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UNIVERSAL BOUNDS FOR GLOBAL SOLUTIONS
OF A DIFFUSION EQUATION

WITH A MIXED LOCAL-NONLOCAL REACTION TERM

P. P. ROUCHON

Abstract. In this paper we prove the existence of a universal, i.e. independent of the initial data, bound for global
positive solutions of a diffusion equation with a mixed local-nonlocal reaction term. Such results are already known in
some cases of local or nonlocal reaction terms.

1. Introduction and main result

In this paper, we are interested in the global solutions of the following problem:

(ut −∆u) (t, x) =

1 +
1

p + 1

∫
Ω

up+1(t, y) dy

k

up(t, x), t > 0, x ∈ Ω,(1.1)

u(t, x) = 0, t > 0, x ∈ ∂Ω,(1.2)

u(0, x) = u0(x) ≥ 0, x ∈ Ω,(1.3)

with p > 1, k > 1−p
p+1 , Ω is a smoothly bounded domain of Rd and u0 ∈ L∞(Ω). More precisely, we will prove the

existence of universal bounds for the global nonnegative solutions of (1.1)–(1.3) in the case of k > 0.
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In order to illustrate our results and our motivations, we will recall some known results concerning the problem
(1.1), (1.2), (1.3) with

ut(t, x)−∆u(t, x) = up(t, x), t > 0, x ∈ Ω,(1.4)

and the problem (1.5), (1.2), (1.3) with

ut(t, x)−∆u(t, x) =
∫
Ω

up(t, y) dy, t > 0, x ∈ Ω.(1.5)

First, notice that the only difference between (1.1), (1.4) and (1.5) is the right hand side of those equalities,
namely, the reaction term. In the case of (1.4), it is said to be local because the reaction is given at each point of
the domain. In the case of (1.5), it is said to be nonlocal in opposition of the precedent definition. For (1.1), we
called it a mixed local-nonlocal reaction term since one part is (1.4) and the other one corresponds to problems
like (1.5). Let us recall now some known results.

The proof of local existence and uniqueness of the solution for the problem (1.2)–(1.4) is well-known; for (1.2),
(1.3), (1.5), we refer to the articles of Ph. Souplet (see [16], [17]), where this problem and more general nonlocal
terms were studied from the point of view of blow-up in finite time; for (1.1)–(1.3) in the articles of M. Fila and
the same author and H. A. Levine (see [2] and [3]), where they studied the boundedness of global solutions.

We call T ? the maximal time of existence of the solutions of problems (1.1)–(1.5). We will be here interested
in the case of T ? = ∞, which means that the solution u is global. Let

ps =


∞ if d ≤ 2,

d + 2
d− 2

if d ≥ 3.

It is known that all global solutions of (1.2)–(1.4) are bounded if p < ps, whereas if p ≥ ps, there exist unbounded
global weak solutions, i.e. supt≥0 |u(t)|∞ = ∞ (see [9], [1], [5]), where | · |q, 1 ≤ q ≤ ∞ denotes the Lq(Ω)-norm.
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Moreover, some unbounded global classical solutions even exist when p = ps and Ω is a ball. In the case of (1.5),
(1.2), (1.3) it was proved in a precedent paper (see [14]) that all global solutions are uniformly bounded. For
(1.1)–(1.3), the boundedness of global solutions was proved in [2] and [3], assuming p < ps and k > 1−p

p+1 . Note
that the restriction on the values of k is not technical: the authors showed the existence of global unbounded
solutions in the case of k = 1−p

p+1 .
Later, Giga (see [6]) gave a more precise picture of the set of global bounded positive solutions for the problem

(1.2)–(1.4). Assuming p < ps and u is global, he gives a priori estimates:

|u(t)|∞ ≤ C
(
|u0|∞

)
, t > 0.(1.6)

Such estimates were obtained for (1.1)–(1.3) in a work of P. Quittner (see [10]) with p < ps and 1−p
p+1 < k ≤ 0.

Using the same arguments as in this paper, it is in fact possible to prove (1.6) for all global solutions of (1.1)–(1.3)
with k > 0 and p < ps. For the problem (1.5), (1.2), (1.3), (1.6) was obtained by completely different methods in
[15].

