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RANKS AND INDEPENDENCE OF SOLUTIONS OF THE MATRIX EQUATION
AXB + CY D = M

YONGGE TIAN

Abstract. Suppose AXB + CY D = M is a consistent matrix equation. In this paper, we give some formulas for the
maximal and minimal ranks of two solutions X and Y to the equation. In addition, we investigate the independence of
solutions X and Y to this equation.

1. Introduction

Throughout this paper, the notation AT, A∗, r(A) and R(A) stand for the transpose, conjugate transpose, rank
and range (column space) of amatrix A over the field C of complex numbers, respectively. A matrix X is called
a generalized inverse of A, denoted by A−, if it satisfies AXA = A. In addition, EA and FA stand for the two
oblique projectors EA = I −AA− and FA = I −A−A induced by A and A−.

Linear matrix equations have been the objects of many studies in matrix theory and its applications. The
primary work in the investigation of a matrix equation is to give its solvability conditions and general solutions.
In additions to these two problems, many other topics can be investigated for a matrix equation. For example, the
uniqueness of solution, minimal norm solutions, least-squares solutions, Hermitian solutions, and skew-Hermitian
solutions to the equation. For some simplest matrix equations, it is easy to characterize the solvability and to
give general solutions by generalized inverses. For instance, the matrix equation AXB = C, where A, B and C
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are m× p, q × n and m× n matrices, respectively, is consistent if and only if AA−CB−B = C. In this case, the
general solution of AXB = C can be written as X = A−CB− + ( Ip − A−A )U + V ( Iq − BB− ), where U and
V are arbitrary. Many problems can be considered for solutions of AXB = C, one of which is to determine the
maximal and minimal possible ranks of solutions. The present author has shown in [10] that

max
AXB=C

r(X) = min { p, q, p + q + r(C)− r(A)− r(B) } ,

min
AXB=C

r(X) = r(C).

Write complex solution of AXB = C as X = X0 + X1i, where X0 and X1 are both real. The present author
also gives in [10] the maximal and minimal ranks of X0 and X1. In addition to AXB = C, another well-known
matrix equation is

AXB + CY D = M,(1.1)

where A ∈ Cm×p, B ∈ Cq×n, C ∈ Cm×s, D ∈ Ct×n, M ∈ Cm×n. Equation (1.1) and its applications have been
investigated extensively, see, e.g., [1, 3, 4, 6, 7, 13, 15]. A regression model related to (1.1) is

M = AXB + CY D + ε,

where both X and Y are unknown parameter matrices and ε is a random error matrix. This model is also called
the nested growth curve model in the literature, see, e.g., [5, 14].

The rank of a matrix A, a key concept in linear algebra, is the dimension of the vector space generated by the
columns or rows of A, that is, the maximum number of linearly independent columns or rows of A. Equivalently,
the rank of a matrix A is the largest order of square submatrix of A which determinant is nonzero. If a matrix
has some variant entries, the rank of the matrix is also variant with respect to the entries.

A general method for solving linear matrix equations is the vec operation of a matrix Z = (zij) ∈ Cm×n defined
by

vec Z = [ z11, . . . , zm1, z12, . . . , zm2, . . . , z1n, . . . , zmn ]T .
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Applying the well-known formula vec (AXB) = (BT ⊗ A)vec X, where BT ⊗ A is the Kronecker product of BT

and A, to (1.1) gives

[BT ⊗A, DT ⊗ C ]
[

vecX
vecY

]
= vecM,(1.2)

where [BT ⊗A, DT ⊗ C ] is a row block matrix. Hence (1.2) is solvable if and only if [ BT ⊗A, DT ⊗ C ][BT ⊗
A, DT ⊗ C ]−vecM = vecM . In such a case, the general solution of (1.2) can be written as[

vecX
vecY

]
=[BT ⊗A, DT ⊗ C ]−vecM

+ ( I − [BT ⊗A, DT ⊗ C ]−[BT ⊗A, DT ⊗ C ] )V,

(1.3)

where V is an arbitrary column vector. Result (1.3) implies that the general solutions X and Y of (1.1) are in
fact two linear matrix expressions involving variant entries.

Since the two matrices X and Y satisfying (1.1) are not necessarily unique, it is of interest to find the maximal
and minimal possible ranks of X, Y , AXB and CY D in (1.1). Another problem on a pair solutions X and Y
to (1.1) is concerned with their independence, where the independence means that for any two pairs of solutions
X1, Y1 and X2, Y2 of (1.1), the two new pairs X1, Y2 and X2, Y1 are also solutions to (1.1). This problem can
also be solved through some rank formulas associated with (1.1).

Some useful rank formulas for partitioned matrices are given in the following lemma.

Lemma 1.1 ([2]). Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n. Then:
(a) r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA).

