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ON GENERALIZATIONS OF INJECTIVITY

LE DUC THOANG and LE VAN THUYET

Abstract. A ring R is called right GP-injective if for every nonzero element a in R,

there exists a positive integer n such that an 6= 0 and any right R-homomorphism

of anR into R can be extended to one of R into R. A ring R is called right FSG if
every finitely generated cofaithful right R-module is a generator in Mod-R. In this

paper, we give some characterizations of PF rings, QF rings via GP-injective rings,

FSG rings.

1. Introduction

Throughout this paper, R is an associative ring with identity 1 6= 0 and all modules
considered are unitary modules. We write MR (resp. RM) to denote that M is a
right (resp. left) R-module. The category of right (resp. left) R-module is denoted
by Mod-R (resp. R-Mod). Unless otherwise mentioned, by a module we will mean
a right R-module.

We recall some concepts and notations will be used in this paper. Let M be an
R-module, we denote the Jacobson radical of M (resp. injective envelope, singular
submodule and socle) of M by Rad(M) (resp. E(M), Z(M) and Soc(M)). When
M = RR, we write Rad(RR) = J (= Rad(RR)). If A is a submodule of M (resp.
proper submodule), we denote by A ≤ M (resp. A < M). Moreover, we write
A ≤e M to denote that A is an essential submodule of M . The right and left
annihilators of a subset X of a ring R are denoted by r(X) and l(X), respectively.

A module M is called uniform if M 6= 0 and every non-zero submodule of M
is essential in M . M has finite Goldie dimension n (finite uniform dimension) if
there is a direct sum of n uniform submodules of M which is essential in M, or
equivalently, there is a monomorphism from a direct sum of n uniform submodules
of M to M such that its image is essential in M . We write udim(M) = n and call
udim(M) to be finite Goldie dimension of M .

A ring R is called quasi-Frobenius (briefly, QF ring) if it is left and right artinian
and left and right self-injective; or equivalently, if R has the ACC on right or left
annihilators and is right or left self-injective. A ring R is called right pseudo-
Frobenius (briefly, right PF) ring if every faithful right R-module is a generator; or
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equivalently, R is a semiperfect, right self-injective ring with essential right socle.
A ring R is called right finitely pseudo-Frobenius (briefly, right FPF) ring if every
finitely generated faithful right R-module is a generator.

We will consider a generalization of the concept of injectivity. Let M be an
R-module and I a right ideal of R. We take an R-homomorphism f of I to M .
Consider the following diagram.

0 - I
i - R

M

f

?�

h

If there exists h ∈ Hom R(R,M) for every principal (minimal, resp.) right ideal
I in R and any f ∈ Hom R(I,M), then we say that M is P-injective (mininjective,
resp.); or equivalently, f = m· is left multiplication by some element m of M .
If for every 0 6= a ∈ R, there exists a positive integer n such that an 6= 0 and
any right R-homomorphism of anR into M can be extended to one of R into M ,
then M is called right GP-injective. A ring R is called right mininjective (resp.
P-injective, GP-injective) if RR is mininjective (resp. P-injective, GP-injective).
A ring R is called a right minannihilator ring if every minimal right ideal H of R
is an annihilator, equivalently, if rl(H) = H and called a left minsymmetric ring if
Rk is simple, k ∈ R, implies that kR is simple. For example, any left mininjective
ring is left minsymmetric.

For the concepts and results are not shown in this paper, we will refer to Ander-
son and Fuller [1], Dung, Huynh, Smith and Wisbauer [3], Faith [4] and Wisbauer
[19].

2. GP-injective rings with essential socles

Proposition 2.1. The following conditions are equivalent for a right R-module
M .

(i) M is GP-injective.
(ii) For each element 0 6= a ∈ R, there exists n ∈ N∗ with an 6= 0, lM (rR(an)) =

Man.

Proof. By [15, Lemma 1.3]. �

A ring R is called right generalized pseudo-Frobenius ring (briefly, GPF-ring) if
R is semiperfect, right P -injective and Soc (RR) is essential as a right ideal. For
convenience, we call a ring R SGPE-ring if R is semiperfect, right GP -injective
and Soc (RR) is essential as a right ideal. The following properties of a SGPE
ring can be extended from properties of a GPF ring in [12], [13]. Some following
properties were obtained in [2].