The last two years have seen some new results in the study of the global bounded positive solutions of (1.2),
(1.4), namely the proof of existence of universal bounds for this problem. Those results were initiated by M. Fila,
Ph. Souplet and F. Weissler (see [4]). Let us state the result of [4]:

Theorem A. Assume

1 < p <
d + 1
d− 1

(1.7)

and let τ > 0. There exists a constant C(Ω, p, τ) > 0, independent of u, such that for all nonnegative global
solutions of (1.2)–(1.4), it holds

sup
Ω

u(t, ·) ≤ C(Ω, p, τ), t ≥ τ.(1.8)
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Note that the bound in (1.8) is independent of the initial data u0, that is why it is called universal. It is easy
to show that (1.8) implies (1.6) for positive solutions. In [11] and [13], P. Quittner, Ph. Souplet and M. Winkler
proved that (1.7) can be improved, more than this, they showed that one can reach p < ps for d ≤ 4. For the
problem (1.2), (1.3), (1.5), in [15] we obtained exactly Theorem A, without the assumption (1.7) which means
for all p > 1.

The question is: is it possible to obtain a similar theorem for the global nonnegative solutions of (1.1)–(1.3)?
The answer is:

Theorem 1.1. Assume that k > 0 and that 1 < p < ps. Let
1

(k + 1)p + k
>

d− 2
2

and
(k + 1)(p + 1)

k + 2
<

d

d− 1
.(1.9)

Let τ > 0. There exists a constant C(Ω, τ, p, k) > 0, independent of u, such that for all nonnegative global
solutions of (1.1)–(1.3), it holds

sup
Ω

u(t, ·) ≤ C(Ω, τ, p, k), t ≥ τ.(1.10)

Remark 1.1. Note that the condition (1.9) implies p < ps.

The proof of this theorem relies on three tools:
1. Universal bound of a weighted L1-norm, obtained by Kaplan’s type arguments.
2. Lr − L∞ estimates.
3. A priori estimates of Giga’s type.

Tools one and two will be developped in Sections 2 and 3 respectively. Theorem is proved in Section 4.

2. Kaplan’s argument

We begin with a first estimate, which is obtained by Kaplan’s classical eigenfunction method, see [7].
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Lemma 2.1. Assume that k ≥ 0 and let λ1 > 0 be the first eigenvalue of −∆ in H1
0 (Ω) and ϕ1 the associated

eigenfunction such that

ϕ1 = ϕ1(x) > 0 and
∫
Ω

ϕ1(x)dx = 1.(2.1)

Let

y(t) =
∫
Ω

u(t, x)ϕ1(x)dx, 0 < t < T ?(2.2)

and

C = C(Ω, p, k) =
(

λ1(p + 1)k
( ∫

Ω

ϕ
p+1

p

1

)kp
) 1

(k+1)p+k−1

> 0.(2.3)

Then the following property holds:

if T ? = ∞ then y(t) ≤ C, for all t > 0.(2.4)

Proof. Multiplying (1.1) by ϕ1, it follows that∫
Ω

utϕ1 −
∫
Ω

∆uϕ1 =
(
1 +

1
p + 1

∫
Ω

up+1(t, y)dy
)k

∫
Ω

upϕ1.

Integrating by parts, we obtain

d

dt

∫
Ω

uϕ1 + λ1

∫
Ω

uϕ1 =
(
1 +

1
p + 1

∫
Ω

up+1(t, y)dy
)k

∫
Ω

upϕ1.
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Using (2.2), the last equality becomes:

y′ + λ1y ≥ (p + 1)−k
( ∫

Ω

up+1
)k

∫
Ω

upϕ1.

By Hölder’s and Jensen’s inequalities, knowing (2.1), the inequality above implies

y′ + λ1y ≥ (p + 1)−k
( ∫

Ω

ϕ
(p+1)/p
1

)−kp

yk(p+1)+p.