(b) r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC).

(c) r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC).
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The formulas in Lemma 1.1 can be used to simplify various matrix expressions involving generalized inverses
of matrices. For example,

r

[
EA1B1

EA2B2

]
= r

[
A1 0 B1

0 A2 B2

]
− r(A1)− r(A2),(1.4)

r[D1FC1 , D2FC2 ] = r

D1 D2

C1 0
0 C2

− r(C1)− r(C2),(1.5)

r

[
A BFB1

EC1C 0

]
= r

 A B 0
C 0 C1

0 B1 0

− r(B1)− r(C1).(1.6)

Lemma 1.2. Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, B1 ∈ Cm×p and C1 ∈ Cq×n be given, X ∈ Ck×l,
Y ∈ Ck×n, Z ∈ Cm×l and U ∈ Cp×q be variant matrices. Then

max
X

r( A−BXC ) = min
{

r[A, B ], r

[
A
C

]}
,(1.7)

min
X

r( A−BXC ) = r[A, B ] + r

[
A
C

]
− r

[
A B
C 0

]
,(1.8)

max
Y, Z

r( A−BY − ZC ) = min
{

m, n, r

[
A B
C 0

]}
,(1.9)

min
Y, Z

r( A−BY − ZC ) = r

[
A B
C 0

]
− r(B)− r(C),(1.10)
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max
Y, Z, U

r( A−BY − ZC −B1UC1 )

= min

m, n, r

[
A B B1

C 0 0

]
, r

 A B
C 0
C1 0

,
(1.11)

min
Y, Z, U

r( A−BY − ZC −B1UC1 ) = r

[
A B B1

C 0 0

]

+ r

 A B
C 0
C1 0

− r

 A B B1

C 0 0
C1 0 0

− r(B)− r(C).
(1.12)

Results (1.7) and (1.8) are shown in [12]; (1.9) and (1.10) are shown in [8, 9]. The general expressions of X
and Y satisfying (1.7)–(1.10) are given in [8, 9, 12]. Combining (1.7) and (1.9), (1.8) and (1.10) yields (1.11)
and (1.12), respectively.

2. Ranks of solutions to AXB + CY D = M

Concerning the solvability conditions and general solutions of (1.1), the following results have been shown.

Lemma 2.1.

(a) [3] There are X and Y that satisfy (1.1) if and only if

r[A, C, M ] = r[A, C ], r

 B
D
M

 = r

[
B
D

]
,(2.1)

r

[
M A
D 0

]
= r(A) + r(D), r

[
M C
B 0

]
= r(B) + r(C),(2.2)
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or equivalently,

[A, C ][A, C ]−M = M, M

[
B
D

]−[
B
D

]
= M,

( Im −AA− )M( In −D−D ) = 0, ( Im − CC− )M( In −B−B ) = 0.

(b) [6, 7] Under (2.1) and (2.2), the general solutions of X and Y to (1.1) can be decomposed as

X = X0 + X1X2 + X3, Y = Y0 + Y1Y2 + Y3,

where X0 and Y0 are a pair of special solutions of (1.1), X1, X2, X3 and Y1, Y2, Y3 are the general
solutions of the following four homogeneous matrix equations

AX1 = −CY1, X2B = Y2D, AX3B = 0, CY3D = 0,

or explicitly,

X = X0 + S1FGUEHT1 + FAV1 + V2EB ,(2.3)
Y = Y0 + S2FGUEHT2 + FCW1 + W2ED,(2.4)

where

S1 = [ Ip, 0 ], S2 = [ 0, Is ], T1 =
[

Iq

0

]
, T2 =

[
0
It

]
, G = [A, C ], H =

[
B

−D

]
;

the matrices U, V1, V2, W1 and W2 are arbitrary.

For convenience, we adopt the following notation

J1 = {X ∈ Cp×q | AXB + CY D = M },(2.5)
J2 = {Y ∈ Cs×t | AXB + CY D = M }.(2.6)
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Results (2.3) and (2.4) imply that the general solutions of (1.1) are in fact two linear matrix expressions, each
of them involves three independent variant matrices. Applying Lemma 1.2 to (2.3) and (2.4) gives the following
result.

Theorem 2.2. Suppose that the matrix equation (1.1) is solvable, and let J1 and J2 be defined in (2.5) and
(2.6). Then:

(a) The maximal and minimal ranks of solution X of (1.1) are given by

max
X∈J1

r(X) = min
{

p, q, p + q + r[M, C ]− r[A, C ]− r(B),

p + q + r

[
M
D

]
− r

[
B
D

]
− r(A)

}
,

min
X∈J1

r(X) = r[M, C ] + r

[
M
D

]
− r

[
M C
D 0

]
.

