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A STUDY ON THE ONE PARAMETER
LORENTZIAN SPHERICAL MOTIONS

M. TOSUN, M.A.GUNGOR, H. H. HACISALIHOGLU and I. OKUR

Abstract. In this paper we have introduced 1-parameter Lorentzian spherical mo-
tion. In addition to that we have given the relations between the absolute, relative

and sliding velocities of these motions. Furthermore, the relations between fixed and
moving pole curves in the Lorentzian spherical motions have also been obtained.

1. Introduction

The determination of a point or a set of points such that its velocity norm vanishes
or that is a minimum has always aroused interest among kinematicians. The
explanation of this is two-fold: points whose velocity, or acceleration, vanishes are
important for they allow one to write simplified equations for the velocity and
acceleration of any other point of the rigid body; and a point or a set of points
with a minimum velocity norm locates the connecting place of a kinematic pair,
in general a helicoidal pair, that connects the rigid body to the reference body.
This connection produces a motion with the same characteristics, at least up to
the first derivative of the original motion of the rigid body.

Indeed, the search for points of a rigid body with a minimum velocity norm
has led to the description of the velocity of a rigid body in terms of infinitesimal
screws, or helicoidal fields, and therefore to the definition of the instantaneous
screw axis.

Muller has introduced one and two parameters planar motions and obtained
the relations between absolute, relative, sliding velocity and pole curves of these
motions, [7]. Lorentzian metric in 3-dimensional Minkowski space R3

1 is indefinite.
In the theory of relativity, geometry of indefinite metric is very crucial.Thus, by
taking Lorentzian plane L2 instead of Euclidean plane E2, Ergin [5] has introduced
1-parameter planar motion in Lorentzian plane. Furthermore he gave the relation
between the velocities, accelerations and pole curves of these motions.

To investigate the geometry of the motion of a line or a point in the motion
of space is important in the study of space kinematics or spatial mechanisms or
in physics. The geometry of such a motion of a point or a line has a number of
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applications in geometric modelling and model-based manufacturing of the me-
chanical products or in the design of robotic motions. These are specifically used
to generate geometric models of shell-type objects and thick surfaces, [4], [6], [9].

This paper is organised as follows. In this first part, basic concepts have been
given in Minkowski space IRn

1 . In the second part, 1-parameter Lorentzian spheri-
cal motions are defined. In doing so, the orthonormal frames of {O;~e1, ~e2, ~e3} and{
O; ~e1

′, ~e2
′, ~e3

′} are taken representing moving Lorentzian sphere S2
1 and fixed

Lorentzian sphere S̄2
1 , respectively. Without making any of these privileged we

have taken another orthonormal frame {O;~r1, ~r2, ~r3}, called relative orthonormal
frame, and given the Lorentzian spherical motions with respect to this new (rela-
tive) orthonormal frame. Furthermore the relations between absolute, relative and
sliding velocities of 1-parameter Lorentzian spherical motions have been obtained.
In the third part, the relations between the pole curves rolling on each other with
respect to a spherical relative system have also been given.

We hope that these results will contribute to the study of space kinematics and
physics applications.

2. Preliminaries

We start with preliminaries on the geometry of 3-dimensional Minkowski space.
Let IRn

1 be a 3-dimensional Minkowski space endowed with Lorentzian inner prod-
uct 〈 , 〉 of signature (+,−,+). A vector ~X = (x1, x2, x3) of IRn

1 is said to be time-
like if 〈 ~X, ~X〉 < 0, space-like if 〈 ~X, ~X〉 > 0 and light-like (or null) if 〈 ~X, ~X〉 = 0.
The set of all vector ~X such that 〈 ~X, ~X〉 = 0 is called the light-like (or null) cone

and is denoted by Γ. The norm of a vector ~X is defined to be ‖ ~X‖ =
√
|〈 ~X, ~X〉|.

Time orientation is defined as follows: A time-like vector ~X = (x1, x2, x3) is future
pointing (respectively past pointing) if and only if x2 > 0 (respectively x2 < 0),
[2]. Let ~X be a future pointing time-like unit vector and ~Y also be a future point-
ing time-like unit vector. If the angle between ~X and ~Y is θ then we may have,
[2], [3] 〈

~X, ~X
〉

= − cosh θ.

The Lorentzian sphere and hyperbolic sphere of radius 1 in IRn
1 are given by

S2
1 =

{
~X = (x1, x2, x3) ∈ IR3

1

∣∣ 〈
~X, ~X

〉
= 1

}
and

H2
0 =

{
~X = (x1, x2, x3) ∈ IR3

1

∣∣ 〈
~X, ~X

〉
= −1

}
respectively, [8].

