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DEGENERATE DIFFUSIVE SEIR MODEL WITH LOGISTIC POPULATION CONTROL

T. ALIZIANE and M. LANGLAIS

Abstract. In this paper we analyze the global existence and eventually uniform bound and the existence of periodic
solution for a reaction diffusion system with degenerate diffusion arising in modelling the spatial spread of an epidemic
disease. We also obtain the existence of the global attractor.

1. Introduction

In this paper we shall be concerned with a degenerate parabolic system of the form

(1)



∂tU1 −∆Um1
1 = −γ(U1, U2, U3, U4) +

∑4
i=1 b1iUi + δU4 − νU1

−(k1P +m1)U1 + F1(x, t) = f1(x, t, U1, U2, U3, U4),
∂tU2 −∆Um2

2 = γ(U1, U2, U3, U4) + b22U2 − (k2P +m2 + λ+ µ)U2

+F2(x, t) = f2(x, t, U1, U2, U3, U4),
∂tU3 −∆Um3

3 = b33U3 + λπU2 − (k3P + α+m3 +m+ µ)U3

+F3(x, t) = f3(x, t, U1, U2, U3, U4),
∂tU4 −∆Um4

4 = b44U4 + (1− π)λU2 + αU3 + νU1 − δU4

−(k4P +m4)U4 + F4(x, t) = f4(x, t, U1, U2, U3, U4).
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in Ω× (0,+∞), subject to the initial conditions

(2) Ui(x, 0) = Ui,0(x) ≥ 0, x ∈ Ω; i = 1, . . . , 4.

and to the Neumann boundary conditions

(3)
∂Umi

i

∂η
(x, t) = 0, x ∈ ∂Ω, t > 0, i = 1, . . . , 4.

Herein, Ω is an open, bounded and connected domain in RN , N ≥ 1, with a smooth boundary ∂Ω; ∆ is the Laplace
operator in RN . Powers mi verify

mi > 1, i = 1, . . . , 4. Finally P is the total mass of the population P =
4∑

i=1

Ui, and Fi, i = 1, . . . , 4 are

nonnegative and continuous function on Ω× (0,+∞).
In the spatially homogeneous case this problem can be reduced to one of the models of propagation of an

epidemic disease devised in Kermack and McKendricks [20], namely S′ = −γSI,
I ′ = +γSI − λI,
R′ = +λI.

This basic model served as a starting point for many further developments, both from epidemiological or math-
ematical point of view see Busenberg and Cooke [5] or Capasso [6] and their references. Thus, system (1) leads
to so-called (S −E − I −R) models : U1 = S is the distribution of susceptible individuals in a given population,
γ(S,E, I,R) is the incidence term or number of susceptible individuals infected by contact with an infective indi-
vidual U3 = I per time unit and becoming exposed U2 = E, while U4 = R is the density of removed or resistant
(immune) individuals. Then bi,j (resp. mi) is the natural birth-rate (resp. death-rate), λ (resp. α) is the inverse
of the duration of the exposed stage (resp. infective stage) or rate at which exposed individuals enter the infective
class (resp. infective individuals who do not die from the disease recover), m is the additional mortality due
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to infection in the infective class, immunity is lost at rate δ, Fi represents an eventually source term and the
quadratic term accounts for the damping of growth due to resource limitation of the habitat or environment. The
last two parameters are control parameters: first ν is a vaccination rate; next, for a population of animals, as it is
considered here as in Anderson et al. [4], Fromont et al. [15], Courchamp et al. [8] or Langlais and Suppo [22],
µ is an elimination rate of exposed and infective individuals. Lastly, as it is suggested by the FeLV, a retrovirus
of domestic cats (Felis catus) see [15], one also introduces a parameter π measuring the proportion of exposed
individuals which actually develop the disease after the exposed stage, the remaining proportion 1− π becoming
resistant.

The nonlinear incidence term γ takes various forms as it can be found from the literature; at least two of them
are widely used in applications

γ(S,E, I,R) =


γSI, [4, 6, 20],

mass action in [5, 6] or
pseudo-mass action [19, 10].

γ
SI

S + E + I +R
, [8, 15, 22],

proportionate mixing in [5]
or true mass action [19, 10].