ON GENERALIZATIONS OF INJECTIVITY 201

Proposition 2.2. Let R be a right SGPE ring. Then the following statements
hold:

(i) R is right and left Kasch.
(ii) Soc (RR) = Soc (RR) = S is essential in both RR and RR.
(iii) R is left finitely cogenerated.
(iv) l(S) = J = r(S) and l(J) = S = r(J).
(v) J = Z(RR) = Z(RR).
(vi) Soc (Re) = Se is simple and essential in Re for every local idempotent

e ∈ R.
(vii) Soc (eR) is homogeneous and essential in eR for every local idempotent

e ∈ R.
(viii) The map K 7→ r(K) and T 7→ l(T ) are mutually inverse lattice isomor-

phisms between the simple left ideals K and the maximal right ideals T .
(ix) If {e1, . . . , en} is a basic set of local idempotents, there exists elements

k1, . . . , kn in R and a permutation σ of {1, 2, . . . , n} such that the following
hold for all i = 1, 2, . . . , n :
(a) kiR ⊆ eiR and Rki ⊆ Reσi.
(b) kiR ∼= eσiR/eσiJ and Rki

∼= Rei/Jei.
(c) {k1R, . . . , knR} and {Rk1, . . . , Rkn} are complete sets of distinct rep-

resentatives of the simple right and left R-modules, respectively.
(d) Soc (Reσi) = Rki = Seσi

∼= Rei/Jei is simple and essential in Reσi

for each i.
(e) Soc (eiR) 6= 0 is homogeneous and essential in eiR with each simple

submodule isomorphic to eσiR/eσiJ .

The following lemma is useful to prove the main result of this section.

Lemma 2.3. [16, Theorem 8], Let R be a right artinian ring. The following
conditions are equivalent:

(i) R is a quasi-Frobenius ring.
(ii) (a) R is a QF-2 ring.

(b) Soc (RR) ≤ Soc (RR).
(iii) (a) Soc (eR) is a minimal right ideal and Soc (Re) is a minimal left ideal

for every local idempotent e ∈ R.
(b) Soc (RR) ≤ Soc (RR).

Now we give some characterizations of a QF-ring via GP-injective rings.

Theorem 2.4. The following conditions are equivalent for a ring R:
(i) R is a quasi-Frobenius ring.

(ii) R is a right minannihilator, right GP-injective ring and R has ACC on
right annihilators.

(iii) R is a left mininjective, right GP-injective ring and R has ACC on right
annihilators.

(iv) R is a left minsymmetric, right GP-injective ring and R has ACC on right
annihilators.



202 LE DUC THOANG and LE VAN THUYET

(v) R is a right GP-injective ring, Soc (eR) is simple for every local e ∈ R and
R has ACC on right annihilators.

Proof. (i) ⇒ (ii) is clear.

(ii) ⇒ (iii). We note that, if R is a right GP-injective ring satisfying ACC
on right annihilators then R is left artinian by [2, Theorem 3.7]. Then R is a
right SGPE ring. It follows from Propostion 2.2 that Soc (RR) = Soc (RR) = S is
essential in both RR and RR. By [14, Corollary 2.5], R is a left mininjective ring.

(iii)⇒ (iv). Since R is left mininjective, R is left minsymmetric by [14, Theorem
1.14].

(iv) ⇒ (v). Same argument of (ii) ⇒ (iii), the ring R is left artinian, right and
left Kasch and Soc (Re) is simple for every local idempotent e ∈ R. Since R is
minsymmetric, Soc (eR) is also simple for every local idempotent e ∈ R.

(v) ⇒ (i). Same argument of (ii) ⇒ (iii), the ring R is left artinian. So R is a
right SGPE ring and then by Proposition 2.2, Soc (RR) = Soc (RR) = S, Soc (Re)
is simple for every local idempotent e ∈ R. By assumption, Soc (eR) is simple for
every local idempotent e ∈ R. Applying Lemma 2.3, R is QF. �

3. FSG, GP-injective rings and the Kasch condition

A ring R is called right finitely subgenerator generator (briefly, right FSG) if every
finitely generated cofaithfull right R-module is a generator. FSG rings was intro-
duced and investigated in [18]. It is well known that a ring R is right self-injective
if and only if every cofaithful right R-module is a gennerator and a cofaithful mod-
ule is faithful. Thus, right FSG ring is a generalization of both right FPF ring and
right self-injective ring. For example, the ring of intergers Z is FSG and is not
self-injective. Let D be a division ring (e.g. D = R) and S = End D(V ), where V
is an infinite dimensional vector space over D (e.g. V = R(N)). Then S is right
FSG because of self-injectivity of S. Now, let R = Z⊕ S. Then R is a right FSG
ring which is neither self-injective nor FPF.

Lemma 3.1. [18, Corollary 5.10] For a local ring R, the following conditions
are equivalent:

(i) R is right FSG ring such that its Jacobson radical consists of zero divisors.
(ii) R is a right self-injective ring.