H2
0 consists of two connected components. The components of H2

0 through
(0,1,0) and (0,-1,0) are called the future-pointing hyperbolic unit sphere and past-
pointing hyperbolic unit sphere and are denoted by H+2

0 and H−2
0 , respectively.
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As in the case of Euclidean 3-dimensional space, the Lorentzian cross product
of ~X and ~Y is defined by

~X ∧ ~Y = (y3x2 − y2x3, y3x1 − y1x3, y2x1 − y1x2)

where ~X = (x1, x2, x3) and ~Y = (y1, y2, y3) are the vectors of the space IR3
1, [1].

The matrix

B (θ) =
[

cosh θ sinh θ
sinh θ cosh θ

]
is called the Lorentzian rotation matrix in IR2

1, where θ ∈ IR, [3]. This matrix is
similar to the rotation matrix, which is[

cos θ − sin θ
sin θ cos θ

]
in E2.

Lemma 1. Time-like vectors are transformed to time-like vectors and space-
like vectors are transformed to space-like vectors by B. That is, B conserves the
orientation, [2].

3. Lorentzian Spherical Motions and Their Velocities

Let S2
1 and S̄2

1 be O-centered moving and fixed Lorentzian spheres, and related
to these spheres {O;~e1, ~e2, ~e3} and

{
O; ~e1

′, ~e2
′, ~e3

′} be orthonormal coordinate
frames moving related to each other, having the same centre O, respectively. Let
assume that {O;~e1, ~e2, ~e3} represents the moving Lorentzian sphere S2

1 , whereas{
O; ~e1

′, ~e2
′, ~e3

′} represents the fixed one (where base vectors ~e1, ~e3; ~e1
′, ~e3

′ are
space-like and the vectors ~e2, ~e2

′ are time-like). Therefore,

〈~ei, ~ej〉 =
〈
~ei
′, ~ej

′〉 = εiδij , εi =
{

1, are ~ei or ~ei
′ space-like

−1, are ~ei or ~ei
′ time-like , 1 ≤ i, j ≤ 3

Adopting that none of these systems are privileged, we take another relative
orthonormal frame, {O; r̃1, ~r2, ~r3}, in consideration and express the movement with
respect to this relative one (where base vectors ~r1, ~r3 are space-like and the vectors
~r2 is time-like). Therefore,

〈~ri, ~rj〉 = εiδij , εi =
{

1, is ~ri space-like
−1 , is ~ri time-like , 1 ≤ i, j ≤ 3

Since each of these orthonormal frames has the same orientation, one frame is
obtained by using another when rotated about O-point. Let A be a unit Lorentzian
orthogonal matrix of type 3 × 3. That is, At = εA−1ε , where ε is a sign matrix
defined as follows

ε =

 1 0 0
0 −1 0
0 0 1

 .
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If we use the following abbreviations

E =

 ~e1

~e2

~e3

 , R =

 ~r1

~r2

~r3

 , E′ =

 ~e1
′

~e2
′

~e3
′


we get

R = AE, R = A′E′.(1)

Here, the elements of the matrix A are not only continuous but all differentiable
as well as we would like. Hence, 1-parameter motion is determined by the matrix
A = A (t) and called as 1-parameter Lorentzian spherical motion D1.

Now, let us calculate the differentials of vectors ~rj with respect to S2
1 and S̄2

1 , re-
spectively. If we consider equation(1), then differential of the relative orthonormal
coordinate frame R with respect to S2

1 and S̄2
1 are

dR = dAA−1R, d′R = dA′ (A′)−1
R.(2)

By choosing dA ·A−1 = Ω and dA′ · (A′)−1 = Ω′ equation (2) can be rewritten as
follows

dR = ΩR, d′R = Ω′R.(3)

We can easily see that both Ω and Ω′ matrices are anti-symmetric in the sense
of Lorentzian, i.e., Ωt = −εΩε where Ωt is the transpose matrix of Ω and ε is sign
matrix. Let assume that ωij (1 ≤ i, j ≤ 3) are the elements of Ω matrix. Let’s
denote the permutations of the indices i, j, k = 1, 2, 3; 2, 3, 1; 3, 1, 2, by ωij = ωk.
Then we can easily get that

Ω =

 0 ω3 ω2

ω3 0 ω1

−ω2 ω1 0

 .(4)

In the similar way, anti-symmetric matrix Ω′ in the sense of Lorentzian is obtained
to be

Ω′ =

 0 ω′
3 ω′

2

ω′
3 0 ω′

1

−ω′
2 ω′

1 0

 .(5)

Let ~X =

 x1

x2

x3

 be a point in the relative frame and configure the following

vector
−−→
OX = ~X = XtR.(6)

If the point X is a point on the unit Lorentzian sphere, then we have

‖ ~X‖2 = x2
1 − x2

2 + x2
3 = 1.
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Now, we compute the differentials of X with respect to Lorentzian spheres S2
1

(moving) and S̄2
1 (fixed). First of all, we evaluate the differentiation of X with

respect to moving Lorentzian sphere S2
1 . If we consider equation (6), we obtain

d ~X = dXtR + XtdR.