We refer to De Jong et al., [19] and Diekmann et al. [10] for a discussion supporting the second one in
populations of varying size and Fromont et al. [16] for a specific discussion in the case of a cat population. See
Capasso and Serio [7] and Capasso [6] for more general incidence terms.

System (1)–(3) is uniformly parabolic in the region D = ∩4
i=1[Ui 6= 0] and degenerate into first order equations

on QT \ D. Note that degenerate diffusion is a good approach in modeling slow diffusion of individuals in the
spatial spread of an epidemic disease, see Okubo [24].

A mathematical analysis of the model of Kermack and McKendricks for spatially structured populations with
linear diffusion, i.e. mi = 1, i = 1 . . . 4, is performed in Webb [28]. Nonlinear but nondegenerate diffusion terms
are introduced in Fitzgibbon et al. [14]. Global existence and large time behavior results are derived therein.
Homogeneous Neumann boundary conditions correspond to isolated populations.
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A comprehensive analysis of generic (S−E− I−R) models with linear diffusion is initiated in Fitzgibbon and
Langlais [12] and Fitzgibbon et al. [13]. These models include a logistic effect on the demography, yielding L1(Ω)
a priori estimates on solutions independent of the initial data for large time; this allows to use a bootstrapping
argument to show global existence and exhibit a global attractor in (C(Ω))4.

For degenerate reaction-diffusion equations, the case of mass action incidence was studied by Aliziane and
Moulay [3] and they established the long time behavior of the solution of the SIS model, Aliziane and Langlais
[2] studied the SEIR model without logistic effect on the demography and they established global existence result
of the solution and the long time behavior of the solution. Finally Hadjadj et al. [18] studied the case where the
source term depends on gradient of solution, they resolved the problem of existence of globally bounded weak
solutions or blow-up, depending on the relations between the parameters that appear in the problem.

This paper is organized as follows: in Section 2 notion of a weak solution is introduced and we state our
mean results, in Section 3 we will construct our solution as a limit of solutions of quasilinear and nondegenerate
problems depending on a parameter ε, derive uniform a priori estimates on these solutions, and prove existence,
uniqueness and regularity results in Section 4. In Section 5 we prove the existence of periodic solution of (1)–(3)
under periodic assumption on F . Finally in the last section we obtain the existence of a global attractor.

2. Main results

2.1. Basic assumptions and notations

Herein, Ω is an open, bounded and connected domain of the N -dimensional Euclidian space RN , N ≥ 1, with a
smooth boundary ∂Ω, a (N − 1)-dimensional manifold so that locally Ω lies on one side of ∂Ω; x = (x1, . . . , xN )
is the generic element of RN . Next we shall denote the gradient with respect to x by ∇ and the Laplace operator
in RN by ∆, sign ε is a smooth approximation of the function signum (sign ), finally if r is a real number then we
set r+ = sup (r, 0), r− = sup (−r, 0).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Then we set Ω × (0, T ) = QT and for 0 ≤ τ < T , Ω × (τ, T ) = Qτ,T . The norm in Lp(Ω) is ‖ ‖p,Ω and the
norm in Lp(Qτ,T ) is ‖ ‖p,Qτ,T

for 1 ≤ p ≤ +∞.

Next we shall assume throughout this paper

(H0) Ui,0 ∈ C(Ω̄), Ui,0(x) ≥ 0, x ∈ Ω, i = 1, . . . , 4.
(H1) Powers mi verify mi > 1, i = 1, . . . , 4.
(H2) µ, α, ν,m, λ, π, bii, b1i, ki,

i = 1, . . . , 4 are nonnegative constants, ki > 0, i = 1, . . . , 4 and 0 ≤ π ≤ 1.
(H3) γ : R4

+ −→ R+ is a locally lipschitz continuous function with polynomial growth and γ(0, U2, U3, U4) = 0
on R3

+.
(H4) There exists nonnegative constants C1, C2 and 0 ≤ r ≤ 1 such that

γ(U1, U2, U3, U4) ≤ (C1 + C2

4∑
i=1

Ur
i ) on R4

+.

(H5) Fi, i = 1, . . . , 4 are nonnegative continuous and bounded function on Ω× (0,+∞).