Lemma 3.2. [18, Theorem 5.8] Any semiperfect right FSG ring with nil Ja-
cobson radical is right self-injective.

Note 3.3. Let R be a semiperfect ring, and let {e1, . . . , en} be a set of or-
thogonal primitive idempotents of R. Then RR = e1R ⊕ · · · ⊕ enR. Renumber
idempotents if necessary so that e1R/e1J, . . . , etR/etJ (t 6 n) constitute the iso-
morphism classes of simple right R-module. Thus, every simple right R-module is
isomorphic to some eiR/eiJ with i 6 t. The right ideal B = e1R ⊕ · · · ⊕ etR is
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called the basic module of R, e0 = e1 + · · ·+ et is then called the basic idempotent.
We will keep the above notations up to the end of this paper.

Proposition 3.4. Let R be a local ring. Then the following conditions are
equivalent:

(i) R is right self-injective.
(ii) R is right P-injective, right FSG.

Proof. (i) ⇒ (ii) is clear.

(ii) ⇒ (i). Let R be a right P-injective, right FSG ring. We will prove that
for every x of R, r(x) = 0 if and only if there exists y of R such that xy = 1
(or yx = 1 because a local ring is directly finite). Let x be an element of R such
that r(x) = 0, then r(Rx) = 0. It follows that lr(Rx) = R. However R is a right
P-injective ring, lr(Rx) = Rx, hence Rx = R. Thus there exists y of R such that
yx = 1.

Conversely, let x ∈ R such that there exists y of R satisfying xy = 1 and hence
yx = 1. If z ∈ r(x), then xz = 0 and yxz = 0 hence z = 0. Thus r(x) = 0.

This establishes the previous claim.
Now, since R is a local ring, the Jacobson radical J of R consists of x such that

x is not invertible. Thus J consists of zero divisors.
By Lemma 3.1, R is a right self-injective ring. �

Proposition 3.5. The following conditions are equivalent for a ring R:
(i) R is a QF ring.
(ii) R is a right GP-injective, right FSG ring such that R has ACC on right

annihilators.
(iii) R is a semiperfect right GP-injective, right FSG ring such that R/ Soc (RR)

is right Goldie.
(iv) R is a semiperfect right GP-injective, right FSG ring such that R/ Soc (RR)

is left Goldie.

Proof. (i) ⇒ (ii), (iii) and (iv) are easy.
(ii) ⇒ (i). Assume (ii). Then R is left artinian by [2, Theorem 3.7]. Then J(R)

is nilpotent. By Lemma 3.2, R is right self-injective.

(iii) ⇒ (i). By [15, Corollary 2.11], J(R) is nilpotent. By Lemma 3.2, R is
right self-injective. Hence R is QF by [5, Theorem 4.1].

(iv) ⇒ (i). Same argument of (iii) ⇒ (i). �

Motivated by [21, Theorem 1], we obtain the following result.

Theorem 3.6. Let R be a semiperfect, right FSG ring. Then R is right self-
injective if and only if J(R) = Z(RR).

Proof. Suppose J(R) = Z(RR) and let {e1, . . . , en} be a set of orthogonal prim-
itive idempotents of R and the basic idempotent e0 = e1 + · · ·+ et. To prove R is
right self-injective, it is suffice to show that eiR is injective for every i = 1, . . . , t.
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Let E1 = E(e1R) be an injective hull of e1R and y be any element of E1,
we prove that y ∈ e1R and e1R is then injective. Proofs of injectivity of ejR
(j = 2, . . . , t) are similar.

By [18, Theorem 5.4], e1R is uniform. Hence (yR + e1R) is uniform. Let

M = (yR + e1R)⊕ e2R⊕ · · · ⊕ etR

is a finitely generated right R-module. Since RR is always embedded in M l

(l = n− t+1), hence M is a finitely generated cofaithfull right R-module. Since R
is right FSG, hence M is a generator. Thus M ∼= e1R⊕ · · · ⊕ enR⊕XR for some
module XR. By Krull-Schmidt Theorem, since EndR(e1R) is local and ejR � e1R
(j = 2, . . . , t), it follows that (yR + e1R) ∼= e1R ⊕ TR for some module TR. Since
yR + e1R is uniform, yR + e1R ∼= e1R and hence yR + e1R is a local module. Let
σ be an R-isomorphism between yR + e1R and e1R. If e1R 6= yR + e1R, then

e1R ≤ J(yR+e1R) and σ(e1R) ≤ J(e1R) = e1J(R) = e1Z(RR) ≤ Z(RR).

