m \in \mathcal{D}
$$

Using the structure of ΩS_{N}^{q} we obtain the following structure theorem of globally integrable distributions.
Theorem 4. Any globally integrable distributions \mathcal{D} determined by $S_{N}^{q} d(B)$ and $d(B) S_{N}^{q}$ where B is the subset $\left\{x_{1}, \ldots, x_{p}\right\}$. In this situation we say that the distribution \mathcal{D} has the dimension p.
3.4.1. The Frobenius theorem for quantum hyperplane. In this section we will give a Frobenius theorem for N-dimensional quantum hyperplane which is obvious from the previous results.

Theorem 5. The Frobenius theorem for quantum hyperplane. Any globally integrable distribution from S_{N}^{q} is given by a maximal submanifold algebra of S_{N}^{q} and conversely any submanifold algebra of S_{N}^{q} give a globally integrable distribution with the same dimension.

Proof. Let \mathcal{D} be a global integrable distribution from S_{N}^{q}. Then from the theorem $10, \mathcal{D}$ is given by $S_{N}^{q} d Q$, where Q is a subset with p elements from $\left\{x_{1}, \ldots x_{N}\right\}$. If we denote by C the ideal of S_{N}^{q} generated by $\left\{x_{1}, \ldots x_{N}\right\} \backslash Q$ and using the Corollary 9 we obtain that $Q=S_{N}^{q} / C$ is a submanifold algebra of S_{N}^{q} of the dimension p.

Conversely, if Q is a submanifold algebra of the dimension p of S_{N}^{q} results that there is an ideal C of the dimension $N-p$ of S_{N}^{q} such that $Q=S_{N}^{q} / C$. If we denote by $\left\{x_{1}, \ldots, x_{N-p}\right\}$ is the subset of $\left\{x_{1}, \ldots, x_{N}\right\}$ which generates the ideal C then the set $Q=\left\{x_{N-p+1}, \ldots, x_{N}\right\}$ generates a distribution of the dimension p of S_{N}^{q}.

We may find the equations of an globally integrable distributions and parallel with respect to a connection ∇.
Theorem 6. Any globally integrable and parallel distribution \mathcal{D} with respect to a connection $\nabla: \rho-\operatorname{Der} S_{N}^{q} \rightarrow$ $\operatorname{End}\left(\Omega^{1} S_{N}^{q}\right)$ of dimension p is given by the following equations:

$$
\begin{equation*}
\Gamma_{i, j}^{k}=0 \tag{11}
\end{equation*}
$$

for a subset I of $\{1, \ldots, N\}$ with p elements and for any $i \in\{1, \ldots, N\}, j \in I, k \in\{1, \ldots, N\} \backslash I$.

1. Bongaarts P. J. M. and Pijls H. G. J., Almost commutative algebra and differential calculus on the quantum hyperplane. J. Math. Phys. 35(2) (1994), 959-970.
2. Cap A., Kriegl A., Michor P. W. and Vanžura J., The Frölicher-Nijenhuis bracket in noncommutative differential geometry. Acta Math. Univ. Comenianiae 62 (1993), 17-49.
3. Ciupală C., Linear connections on almost commutative algebras. Acta Math. Univ. Comenianiae 72(2) (2003), 197-207.
4. \qquad , ρ-differential calculi and linear connections on matrix algebra. Int. J. Geom. Methods in Mod. Phys. 1 (2004), 847-863.
5. \qquad Fields and forms on ρ-algebras. Proc. Indian Acad. Sci. -Math. Sciences. 115 (2005), 57-65.
6. \qquad , Linear connections on quaternionic algebra, Manuscript in preparation.
7. Connes A., Non-commutative Geometry. Academic Press, 1994.
8. Dubois-Violette M. and Michor P. W., Connections on central bimodules, J. Geom. Phys. 20 (1996), 218-232.
9. Dubois-Violette M., Lectures on graded differential algebras and noncommutative geometry. Vienne, Preprint, E.S.I. 842 (2000).
10. Jadczyk A., Kastler D., Graded Lie-Cartan pairs. II. The fermionic differential calculus. Ann. of Physics 179 (1987), 169-200.
11. Kastler D., Cyclic Cohomology within the differential envelope. Hermann, Paris 1988.
12. Lychagin V., Colour calculus and colour quantizations. Acta Appl. Math. 41 (1995), 193-226.
13. Mourad J., Linear connections in noncommutative geometry. Class. Quantum Grav. 12 (1995) 965.
14. Masson T., Submanifolds and quotient manifolds in noncommutative geometry. Lett. Math. Phys. 37 (1996), 2484-2497.
15. Wess J. and Zumino B., Differential calculus on quantum hyperplane. Nuclear Physics 18B (1990), 303-312.
16. Woronowicz S. L., Differential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys. 112(1) (1989), 125-170.
C. Ciupală, The "Andrei Şaguna" National College, Andrei Şaguna str. No. 1, Braşov, Romania, e-mail: cciupala@yahoo.com

[^0]: Received March 3, 2004.