Remark. The assumption γ(0, U2, U3, U4) = 0 is a natural assumption for our motivating problem: no new
exposed individuals when there is no susceptible ones. (H4) removes mass action incidence terms.

2.2. Main results

System (1) is degenerate: when Ui = 0 the equation for Ui degenerates into first order equation. Hence classical
solutions cannot be expected for Problem (1)–(3). A suitable notion of generalized solutions is required. We
adopt the notion of weak solution introduced in Oleinik et al. [25].
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Definition 2.1. A quadruple (U1, U2, U3, U4) of nonnegative and continuous functions Ui : Ω × [0,+∞) →
[0,+∞), i = 1, . . . , 4, is a weak solution of Problem (1)–(3) in QT , T > 0 if for each i = 1, . . . , 4 and for each

ϕi ∈ C1(Q̄T ), such that
∂ϕi

∂η
= 0 on ∂Ω× (0, T ).

(i) ∇Umi exists in the sense of distribution and ∇Umi
i ∈ L2(QT ),

(ii) Ui verifies the identity

(4)

∫
Ω

Ui(x, T )ϕi(x, T )dx+
∫

QT

∇Umi
i ∇ϕi(x, t)dxdt

=
∫

QT

(∂tϕiUi − fiϕi)(x, t)dxdt+
∫

Ω

Ui,0(x)ϕi(x, 0)dx,

We are now ready to state our first result.

Theorem 2.2. For each quadruple of continuous nonnegative initial functions (U1,0, U2,0, U3,0, U4,0) there
exists a unique weak solution (U1, U2, U3, U4) of Problem (1)− (3) on Q∞

i) Ui,0 ∈ C((0,+∞); Ω̄) ∩ L∞(Q∞), and Umi
i ∈ H1(Qτ,T )

for all , 0 < τ < T, i = 1, . . . , 4.
ii) There exists a nonnegative constant K such that

(5)
∫

Ω

4∑
i=1

|U1,i − U2,i|(x, t)dx ≤ (1 +KteKt)
∫

Ω

|U1,i,0 − U2,i,0|(x)dx,

for all t > 0, where Uj,i is solution of (1)–(3) with initial data Uj,i,0.

The proof is found in Section 4.
Now we look at the existence of periodic nonnegative solution of (1).
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Theorem 2.3. Assume

(HP ) There exists a positive constant T ∗ so that Fi(x, t+ T ∗) = Fi(x, t).

Then there exists a solution (U1, U2, U3, U4) to (1)–(3) so that for t ≥ 0, x ∈ Ω, we have

Ui(x, t+ T ∗) = Ui(x, t), i = 1, . . . , 4.

The proof is found in Section 5.

3. Auxiliary problem and a priori estimates

In this section we consider an auxiliary problem depending on a small parameter ε, with 0 < ε ≤ 1. Namely let
us introduce in Ω× (0,+∞) the quasilinear nondegenerate initial and boundary value problem

(6)



∂tU1 −∆d1(U1) = −γ((U1 − ε)+, U2, U3, U4)) +
4∑

i=1

b1i(Ui − ε) + δ(U4 − ε)

−ν(U1 − ε)− (k1(P − 4ε) +m1)(U1 − ε) + F1(x, t),
∂tU2 −∆d2(U2) = γ((U1 − ε)+, U2, U3, U4) + b21(U2 − ε)

−(k2(P − 4ε) +m2 + λ+ µ)(U2 − ε) + F2(x, t),
∂tU3 −∆d3(U3) = b31(U3 − ε) + λπ(U2 − ε)

−(k3(P − 4ε) + α+m3 + µ)(U3 − ε) + F3(x, t),
∂tU4 −∆d3(U4) = b41(U4 − ε) + (1− π)λ(U2 − ε) + α(U3 − ε) + ν(U1 − ε)

−δ(U4 − ε)− (k4(P − 4ε) +m4)(U4 − ε) + F4(x, t).