That is

y′ ≥ y

(
(p + 1)−k

( ∫
Ω

ϕ
(p+1)/p
1

)−kp

y(k+1)p+k−1 − λ1

)
.(2.5)

By well-known arguments, (2.5) implies finite time blow-up of y whenever y > C (see (2.3)), for some t > 0. Since
T ? = ∞, we conclude that y ≤ C(Ω, p, k), t ≥ 0. Hence (2.4) is verified, which ends the proof of Lemma 2.1. �

3. Lq–Lr estimates

In this section we are going to prove the following theorem:

Theorem 3.1. Let p < ps and assume that

q > max

{
d(p + 1)

(
(k + 1)p + k

)(
d(k + 1) + 2

)
p + kd + 2

,
d(k + 1)p + d(k − 1)

kd + 2

}
.(3.1)
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For all M > 0, there exist T = T (M) > 0 and K = K(M) > 0 such that if u0 ∈ L∞(Ω) with |u0|q ≤ M , then the
maximal solution u ∈ L∞loc

(
[0, T ?), L∞

)
of (1.1)–(1.3) satisfies T ? > T (M) and

t
d
2 ( 1

q−
1
r )|u(t)|r ≤ K, 0 < t < T, q ≤ r ≤ ∞, p + 1 ≤ r.

Before beginning the proof of Theorem 1.3, note that u solves the integral equation

u(t) = et∆u0 +

t∫
0

(
1 +

1
p + 1

∫
Ω

up+1(s, y)dy

)k

e(t−s)∆
(
up(s, ·)

)
ds,(3.2)

where here, and in what follows, et∆ denotes the Dirichlet heat semi-group.

Proof. We proceed in three steps. C and C ′ denote various constants which may change from line to line, and
which will depend only on Ω, p, k and q.

Step 1. First, note that we have, using (3.2)

u(t) ≤ et∆u0 + C

t∫
0

(
1 + |u(s)|k(p+1)

p+1

)
e(t−s)∆

(
up(s, ·)

)
ds.(3.3)

Let us introduce the following quantities

N0 = max{p + 1, q}, α =
d

2

(
1
q
− 1

N0

)
, β =

d

2
(p− 1)

N0
(3.4)

and put

K(t) = sup
s∈(0,t)

sα|u(s)|N0 < ∞, 0 < t ≤ T,(3.5)
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where T < T ? will be specified later. Using (3.3), we have

|u(t)|N0 ≤ |et∆u0|N0 + C

t∫
0

(
1 + |u(s)|k(p+1)

p+1

)∣∣e(t−s)∆
(
up(s, ·)

)∣∣
N0

ds.

Using Lq-LN0 and LN0/p-LN0 estimates for the heat semi-group, the last inequality becomes

|u(t)|N0 ≤ C ′t−α|u0|q + C ′
t∫

0

(
1 + |u(s)|k(p+1)

p+1

)
(t− s)−β |up(s)|N0/pds.

Knowing (3.4) eq. 1, we can apply the Hölder inequality to the Lp+1 and LN0/p-norm terms and we obtain

|u(t)|N0 ≤ Ct−α|u0|q + C

t∫
0

(
1 + |u(s)|k(p+1)

N0

)
(t− s)−β |u(s)|pN0

ds.

Now, using (3.5) we obtain

|u(t)|N0 ≤ Ct−α|u0|q + CKp(T )

t∫
0

(t− s)−βs−pαds + CK(k+1)p+k(T )

t∫
0

s−k(p+1)α(t− s)−βs−pαds,
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in other words, we have

|u(t)|N0 ≤Ct−α|u0|q + CKp(T )t1−pα−β

1∫
0

(1− σ)−βσ−pαdσ

+ CK(k+1)p+k(T )t1−[(k+1)p+k]α−β

1∫
0

(1− σ)−βσ−[(k+1)p+k]αdσ.

Thanks to p < ps and (3.1), the integrals above are convergent. Multiplying by tα and taking the sup in time on
(0, T ) in the left side of our last inequality we obtain

K(T ) ≤ C|u0|q + C
(
Kp(T ) + K(k+1)p+k(T )

)
T 1−[(k+1)p+k−1]α−β

provided T ≤ 1. (Note that (3.1) implies that 1−
(
(k + 1)p + k − 1

)
α− β > 0.)