(b) The maximal and minimal ranks of solution Y of (1.1) are given by

max
Y ∈J2

r(Y ) = min
{

s, t, s + t + r[M, A ]− r[C, A ]− r(D),

s + t + r

[
M
B

]
− r

[
D
B

]
− r(C)

}
,

min
Y ∈J2

r(Y ) = r[M, A ] + r

[
M
B

]
− r

[
M A
B 0

]
.
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Proof. Applying (1.7) and (1.8) to (2.3) yields

max
X∈J1

r(X) = max
U, V1, V2

r(X0 + S1FGUEHT1 + FAV1 + V2EB ) = min

p, q, r

[
X0 FA S1FG

EB 0 0

]
, r

 X0 FA

EB 0
EHT1 0

,

min
X∈J1

r(X) = min
U, V1, V2

r( X0 + S1FGUEHT1 + FAV1 + V2EB )

= r

[
X0 FA S1FG

EB 0 0

]
+ r

 X0 FA

EB 0
EHT1 0

− r

 X0 FA S1FG

EB 0 0
EHT1 0 0

 − r(FA)− r(EB),

where r(FA) = p−r(A) and r(EB) = q−r(B). As shown in (1.4), (1.5) and (1.6), the ranks of the block matrices
in these two formulas can be simplified further by Lemma 1.1, as well as the equality AX0B + CY0D = M and
elementary block matrix operations

r

[
X0 FA S1FG

EB 0 0

]

= r


X0 Ip S1 0
Iq 0 0 B
0 A 0 0
0 0 G 0

− r(A)− r(B)− r(G) = r


0 Ip 0 0
Iq 0 0 0
0 0 −AS1 AX0B
0 0 G 0

− r(A)− r(B)− r(G)

= r

[
−A 0 AX0B
A C 0

]
+ p + q − r(A)− r(B)− r(G) = r[C, AX0B ] + p + q − r(B)− r(G)

= r[C, M ] + p + q − r(B)− r(G),
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r

 X0 FA

EB 0
EHT1 0



= r


X0 Ip 0 0
Iq 0 B 0
T1 0 0 H
0 A 0 0

− r(A)− r(B)− r(H) = r


0 Ip 0 0
Iq 0 0 0
0 0 −T1B H
0 0 AX0B 0

− r(A)− r(B)− r(H)

= r

 B B
0 D

AX0B 0

 + p + q − r(A)− r(B)− r(H) = r

[
D

AX0B

]
+ p + q − r(A)− r(H)

= r

[
D
M

]
+ p + q − r(A)− r(H),

r

 X0 FA S1FG

EB 0 0
EHT1 0 0



= r


X0 Ip S1 0 0
Iq 0 0 B 0
T1 0 0 0 H
0 A 0 0 0
0 0 G 0 0

− r(A)− r(B)− r(G)− r(H)

= r


0 Ip 0 0 0
Iq 0 0 0 0
0 0 0 −T1B H
0 0 −AS1 AX0B 0
0 0 G 0 0

− r(A)− r(B)− r(G)− r(H)
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= r


0 0 −B B
0 0 0 −D

−A 0 AX0B 0
A C 0 0

 + p + q − r(A)− r(B)− r(G)− r(H)

= r


0 0 −B 0
0 0 0 D

−A 0 0 0
0 C 0 M

 + p + q − r(A)− r(B)− r(G)− r(H)

= r

[
M C
D 0

]
+ p + q − r(G)− r(H).

Thus, we have (a). Similarly, we can show (b). �

Furthermore, we can give the formulas for the maximal and minimal ranks of AXB and CY D in (1.1) when
it is solvable.

Theorem 2.3. Suppose that there are X and Y that satisfy (1.1), and let J1 and J2 be defined in (2.5) and
(2.6). Then

max
X∈J1

r(AXB) = min
{

r[M, C ]− r[A, C ] + r(A), r

[
M
D

]
− r

[
B
D

]
+ r(B)

}
,(2.7)

min
X∈J1

r(AXB) = r[M, C ] + r

[
M
D

]
− r

[
M C
D 0

]
,(2.8)
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max
Y ∈J2

r(CY D) = min
{

r[M, A ]− r[C, A ] + r(C), r
[

M
B

]
− r

[
D
B

]
+ r(D)

}
,(2.9)

min
Y ∈J2

r(CY D) = r[M, A ] + r

[
M
B

]
− r

[
M A
B 0

]
.(2.10)

Proof. Applying (1.7) and (1.8) to AXB = AX0B + AS1FGUEHT1B yields

max
X∈J1

r(AXB) = max
U

r( AX0B + AS1FGUEHT1B )

= min
{

r[AX0B, AS1FG ], r

[
AX0B
EHT1B

]}
,

min
X∈J1

r(AXB) = min
U

r( AX0B + AS1FGUEHT1B )

= r[AX0B, AS1FG ]+r

[
AX0B
EHT1B

]
−r

[
AX0B AS1FG

EHT1B 0

]
.