(7)

 Ui,ε(x, 0) = Ui,0,ε(x) ≥ 0, x ∈ Ω;
∂di(Ui,ε)

∂η
(x, t) = 0, x ∈ ∂Ω, t > 0,

i = 1, . . . , 4.
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Herein (r)+ is the nonnegative part of the real number r; for each i = 1, . . . , 4
di : R −→ ( ε

2 ,+∞) is a smooth and increasing functions with

(8) di(u) = umi , ε ≤ u;

(Ui,0,ε)i=1,...,4 is a quadruple of smooth functions over Ω̄ such that

(9)


Ui,0,ε(x) ≥ ε, x ∈ Ω, 0 < ε ≤ 1;∫

Ω

(Ui,0,ε(x)− ε)dx =
∫

Ω

Ui,0(x)dx

Ui,0,ε −→ Ui,0 in C(Ω̄), as ε −→ 0;

i = 1, . . . , 4;

we refer to [1] for a construction of such a set of initial data. From standard results, [21] or [26], local existence
and uniqueness of a quadruple (U1,ε, U2,ε, U3,ε, U4,ε), a classical solution of (6)–(7) in some maximal interval
[0, Tmax,ε) is granted.

Looking at the equation for Ui,ε it is checked that ([ε, +∞[)4 is an invariant region (see [26]), thus 0 < ε ≤
Ui,ε(x, t), x ∈ Ω, 0 < t < Tmax,ε . As a consequence Ui,ε is the solution of the initial and boundary value problem

(10)



∂tU1 −∆Um1
1 = −γ((U1 − ε), U2, U3, U4)) +

4∑
i=1

b1iUi + δ(U4 − ε)

−ν(U1 − ε)− (k1P +m1)(U1 − ε) + F1(x, t),
∂tU2 −∆Um2

2 = γ((U1 − ε), U2, U3, U4) + b21(U2 − ε)
−(k2P +m2 + λ+ µ)(U2 − ε) + F2(x, t),

∂tU3 −∆Um3
3 = b31(U3 − ε) + λπ(U2 − ε)− (k3P + α+m3 + µ)(U3 − ε)

+F3(x, t),
∂tU4 −∆Um4

4 = b41(U4 − ε) + (1− π)λ(U2 − ε) + α(U3 − ε) + ν(U1 − ε)
−δ(U4 − ε)− (k4P +m4)(U4 − ε) + F4(x, t).
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in Ω× (0,+∞), together with (7).

Lemma 3.1. The solution of (10) subject to (7) is global (that is Tmax,ε = ∞) and there exist a constant C
independent of ε, 0 < ε < 1, such that

(11) ‖uiε(t, .)‖L∞ ≤ C(‖u0‖L∞), for all t > 0, i = 1, . . . , 4.

Moreover, there exists a positive function F not depending on ε and on u0 such that

(12) ‖uiε(t, .)‖L∞ ≤ F (ξ) for all t ≥ ξ > 0,

Proof. Let us multiply each equation in Ui,ε by Up−1
i,ε ,integrate over Ω and use (H4) we get

(13)



1
p

d

dt

∫
Ω

Up
1,εdx ≤

∫
Ω

4∑
i=1

b1iUi,εU
p−1
1,ε + δU4,εU

p−1
1,ε − νUp

1,εdx

−
∫

Ω

(k1Pε +m1)U
p
1,ε + F1(x, t)U

p−1
1,ε dx,

1
p

d

dt

∫
Ω

Up
2,εdx ≤

∫
Ω

(C1 + C2

4∑
i=1

Ur
i,ε)U

p−1
2,ε + b21U

p
2,εdx

−
∫

Ω

(k2Pε +m2 + λ+ µ)Up
2,ε + F2(x, t)U

p−1
2,ε dx,

1
p

d

dt

∫
Ω

Up
3,εdx ≤

∫
Ω

b31U
p
3,ε + λπU2,εU

p−1
3,ε −(k3Pε + α+m3 + µ)Up

3,εdx

+
∫

Ω

F3(x, t)U
p−1
3,ε dx,

1
p

d

dt

∫
Ω

Up
4,εdx ≤

∫
Ω

b41U
p
4,ε+(1− π)λU2,εU

p−1
4,ε +αU3,εU

p−1
4,ε −δU

p
4,εdx

+
∫

Ω

νU1,εU
p−1
4,ε | −(k4Pε +m4)U

p
4,ε+F4(x, t)U

p−1
4,ε dx.
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Now by Hölder and Jensen, Young inequalities one can deduce

∫
Ω

Ur
i,εU

p−1
2,ε (x, t)dx ≤

{
(1− r)|Ω|

1
p + r‖Ui,ε(·, t)‖p,Ω

}
‖U2,ε(·, t)‖p−1

p,Ω .