For any T such that

T < T ?,

T ≤ T0 = min
(
1, c2

(
Mp−1(1 + Mk(p+1))

)−1/(1−[(k+1)p+k−1]α−β)
)
,

(3.6)

with c2 = c2(d, p, q, k) > 0 sufficiently small, we easily get:

K(T ) ≤ 2CM.(3.7)

Note in particular that (3.6), (3.7) imply

Kp(T )
(
1 + Kk(p+1)(T )

)
T 1−[(k+1)p+k−1]α−β ≤ C ′M.(3.8)
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Step 2. Assume that m, r satisfy

N0 ≤ m < r ≤ ∞ and
p

m
− 2

d
<

1
r
.(3.9)

Put γ =
d

2

(
1
q
− 1

m

)
and suppose we know that

H(m) = sup
t∈(0,T )

tγ |u(t)|m < ∞, 0 < t < T,(3.10)

where T is given by (3.6).
We see that for t ∈ (0, T )

|u(t)|r ≤
∣∣e t

2∆u
(

t
2

)∣∣
r
+ C

∫ t

t/2

(
1 + |u(s)|k(p+1)

p+1

)
(t− s)−

d
2

(
p
m−

1
r

)
|up(s)|m

p
ds.

Using Hölder’s inequality, and Lm-Lr, Lm/p-Lr estimates for the heat semi-group, the last expression becomes

|u(t)|r ≤ Ct−
d
2

(
1
m−

1
r

)∣∣u(
t
2

)∣∣
m

+ C ′
∫ t

t/2

(
1 + |u(s)|k(p+1)

N0

)
(t− s)−

d
2

(
p
m−

1
r

)
|u(s)|pmds
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and using (3.10) we obtain

|u(t)|r ≤ CHt−
d
2

(
1
q−

1
r

)
+ CHp

∫ t

t/2

(t− s)−
d
2

(
p
m−

1
r

)
s−pγds

+ CKk(p+1)(T )Hp

∫ t

t/2

(t− s)−
d
2

(
p
m−

1
r

)
s−k(p+1)α−pγds

= CHt−
d
2

(
1
q−

1
r

)
+ CHpt1−

d
2

(
p
m−

1
r

)
−pγ

1∫
1/2

(1− σ)−
d
2

(
p
m−

1
r

)
σ−pγdσ

+ CKk(p+1)(T )Hpt1−
d
2

(
p
m−

1
r

)
−k(p+1)α−pγ

·
1∫

1/2

(1− σ)−
d
2

(
p
m−

1
r

)
σ−k(p+1)α−pγdσ.

The finiteness of the integrals is guaranteed by (3.9), then we have

t
d
2

(
1
q−

1
r

)
|u(t)|r ≤ CH + CHp

(
1 + Kk(p+1)(T )

)
t1−

d
2

p−1
q −k(p+1)α.

As

T 1− d
2

p−1
q −k(p+1)α ≤ T 1−[(k+1)p+k−1]α−β

knowing (3.8) we have

1 + Hp−1(m)
(
1 + Kk(p+1)(T )

)
T 1−[(k+1)p+k−1]α−β ≤ C(d, p, q, r, H),
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we easily obtain

sup
t∈(0,T )

t
d
2

(
1
q−

1
r

)
|u(t)|r ≤ C ′(d, p, q, r,H)H < ∞.

Step 3. By standard arguments (see [8, proof of Theorem 2.2] one shows that it is possible to define a nondecreasing
sequence (rk), with r0 = N0, such that rk+1 = r and rk = m satisfy (3.9) for every k; and rk = ∞ is reached in
a finite number of iterations. Hence the conclusion of Theorem 3.1 follows by finite iterations of step 2. �

4. Proof of Theorem 1.1

Denote δ(x) = dist
(
x, ∂Ω

)
, let us recall that Lq

δ spaces are defined by

Lq
δ = Lq

δ

(
Ω

)
= Lq

(
Ω; δ(x)dx

)
1 ≤ q < ∞.