Now r(e1) = r(σ(e1)) which is right essential in RR, a contradiction. Thus
y ∈ e1R. This complete the proof. �

Corollary 3.7. Let R be a semiperfect ring. Then the following conditions are
equivalent:

(i) R is QF.
(ii) R is a right FSG ring, J(R) = Z(RR) and R has ACC on right or left

annihilators.
(iii) R is a right FSG, right P-ring and R has ACC on right or left annihilators.
(iv) R is a right FSG ring, J(R) = Z(RR) and R has DCC on essential right

or left ideals.
(v) R is a right FSG, right P-ring and R has DCC on essential right or left

ideals.
(vi) R is a right FSG ring, J(R) = Z(RR) and R has ACC on essential right

or left ideals.
(vii) R is a right FSG, right P-ring and R has ACC on essential right or left

ideals.
(viii) R is a right FSG ring, J(R) = Z(RR) and R/ Soc(RR) is right Goldie.
(ix) R is a right FSG, right P-ring and R/ Soc(RR) is right Goldie.
(x) R is a right FSG ring, J(R) = Z(RR) and R/ Soc(RR) is left Goldie.
(xi) R is a right FSG, right P-ring and R/ Soc(RR) is left Goldie.

Proof. By Proposition 3.4, Theorem 3.6 and [5, Theorem 4.1]. �

The following result extends [6, Lemma 5.2]

Theorem 3.8. The following conditions are equivalent for a ring R:

(i) R is right PF.
(ii) R is a semiperfect, right FPF ring with essential right socle.
(iii) R is a semiperfect, right FSG ring with essential right socle.
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Proof. (i) ⇒ (iii) is clear and (ii) ⇔ (i) is [6, Lemma 5.2].
(iii) ⇒ (ii). Let {e1, . . . , en} be a set of orthogonal primitive idempotents of R.

Since R is semiperfect right FSG, by [18, Theorem 5.4], R = ⊕n
i=1eiR, each eiR

is uniform. From this and the fact that R has essential right socle, it follows that
Soc(RR) is finitely generated. Now let MR be any finitely generated faithful right
R-module, by the Beachy’s Theorem (see [4, Theorem 19.13A], MR is cofaithful.
So MR is a generator, and R is then a right FPF ring. �

Corollary 3.9. [18, Theorem 5.11] For a left perfect ring R, the following
conditions are equivalent:

(i) R is right PF.
(ii) R is right FPF.
(iii) R is right FSG.

Proof. Given (iii). Let {e1, . . . , en} be a set of orthogonal primitive idempotents
of R, by [18, Theorem 5.4], R = ⊕n

i=1eiR, each eiR is uniform. By the Bass’s
Theorem (see [4, 18.27.3]), it implies that R has essential right socle, and (i) follows
from Theorem 3.8. �

The following result extends [18, Corollary 5.13].

Corollary 3.10. A right PF ring R is left PF if and only if R is left FSG.

Proof. Since R is right PF ring, it’s right SGPE, and hence Soc(RR) ≤e
RR

by Proposition 2.2. Thus R is left PF by Theorem 3.8. �

The following result extends [5, Corollary 2.3 and 2.7].

Corollary 3.11. A left (or right) perfect, right and left FSG ring R is QF.

Proof. Since R is left perfect, right FSG, it follows from Corollary 3.9 that R
is right PF. In addition, since R is left FSG, R is PF by Corollary 3.10. Thus R
is QF by [5, Theorem 2.3] �

The following result extends [10, Proposition 14].

Theorem 3.12. The following conditions are equivalent for a ring R:
(i) R is right PF.
(ii) R is a right SGPE, right FSG ring.
(iii) R is a semiperfect, right FSG ring, and satisfies Soc(RR) ≤e Soc(RR).
(iv) R is a semiperfect, right FSG, left and right P-injective, left Kasch ring.
(v) R is a semiperfect, right FSG, left GP-injective, left Kasch ring.

Proof. (i) ⇒ (ii) ⇒(iii), (iv) ⇒ (v) are clear.
(iii) ⇒ (i). By Theorem 3.8.
(i) ⇒ (iv). Given (i). Then all conditions in (iv) are satisfied immediately

exception for R being left P-injective, and it is satisfied by [12, Lemma 5.21].
(iv) ⇒ (iii). Since R is left GP-injective, left Kasch ring, it follows that

Soc(RR) ≤e RR by [2, Theorem 2.3]. �
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4. Goldie dimension and some application to FSG rings

Lemma 4.1. Let NR ≤ MR be R-modules. Then:
(i) If M has finite Goldie dimension, then N has finite Golodie dimension and

udim(N) 6 udim(M).
(ii) If N ≤e M then M has finite Goldie dimension if and only if N has finite

Goldie dimension, and in this case udim(M) = udim(N).
Conversely, if M has finite Goldie dimension and udim(M) = udim(N),
then
N ≤e M .