∫
Ω

Up+1
i,ε ≥

(
1
|Ω|

) 1
p
(∫

Ω

Up
i,ε

) p+1
p

and

(14)



d

dt
‖U1,ε(·, t)‖p,Ω ≤

4∑
i=1

b1i‖Ui,ε(·, t)‖p,Ω − (ν +m1)‖U1,ε(·, t)‖p,Ω

+δ‖U4,ε(·, t)‖p,Ω + ‖F1(·, t)‖p,Ω − k1|Ω|
−1
p ‖U1,ε(·, t)‖2p,Ω

d

dt
‖U2,ε(·, t)‖p,Ω ≤ rC2

4∑
i=1

‖Ui,ε(·, t)‖p,Ω + (b22 −m2 − λ− µ)‖U2,ε(·, t)‖p,Ω

+(C1 + (1− r)C2)|Ω|
1
p + ‖F2(·, t)‖p,Ω

−k1|Ω|
−1
p ‖U2,ε(·, t)‖2p,Ω

d

dt
‖U3,ε(·, t)‖p,Ω ≤ (b33 − α−m3)‖U3,ε(·, t)‖p,Ω + λπ‖U2,ε(·, t)‖p,Ω

+‖F3(·, t)‖p,Ω − k3|Ω|
−1
p ‖U3,ε(·, t)‖2p,Ω

d

dt
‖U4,ε(·, t)‖p,Ω ≤ (b44 − δ −m4)‖U4,ε(·, t)‖p,Ω + ν‖U1,ε(·, t)‖p,Ω

+α‖U3,ε(·, t)‖p,Ω + (1− π)λ‖U2,ε(·, t)‖p,Ω

+‖F4(·, t)‖p,Ω − k4|Ω|
−1
p ‖U4,ε(·, t)‖2p,Ω.
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Adding these inequalities and use Jensen’s and Young inequalities another time to get

(15)
d

dt

4∑
i=1

‖U4,ε(·, t)‖p,Ω ≤ B0,p −B1,p

(
4∑

i=1

‖Ui,ε(·, t)‖p,Ω

)2

,

with

B0,p = (C1 + (1− r)C2)|Ω|
1
p +

4∑
i=1

sup t‖F4(·, t)‖p,Ω

+ 2

(∑4
i=1(b1,i + bii −mi) + rC2

)2

mini(ki)
|Ω|

1
p ,

B1,p =
mini(ki)|Ω|

−1
p

8
.

Finally let y(t) =
4∑

i=1

‖Ui,ε(·, t)‖p,Ω, and B0 = lim
p→+∞

B0,p and B1 = lim
p→+∞

B1,p then y(t) then y(t) verifies

y′(t) ≤ B0,p −B1,py
2,

and by standard argument see [11, Lemma 1] we get

(16) y(t) ≤
(
B0,p

B1,p

) 1
2

+
B1,p

t
.

and

y(t) ≤ max

(
y(0),

(
B0,p

B1,p

) 1
2
)
.
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Going back to the definition of y(t) one can find
4∑

i=1

‖Ui,ε(·, t)‖p,Ω ≤ max

(
4∑

i=1

‖Ui,0,ε‖p,Ω,

(
B0,p

B1,p

) 1
2
)
.

To conclude, one observes that Ui,ε being continuous on Ω̄× [0, Tmax,ε) it follows

lim
p→+∞

‖Ui,ε(·, t)‖p,Ω = ‖Ui,ε(·, t)‖∞,Ω.