We will denote by | · |q,δ the associated norm. For more details concerning the Lq
δ theory, see [4]. First, we are

going to prove the following lemma:

Lemma 4.1. Assume that the solution u of the problem (1.1)–(1.3) is global and let τ > 0 and ε > 0 be
sufficiently small. Assume that

r = p + 1− (p− 1)(p + 1 + 2ε)
(p− 1)(k + 2)− 2kε

(4.1)

and that the following inequality holds
τ/2∫
0

(
1 + |u(t)|p+1

p+1

)k

|u(t)|pp,δ ≤ C(Ω, p, k, τ).(4.2)
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Then there exists a τ1 ∈ (0, τ/2) such that

|u(τ1)|r ≤ C ′(Ω, p, k, τ).(4.3)

Proof. As T ? = ∞, by Lemma 2.1 we know that

∀t ≥ 0,

∫
Ω

u(t, x)ϕ1(x) ≤ C(Ω, p, k).(4.4)

Using the test function χ introduced in [13], which solves the following problem{
−∆χ(x) = ϕ−α

1 (x), x ∈ Ω,

χ ≡ 0, x ∈ ∂Ω,

where α ∈ (0, 1), we have, multiplying (1.1) by χ∫
Ω

utχ−
∫
Ω

χ∆u =
∫
Ω

upχ
(
1 + 1

p+1 |u|
p+1
p+1

)k

.

Integrating this inequality by parts and in time and knowing that χ(x) ≤ cδ(x), we obtain
τ/2∫
0

∫
Ω

uϕ−α
1 ≤ C

[ ∫
uχ

]0

τ/2

+ C

τ/2∫
0

|u|pp,δ

(
1 + |u|p+1

p+1

)k
.

Using (4.4) and (4.2), we deduce from the last inequality that
τ/2∫
0

∫
Ω

uϕ−α
1 ≤ C(Ω, τ, p, k).(4.5)
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Thanks to the Hölder inequality with

N1 =
2(p− 1)

p− 1− 2ε
, 1 =

1
N1

+
1

N2
, α = 1− 4ε

p− 1 + 2ε
,

we have

∫
Ω

u
p+1
2 −ε ≤

∫
Ω

upϕ1

1/N1
∫

Ω

uϕ−α
1

1/N2

.(4.6)

Setting

g(t) =

1 +
1

p + 1

∫
Ω

up+1

k

,(4.7)

multiplying (4.6) by
(
g(t)

)1/N1 and integrating in time over (0, τ/2), we obtain

τ/2∫
0

((
g(t)

)1/N1

∫
Ω

u
p+1
2 −ε

)
≤

τ/2∫
0

(
g(t)

∫
Ω

upϕ1

)1/N1
( ∫

Ω

uϕ−α
1

)1/N2

.

Now applying Hölder’s inequality in time to the right hand side of the last inequality, we have

τ/2∫
0

((
g(t)

)1/N1

∫
Ω

u
p+1
2 −ε

)
≤

( τ/2∫
0

g(t)
∫
Ω

upϕ1

)1/N1
( τ/2∫

0

∫
Ω

uϕ−α
1

)1/N2

.
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Using (4.7) and knowing (4.2) and (4.5) we easily deduce that

τ/2∫
0

∫
Ω

u
p+1
2 −ε

(
1 +

1
p + 1

∫
Ω

up+1
)k/N1

 ≤ C(Ω, τ, p, k).

There exists some τ1 ∈ (0, τ/2) such that, using the last inequality,

∫
Ω

u
p+1
2 −ε(τ1)

( ∫
Ω

up+1(τ1)
)k/N1

≤ 2
τ

τ/2∫
0

( ∫
Ω

u
p+1
2 −ε

( ∫
Ω

up+1
)k/N1

)
≤ C(Ω, τ, p, k).(4.8)

Knowing (4.1) and that N1 = 2(p−1)
p−1−2ε > 1; using the Hölder inequality, we have( ∫

Ω

ur

)(N1+k)/N1

≤
∫
Ω

u
p+1
2 −ε

( ∫
Ω

up+1
)k/N1

.