Substituting equation (3) in the last equation we have

d ~X =
(
dXt + XtΩ

)
R.(7)

Therefore, relative velocity of X (i.e., velocity of X with respect to Lorentzian
sphere S2

1) is ~Vr = d ~X
dt . If ~Vr = 0, i.e., d ~X = 0, then the point X is fixed in the

moving Lorentzian sphere S2
1 . Thus, from equation (7), the condition that the

point X is fixed in S2
1 is given by the following equation

dXt = −XtΩ.(8)

Similarly, from equation (3), the differential of X with respect to fixed Lorentzian
sphere S̄2

1 is

d′ ~X =
(
dXt + XtΩ′) R.(9)

So, absolute velocity vector (the velocity of the point X with respect to fixed
Lorentzian sphere S̄2

1) is ~Va = d′ ~X
dt . If ~Va = 0, i.e., d′ ~X = 0, the point X is fixed

in the fixed Lorentzian sphere S̄2
1 .

Hence, the condition that the point X is fixed in S̄2
1 is given by

dXt = −XtΩ′.(10)

If the point X is fixed in moving Lorentzian sphere S2
1 then the velocity of X with

respect to S̄2
1 is called sliding velocity of X and denoted by ~Vf . If equation (8) is

substituted in (9) we get
~Vf = XtΨR(11)

where Ψ = Ω′ − Ω.
If the Pfaffian vector ~Ψ is taken to be

~Ψ = Ψ1~r1 −Ψ2~r2 −Ψ3~r3 , Ψi = ω′
i − ωi , 1 ≤ i ≤ 3(12)

then we get
~Vf = ~Ψ ∧ ~X(13)

Taking equation (7) and equation (9) into account we can easily get
~Vf = d′ ~X − d ~X.

From the last equation we may write
~Va = ~Vr + ~Vf .

Therefore we give the following theorem.

Theorem 2. In a 1-parameter Lorentzian spherical motion, absolute velocity
vector of a point X is the sum of relative velocity vector and sliding velocity vector
of it.
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Now, to understand the meaning of the pfaffian vector ~Ψ and equation (14) we
emphasize the importance of Darboux rotation vector.

Let us consider a rotational motion about an axis. Assume that this axis passes
through the origin and its direction be ~d. We also assume that the angular velocity
of this rotational motion is ω = ∓‖~d‖.

Let apply this rotation motion to the point X with the position vector of
−−→
OX =

~X and let us define velocity vector ~v of this point X as follows

~v = ~d ∧ ~X.

The last equation implies that the vector ~v is orthogonal to both ~X and ~d. If the
angle between ~d and ~X is denoted by α and the distance of ~X from the rotation
axis by r, then we can write, [2].

‖~v‖ = ‖~d‖‖ ~X‖ sinhα = ∓ωr.

It is very clear from this equation that ~v is the velocity vector of the point X

on the rotation about the axis ~d with the angular velocity of ∓‖~d‖. Therefore,
we call ~Ψ pfaffian vector as rotation vector of 1-parameter Lorentzian spherical
motion D1 at the time t. Thus we give the following theorem.

Theorem 3. In 1-parameter Lorentzian spherical motion D1 at the time t, for
every point X there exists an infinitesimal rotational motion. In this rotational
motion, pfaffian vector plays the role of Darboux rotation vector.

Now we add an unit vector of ~p which is in the direction of the rotation vector
~Ψ. Since we have

‖~p‖ = 1

then we write
~Ψ = ~p

√
Ψ2

1 −Ψ2
2 + Ψ2

3

where Ψ = ∓‖~Ψ‖ =
√

Ψ2
1 −Ψ2

2 + Ψ2
3 demonstrates the infinitesimal rotational

angle which produces the rotation in the time interval dt (the sign of Ψ depend on
the direction of ~p). The point P shown on the Lorentzian sphere

(−−→
OP = ~p

)
is an

instantaneous rotation pole. As the point P is characterised by that the sliding
velocity is equal to zero, according to the equation (13) if

~Ψ ∧ ~X = 0, ‖ ~X‖2 = 1

then
~X = ∓~p.

Theorem 4. In a 1-parameter Lorentzian spherical motion for any time t there
exists a couple of points P , P ′ for each of which the sliding velocities are zero,
where P is the rotational pole S2

1 and P ′ is the rotational pole S̄2
1 . Those points

remain stable on both Lorentzian spheres at any time.
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Theorem 5. Every point of moving Lorentzian sphere S2
1 make a rotational

motion (an instantaneous rotational motion) with angular velocity Ψ : dt about
the pole P (and its P ′ point) at every time t. Therefore, 1-parameter Lorentzian
spherical motion is such a rotational motion of Lorentzian sphere S2

1 with respect
to fixed Lorentzian sphere S̄2

1 at a time t.