Hence

(17)
4∑

i=1

‖Ui,ε(·, t)‖∞,Ω ≤ max

(
4∑

i=1

‖Ui,0,ε‖∞,Ω,

(
B0

B1

) 1
2
)
,

and Tmax,ε = +∞. �

Remark. Estimation (16) implies that for each η > 0 there exists a constant C(η) independent on initial data
such that

(18)
4∑

i=1

‖Ui,ε(·, t)‖∞,Ω ≤ C(η), for all t ≥ η > 0

Lemma 3.2. For all T > 0 there exists a nondecreasing function C1 independent of ε, 0 < ε < 1 such that

(19)
∫

QT

U2
i,ε(x, T )dx+

∫
QT

|∇Umi
i,ε |

2(x, t)dx dt ≤ C1(T ), T > 0, i = 1, . . . , 4;

Proof. The first term is bounded as an immediate consequence of Lemma 3.1 because Ui,ε is uniformly bounded
from below independently of ε. The boundeness of the second term is obtained by multiplying the equation for
Ui,ε by Umi

i,ε and integrating over Ω× (0, T ) and use the same artifices as in the proof of Lemma 3.1. �



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Lemma 3.3. For all T > 0 there exists a nondecreasing function C1 independent of ε, 0 < ε < 1 such that

(20)
∫

QT

(
∂tU

mi+1
2

i,ε

)2

(x, t)dx dt+
∫

Ω

|∇Umi
i,ε |

2(x, T )dx ≤ C1(T ), T > 0,

i = 1, . . . , 4.

Proof. Let us multiply by ∂tU
mi
i,ε the equation for Ui,ε and integrate over Ω× (τ, T ), 0 < τ < T ; then one finds(

2
mi + 1

)2 ∫
Qτ,T

(
∂tU

mi+1
2

i,ε

)2

(x, s)dx ds+
1
2
‖∇Umi

i,ε (., T )‖22,Ω

≤
∫

Qτ,T

fi (U1,ε, U2,ε, U3,ε, U4,ε) ∂tU
mi
i,ε (x, s)dx ds+

1
2
‖∇Umi

1,ε (., τ)‖22,Ω.

By Lemma 3.1 fi, i = 1, . . . , 4 are bounded and we can use Young’s inequality to get∫
Qτ,T

fi(U1,ε, U2,ε, U3,ε, U4,ε)∂tU
mi
i,ε (x, s)dx ds+

1
2
‖∇Umi

i,ε (., T )‖22,Ω

≤ 2
(mi + 1)2

∫
Qτ,T

(∂tU
mi+1

2
i,ε )2(x, s)dx ds+

Tm2
i

2
|Ω|‖fi‖∞‖Umi

i,ε ‖∞.

Reporting this inequality into the previous and integrating in τ over (0, T ), and Lemma 3.3 follows by Lemma 3.2.
�
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4. Existence and continuous dependence on data

In this section we supply a quick proof of Theorem 2.2.

4.1. Existence

Let us fix T > 0. From the estimates established in the previous section one has: for each i = 1, . . . , 4 (Ui,ε)0<ε≤1

and (∇Umi
i,ε )0<ε≤1 are respectively bounded in L2(QT ) and (L2(QT ))N . Then there exists two sequences which one

still denotes (Ui,ε)0<ε≤1 and (∇Umi
i,ε )0<ε≤1 such that for i = 1, . . . , 4 as ε→ 0: (Ui,ε)0<ε≤1 is weakly convergent

to some Ui in L2(QT ) and (∇Umi
i,ε )0<ε≤1 is weakly convergent to some Vi in (L2(QT ))N .

On the other hand (Ui,ε)0<ε≤1 is bounded in L∞(QT ); using a weak formulation of the equation for Ui,ε one
can invoke the results in Di Benedetto [9] to get: (Ui,ε)0<ε≤1 is a relatively compact subset of C(Ω× (0, T ]). It
follows that actually (Ui,ε)0<ε≤1 is convergent to Ui in C(Ω × (0, T ]) and (Umi

i,ε )0<ε≤1 is convergent to Umi
i in

C(Ω× (0, T ]).
As a first consequence one has: Vi = ∇Umi

i ; next one also has:

γ(U1,ε − ε, U2,ε, U3,ε, U4,ε) → γ(U1, U2, U3, U4) in C(Ω× (0, T ]) as ε → 0.

From standard arguments one may conclude that the quadruple (U1, U2, U3, U4) is a desirable weak solution. Note
that all estimates in Lemmas 3.1–3.3 still valid for (U1, U2, U3, U4) by passing to limit as ε goes to zero.