From the last inequality and (4.8), we easily deduce (4.3), which ends the proof of Lemma 4.1. �

Proof of Theorem 1.1. Multiplying (1.1) by ϕ1 and integrating by parts we have∫
Ω

ut(t, x)ϕ1(x)dx + λ1

∫
Ω

u(t, x)ϕ1(x)dx =
∫
Ω

up(t, x)ϕ1(x)dx

(
1 +

1
p + 1

|u(t)|p+1
p+1

)k

.
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Integrating in time the last equality and using Lemma 2.1, we deduce that
τ/2∫
0

(
1 +

1
p + 1

∣∣u(t)
∣∣p+1

p+1

)k

|u(t)|pp,δ dt ≤
∫
Ω

u
(

τ
2

)
ϕ1 + λ1

τ/2∫
0

∫
Ω

uϕ1 ≤ C + λ1τC ≤ C ′(Ω, τ, p, k).(4.9)

By Lemma 4.1, we know that (4.9) implies

|u(τ1)|r ≤ C ′(Ω, τ, p, k),

for some τ1 ∈ (0, τ). Using Theorem 3.1 and the last inequality (note that (1.9) ensures that q = r satisfies (3.1),
we obtain

|u(τ2)|∞ ≤ C(Ω, τ, p, k),

for some τ2 ∈ (τ1, τ). Thanks to the proof of Theorem 4.3 in [10] and the appendix below, knowing a priori
estimates, the result follows. �

5. Appendix

In this Section, we want to give for reader’s convenience, some indications for the proof of a priori estimates for
global solutions to (1.1)–(1.3). Such results were already shown for (1.1)–(1.3) by P. Quittner, in the case of k < 0
(see [10]). It is possible to readapt Quittner’s proof in the same article, to obtain those estimates for (1.1)–(1.3)
for k > 0. A straightforward modification of [10, Lemma 2.2 and Remark 2.5] yields

|u(t)|p+1−ε ≤ c(ε), ∀ε > 0.(5.1)

Then, one obtains a priori estimates in the same way as [10]. To be complete, we have to prove (2.34) in [10,
Theorem 2.6]. In order to do this, we shall show that

|u(t)|p+1 ≤ C.(5.2)
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By proving that

|u(t)|p+1+α ≤ C,

for some α > 0, we will be done. Fix α > 0 and β > 0 such that

L(p+1)/p ↪→ W−2+2β
p+1+α (p < pS).(5.3)

We denote by || · ||p+1+α the norm in W−2+2β
p+1+α . Then, using (3.2) we obtain

|u(t)|p+1+α ≤ C + C

t∫
0

(
1 + |u(s)|p+1

p+1

)k∣∣e(t−s)∆
(
up(s, ·)

)∣∣
p+1+α

ds

≤ C + C

t∫
0

(t− s)−(1−β)
(
1 + |u(s)|p+1

p+1

)k||up(s)||p+1+α ds.

Now, using the embedding (5.3), the last inequality becomes

|u(t)|p+1+α ≤ C + C

t∫
0

(
1 + |u(s)|p+1

p+1

)k(t− s)−(1−β)|up(s)|(p+1)/p ds,

which gives, using (3.3),

|u(t)|p+1+α ≤ C + C

t∫
0

(t− s)−(1−β)|u(s)|pp+1 ds + C

t∫
0

(t− s)−(1−β)|u(s)|k(p+1)+p
p+1 ds.
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By interpolation we have ∣∣u(s)
∣∣p
p+1

≤
∣∣u(s)

∣∣p−1+θ

p+1−ε

∣∣u(s)
∣∣1−θ

p+1+α
,∣∣u(s)

∣∣k(p+1)+p

p+1
≤

∣∣u(s)
∣∣k(p+1)+p−1+θ′

p+1−ε

∣∣u(s)
∣∣1−θ′

p+1+α

with
p

p + 1
=

p− 1 + θ

p + 1− ε
+

1− θ

p + 1 + α
,

k(p + 1) + p

p + 1
=

k(p + 1) + p− 1 + θ′

p + 1− ε
+

1− θ′

p + 1 + α
.

By choosing ε > 0 sufficiently small, we ensure that θ, θ′ > 0. Denoting ϕ(t) = |u(t)|p+1+α and using (5.1), we
finally obtain the following inequality

ϕ(t) ≤ C + c

t∫
0

(t− s)−(1−β)ϕ1−θ(s) ds + c′
t∫

0

(t− s)−(1−β)ϕ1−θ′(s) ds.

The inequality above implies the boundedness of ϕ, hence (5.2) follows, which ends this section. �
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