4. Canonical Relative Frames and Rolling of the Pole Curves
on Each Others

Now, let us choose a special relative frame that satisfies the following equation

~p = ~r3.(14)

If we take ~p = ~r3 then the vector ~p becomes orthogonal to ~r1 and ~r2. Therefore,
since ~Ψ = ~p

√
Ψ2

1 −Ψ2
2 + Ψ2

3, from the equation(12) we see that Ψ1 = 0, Ψ2 = 0.
Since we have Ψ = Ω′ − Ω, if we consider equations(4) and (5) we reach ω′

1 = ω1,
ω′

2 = ω2. Thus, infinitesimal rotation angle of instantaneous rotation appears to
be

Ψ = Ψ3.

In this case, instantaneous rotation axis is expressed as follows

~Ψ = −~r3Ψ3 = −~r3 (ω′
3 − ω3) .

From this point on, we assume that Ψ3 6= 0. We have not given the single meaning
of relative frame by using equation(14), because the frame obtained from the
condition of ~p = ~r3 can be rotated arbitrarily about the ~r3-axis. Therefore, rotating
the frames about ~p = ~r3-axis by an angle of θ gives us (see Figure 1).

Figure 1

R∗ = A (θ)R(15)

where R∗ =

 ~r∗1
~r∗2
~r∗3

, R =

 ~r1

~r2

~r3

 and A (θ) =

 cosh θ sinh θ 0
sinh θ cosh θ 0

0 0 1

.
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This new orthonormal frame {O;~r∗1 , ~r∗2 , ~r∗3} has the following differential equa-
tions, corresponding equation (3)

dR∗ = Ω∗R∗ , d′R∗ = Ω′∗R∗.(16)

Now we see the how we can obtain ω∗’s from ω’s, i.e. we discuss the rela-
tionship between ω’s and ω∗’s when the frame rotates by the angle of θ.

If we take into account equation (15) we can write

dR∗ = dA (θ)R + A (θ) dR.

Substituting equation (3) in the last equation we obtain

dR∗ = (dA (θ) + A (θ) Ω)R(17)

and using (15) and (16) equations we have the following

Ω∗A (θ) = dA (θ) + A (θ)Ω.(18)

If we write this last equation in matrix form we can easily see that

ω∗
1 = ω1 cosh θ + ω2 sinh θ

ω∗
2 = ω1 sinh θ + ω2 cosh θ

ω∗
3 = ω3 + dθ.

So, in this type of rotation of the frame, pfaffian forms transform as unit vectors
~r1 and ~r2.

Now, to normalise the relative system we choose the rotation angle θ in such
that

ω∗
1 = ω1 cosh θ + ω2 sinh θ = 0.(19)

The equation (19) is a conditional equation for the rotation angle θ. At this
point we suppose that the relative frame is rotated about ~r3 by the angle θ which
satisfies equation (19) and omit the asterixes. Thus, we can rewrite the equation
(16) and (19) for the canonical relative frame as follows. Differentiation with
respect to S2

1 is  d~r1

d~r2

d~r3

 =

 0 ω3 ω2

ω3 0 0
−ω2 0 0

 ~r1

~r2

~r3

(20)

and the differentiation with respect to S̄2
1 is d′~r1

d′~r2

d′~r3

 =

 0 ω′
3 ω′

2

ω′
3 0 0

−ω′
2 0 0

 ~r1

~r2

~r3

(21)

~p = ~r3 vector draws a curve (P ) on the moving sphere S2
1 , we call this curve as

moving pole curve centrode of 1-parameter Lorentzian movement D1. From the
equation(20) we have the following equation

d~r3

ω2
=

d~r3

ds
= −~r1.
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This last equation tells us that the unit tangential vector of moving pole curve (P )
is (−~r1) and ω2 = ds is the arc element of (P ).

In the same manner, end point of the vector ~p = ~r3 draws a constant pole curve
(P ′) on the sphere S̄2

1 . On this curve unit tangential vector at the point P is (−~r1)
and arc element is ω2 = ds′ (here we took equation(21) into account). So, we can
give the following theorems.

Theorem 6. Velocity vectors of the rotating pole (P ) are the same at any time
when the pole on the moving and constant sphere draw pole curves (P ) and (P ′),
respectively.

Theorem 7. In a 1-parameter spherical Lorentzian movement D1, spherical
moving pole curve (P ) of S2

1 rolls on constant pole curve (P ′) of S̄2
1 with no slide.

Theorem 8. In the reverse movement of 1-parameter spherical rotation motion
the spherical surfaces of S2

1 , S̄2
1 and spherical pole curve (P ) and (P ′) changes their

roles
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