The regularity results for ∇Umi
i and ∂tU

mi
i follow from the a priori estimates in Lemma 3.2 and Lemma 3.3.
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4.2. Uniqueness and continuous dependence on data

Assume there exists two quadruples (Uj,1, Uj,2, Uj,3, Uj,4)j=1,2, both weak solutions of Problem (1)–(3) with initial
data (Uj,1,0, Uj,2,0, Uj,3,0, Uj,4,0)j=1,2. They verify the integral identity, for i = 1, . . . , 4

(21)

∫
Ω

(U1,i − U2,i)(x, T )ϕi(x, T )dx+
∫

QT

∇(Umi
1,i − Umi

2,i )∇ϕi(x, t)dxdt

=
∫

Ω

(U1,i,0 − U2,i,0)(x)ϕi(x, 0)dx+
∫

QT

∂tϕi(U1,i − U2,i)(x, t)dxdt

−
∫

QT

[(fi(U1,1, U1,2, U1,3, U1,4)− fi(U2,1, U2,2, U2,3, U2,4))ϕi]dxdt

for every ϕi ∈ C1(Q̄T ), such that
∂ϕi

∂η
= 0 on ∂Ω× (0, T ) and ϕi > 0.

We follow an idea of [23] and introduce a function ψi as follows

ψi(x, t) =


Umi

1,i − Umi
2,i

U1,i − U2,i
if U1,i 6= U2,i,

0 otherwise.
i = 1, . . . , 4.

Let us consider a sequence of smooth functions (ψi,ε)ε≥0 such that ψi,ε ≥ ε, ψi,ε is uniformly bounded in
L∞(QT ) and

lim
ε→0

‖(ψi,ε − ψi)/
√
ψi,ε‖L2(QT )

= 0.

For any 0 < ε ≤ 1 let us introduce the adjoint nondegenerate boundary value problem

(22)


∂tϕi + ψi,ε∆ϕi = 0 in Ω× (0, T )
∂ϕi

∂η
(x, t) = 0 in ∂Ω× (0, T )

ϕi(x, T ) = χi in Ω

i = 1, . . . , 4.
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For any smooth χi with 0 ≤ χi(x, t) ≤ 1, i = 1, . . . , 4, any 0 < ε ≤ 1 this problem has unique classical solution
ϕi,ε such that see [23]

0 ≤ ϕi,ε(x, t) ≤ 1∫
QT

ψi,ε(∆ϕi,ε)2dxdt ≤ K1,

If in (21) we replace ϕi by ϕi,εwhich is the solution of problem (22) with χi = sign ((Ui − Vi)+) we obtain.
χ1(x) = χ1,ε(x) = sign +

ε (S1 − S2)(x, T )∫
Ω

(U1,i − U2,i)+(x, T )ϕi,ε(x, T )dx+
∫

QT

(ψi − ψi,ε)(U1,i − U2,i)∆ϕi,εdxdt

=
∫

QT

(fi(U1,1, U1,2, U1,3, U1,4)− fi(U2,1, U2,2, U2,3, U2,4))ϕi,εdxdt

+
∫

Ω

(U1,i,0 − U2,i,0)(x)ϕi,ε(x, 0)dx

Using the local lipschitz continuity of fi and the properties of ψi,ε and ϕi,ε we deduce by letting ε→ 0∫
Ω

(U1,i − U2,i)+(x, T )dx ≤ K

∫
QT

4∑
i=1

|U1,i − U2,i|+
∫

Ω

|U1,i,0 − U2,i,0|(x)dx

In a similar fashion we establish an analogous inequality for (Ui − Vi)− and deduce by Gronwall’s Lemma.

(23)
∫

Ω

4∑
i=1

|U1,i − U2,i|(x, T )dx ≤ (1 +KTeKT )
∫

Ω

|U1,i,0 − U2,i,0|(x)dx.

Uniqueness is immediately deduced.
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5. Existence of Periodic solution

We need the following periodicity assumption upon our model:
(HP) There exists a T ∗ so that Fi(x, t+ T ∗) = Fi(x, t).