Proof. (i) is easy, (ii) is a part of [3, 5.8]. �

Lemma 4.2. Let R be a semiperfect, right FSG ring with set of orthogonal
primitive idempotents {e1, . . . , en}, the basic idempotent e0 = e1 + · · · + et. If R
contain t non-isomorphic minimal right ideals, then udim(Soc(RR)) = n.

Proof. Note that, for every i = 1, . . . , n, Soc(eiR) is either simple or zero by
[18, Theorem 5.4].

Firstly, we prove that Soc(eiR) is simple for every 1 6 i 6 t.
Assume on the contrary. Then there exists a positive integer i, 1 6 i 6 t,

such that Soc(eiR) = 0. On the other hand, for every k, t + 1 6 k 6 n. Since
ekR ∼= ejR for some j ∈ {1, . . . , t}, hence Soc(ekR) ∼= Soc(ejR). This contradicts
to the fact that R contain t non-isomorphic minimal right ideals.

By the same argument, it implies that Soc(ekR) is simple for every k, t + 1 6
k 6 n. Thus udim(Soc(RR)) = n. �

Lemma 4.3. Let R be a semiperfect, left mininjective ring. Then R is left
Kasch if and only if eSoc(RR) is simple for every local idempotent e in R.

Proof. It is straightforward from [12, Theorem 3.2]. �

Theorem 4.4. The following conditions are equivalent for a ring R:
(i) R is right PF.
(ii) R is a semiperfect, right FSG ring and Soc(RR) ≤e RR.
(iii) R is a semiperfect, right FSG, right Kasch ring.
(iv) R is a semiperfect, right FSG ring and Soc(RR) ≤e

RR.
(v) R is a semiperfect, right FSG, left Kasch, left mininjective ring.

Proof. Let {e1, . . . , en} be a set of orthogonal primitive idempotents and e0 =
e1 + · · ·+ et is the basic idempotent of R.

(i) ⇒ (iv), (v) by Theorem 3.12.
(v) ⇒ (ii). Since R is a semiperfect, right FSG ring, each eiR is uniform, hence

udim(RR) = n > udim(Soc(RR)) by Lemma 4.1. To prove Soc(RR) ≤e RR, it’s
suffice to show that udim(Soc(RR)) = n. Indeed, since R is left mininjective,
Soc(RR) ≤ Soc(RR) by [12, Theorem 2.21]. Since R is a semiperfect, left Kasch
ring, ei Soc(RR) is simple for every i = 1, . . . , n by Lemma 4.3. It follows that
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ei Soc(RR) 6= ej Soc(RR), (i 6= j) and hence ei Soc(RR) ∩ ej Soc(RR) = 0, (i 6= j).
Then

udim(Soc(RR)) = udim((
n∑

i=1

ei) Soc(RR)) = n 6 udim(Soc(RR)).

Thus udim(Soc(RR)) = n as desired.
(ii) ⇒ (i). By Theorem 3.8.
(iv) ⇒ (iii) By [12, Lemma 1.48].
(iii) ⇒ (ii). Since R is right Kasch, every simple right R-module isomorphic to

a minimal right ideal of R.
Consider the following commutative diagram:

(∗)

eiR/eiJ
ιi
↪→

n⊕
j=1

(ejR/ejJ)

RR

ji

?�
f

in which ji is an embedding morphism and ιi is a canonical embedding morphism
for every i ∈ {1, . . . , n}.

From the fact that
⊕n

j=1(ejR/ejJ) contain t non-isomorphic simple right R-
module and the commutative diagram (∗), it follows that R contains t non-
isomorphic minimal right ideals. Thus udim Soc(RR) = n by Lemma 4.2 and
hence Soc(RR) ≤e RR by Lemma 4.1. �

Note. The conditions (ii), (iii) and (iv) of Theorem 4.4 are extensions of [6,
Theorem 5.1]. Related to (v), we have a question: Is a semiperfect right FSG, left
Kasch ring necessarily right PF?

Corollary 4.5. The following conditions are equivalent for a ring R:
(i) R is PF.
(ii) R is a semiperfect, right and left FSG, right Kasch ring.
(iii) R is a semiperfect, right and left FSG, left Kasch ring.

Proof. (ii), (iii) ⇒ (i): By Theorem 4.4 and Corollary 3.10. �
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