Also find by Lemma 1.1, AX0B + CY0D = M and elementary block matrix operations that

r[AX0B, AS1FG ] = r

[
AX0B AS1

0 G

]
− r(G) = r

[
AX0B A 0

0 A C

]
− r(G)

= r[AX0B, C ] + r(A)− r(G) = r[M, C ] + r(A)− r(G),

r

[
AX0B
PHT1B

]
= r

[
AX0B 0
T1B H

]
− r(H) = r

AX0B 0
B B
0 −D

− r(H)

= r

[
AX0B

D

]
+ r(B)− r(H) = r

[
M
D

]
+ r(B)− r(H),
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r

[
AX0B AS1FG

EHT1B 0

]
= r

AX0B AS1 0
T1B 0 H

0 G 0

− r(G)− r(H) = r


AX0B A 0 0

B 0 0 B
0 0 0 −D
0 A C 0

− r(G)− r(H)

= r


0 A 0 0
B 0 0 0
0 0 0 D
0 0 C AX0B

− r(G)− r(H) = r

[
M C
D 0

]
+ r(A) + r(B)− r(G)− r(H).

Therefore, we have (2.7) and (2.8). In the same manner, one can show (2.9) and (2.10). �

3. Independence of solutions X and Y to AXB + CY D = M

The independence of the two matrices X1 and X2 that satisfy the matrix equation A1X1 + A2X2 = B is inves-
tigated in the author’s recent paper [11]. In this section, we consider the independence of X and Y that satisfy
(1.1).

Consider J1 and J2 in (2.5) and (2.6) as two independent matrix sets. If for any given X ∈ J1 and Y ∈ J2,
the pair satisfy (1.1), X and Y for (1.1) are said to be independent. The independence of solutions X and Y for
(1.1) can also be examined through the rank formulas in Lemma 1.2.

Theorem 3.1. Suppose that the matrix equation (1.1) is solvable. Moreover, let J1 and J2 in (2.5) and (2.6)
as two independent matrix sets. Then

max
X∈J1, Y ∈J2

r( M −AXB − CY D ) = min
{

r(A) + r(C)− r[A, C ], r(B) + r(D)− r

[
B
D

]}
.(3.1)

In particular,

(a) Solutions X and Y of (1.1) are independent if and only if

R(A) ∩R(C) = {0} or R(B∗) ∩R(D∗) = {0}.(3.2)
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(b) If (3.2) holds, the general solution of (1.1) can be written as the two independent forms

X = X0 + S1FGU1EHT1 + FAV1 + V2EB ,(3.3)
Y = Y0 + S2FGU2EHT2 + FCW1 + W2ED,(3.4)

where X0 and Y0 are a pair of special solutions to (1.1), U1, U2, V1, V2, W1 and W2 are arbitrary.

Proof. Writing (2.3) and (2.4) as two independent matrix expressions, substituting them into M−AXB−CY D
and observing AS1FG = −CS2FG and EHT1B = EHT2D gives

M −AXB − CY D

= M −AX0B − CY0D −AS1FGU1EHT1B − CS2FGU2EHT2D

= −AS1FGU1EHT1B − CS2FGU2EHT2D

= −AS1FGU1EHT1B + AS1FGU2EHT1B

= AS1FG(−U1 + U2 )EHT1B,

where U1 and U2 are arbitrary. Then it follows by (1.3) that

max
X∈J1, Y ∈J2

r( M −AXB − CY D ) = max
U1, U2

r[AS1FG(−U1 + U2 )EHT1B ]

= min { r(AS1FG), r(EHT1B) } ,

where by Lemma 1.1

r(AS1FG) = r

[
AS1

G

]
− r(G) = r

[
A 0
A C

]
− r(G) = r(A) + r(C)− r(G),

r(EHT1B) = r[T1B, H ]− r(H) = r

[
B B
0 −D

]
− r(H) = r(B) + r(D)− r(H).
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Therefore, (3.1) follows. Result (3.2) follows from (3.1); the solutions in (3.3) and (3.4) follow from (2.3) and
(2.4). �

Remark 3.2. The matrix equation (1.1) is one of the basic linear matrix equations. Many other types of matrix
equations can be solved through (1.1). For example, From Lemma 1.2, one can derive necessary and sufficient
conditions for the matrix equation AXA∗ + BY B∗ = C to have Hermitian and skew-Hermitian solutions. From
Lemma 2.1, one can also give necessary and sufficient conditions for the two matrix equations AXB+(AXB)∗ = C
and AXB − (AXB)∗ = C to be solvable.
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