By periodic solution with period T ∗, we mean a weak solution of (1) satisfying (3) so that for all t ≥ 0, x ∈ Ω,
Ui(x, t+ T ∗) = Ui(x, t), i = 1, . . . , 4.

In order to proof Theorem 2.3 we need the following variant of the Schauder’s Fixed Point Theorem which is
given in [17].

Theorem 5.1. (Schauder’s Fixed Point). Let X be a Banach space, K ⊂ X be a convex set in X and
J : K −→ K be a continuous mapping such that the image J(K) is precompact. Then J has a fixed point in K.

In the present context, let X = (L2(Ω))4 and

K =

{
(U1, U2, U3, U4);Ui ∈ L2(Ω), Ui ≥ 0 s. t.

4∑
i=1

Ui(x) ≤ B a. e. x ∈ Ω.

}

with B =
(
B0

B1

) 1
2

, found in the proof of Lemma 3.1, K is a convex set in X.

For U0 = (U1,0, U2,0, U3,0, U4,0) ∈ X, let J(U0) = U(·, T ∗), with U solution of problem (1)–(3). Then by
lemma 3.2 and (17), we have J(K) ⊂ K and by (23) there exists a constant C dependent only on B, k′, T ∗ and , |Ω|
with k′ is the lipschitz constant of the vector field (fi)i such that

‖J(U)− J(U ′)‖X ≤ C‖U − U ′‖
1
4
X for all U,U ′ ∈ K

and J is continuous from K into K.
Now Let (Un)n be a bounded sequence inK, then by Lemma 3.2 and Lemma 3.3 for each i = 1, . . . , 4, J(Un)i

mi

is bounded in H1(Ω), then there exists a sequence which still denoted Un such J(Un)i
mi converges in L2(Ω) and
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almost every where in Ω, finally thanks to Lebesgue dominate convergence theorem to deduce with (17) that
J(Un) converges in X, and J(K) is precompact. By schauder’s fixed point theorem there exists U∗ ∈ K such
that J(U∗) = U∗.

Now let U(t, x) be the solution of of problem (1)− (3) with U0 = U∗ and set V (t, x) = U(t+ T ∗, x) then U, V
are solutions of problem (1)–(3) with same initial datas then by uniqueness U(t, x) = U(t + T ∗, x) and U is the
desired periodic solution of (1).

6. Global attractor

Let us consider the following problem

(24)


∂tUi −∆ (|Ui|mi signUi) = fi(x, t, U1, U2, U3, U4), (x, t) ∈ Ω× (0,+∞)

∂ (|Ui|mi signUi)
∂η

(x, t) = 0, x ∈ ∂Ω, t > 0, i = 1, . . . , 4.

Ui(x, 0) = Ui,0(x), x ∈ Ω; i = 1, . . . , 4.

Problem (24) admits a unique weak solution verifying (17), (18), (19), (20) and (23). The construction of
the solution is obtained in the same manner as below with slight modification. See [18] for more details. This
yields that the PDE system (24) defines a nonlinear semigroup {S(t)} as follows S(t)(U1,0, U2,0, U3,0, U4,0) =
(U1(t), U2(t), U3(t), U4(t)) and S(0) = I the identity map. we have the a continuous dynamical system on the set
of bounded vector valued function. [27, Theorem 1.1] can be applied to prove that there exist a global attractor
A of the above dynamical system to which all the trajectories of this dynamical system will eventually converges,
namely we have the following

Theorem 6.1. Let X = (L∞(Ω))4 with the metric inherited from L2(Ω) then the semigroup {S(t)}t≥0 defined
above posses a global attractor A ⊂ (H1(Ω) ∩ L∞(Ω))4.
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Proof. From (18) we can proof easily that ‖U(·, t)‖L2(Ω) and ‖∇Umi(·, t)‖L2(Ω) are bounded independently of
the initial data for t ≥ η > 0, and we see that S(t) defined on X = (L∞(Ω))4 is a compact mapping on X with
the L2 norm and and admits an absorbing set in X which absorbs any bounded set B in X after some finite time.
Therefore, [27, Theorem 1.1] can be applied to exhibit global attractor which is bounded in (H1(Ω)∩L∞(Ω))4. �
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