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OVERDETERMINED PROBLEMS AND THE p-LAPLACIAN

B. KAWOHL

Abstract. In this lecture I report on essentially two results for overdetermined boundary value problems and the

p-Laplace operator. The first one is joint work with H. Shahgholian on Bernoulli type free boundary problems that
model for instance galvanization processes. For this family of problems the limits p→∞ and p→ 1 lead to interesting

analytical and surprising geometric questions. In particular for the case p → 1 I add more recent results, that are not
contained in [12]. The second one is joint work with F. Gazzola and I. Fragalá [6]. It provides an alternative and more
geometric proof of Serrin’s seminal symmetry result for positive solutions to overdetermined boundary value problems.
As a byproduct I give an analytical proof for the geometric statement that a closed plane curve of curvature not exceeding
K must enclose a disk of radius 1/K.

1. Bernoulli problems

It is well-known that minimizing the functional

Ep(v) =
∫

Rn

1
p

(
|∇v|

a

)p

+
p− 1

p
χ{v>0} dx
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on the set {v ∈ W 1,p(Rn); v ≡ 1 on K} leads to the following Euler-Lagrange equation with overdetermined
Bernoulli-type boundary condition

∆pup = div(|∇up|p−2∇up) = 0 in {up > 0} \K,(1.1)
up = 1 on ∂K,(1.2)

up = 0 and |∇up| = a on ∂{up > 0}.(1.3)

In the first part of my lecture I report on a study of up as p →∞ or p → 1, that was done with H. Shahgholian
in [12]. For convex K the level sets of up are convex and up is monotone increasing in p. In this case the limits
were identified in [13] as u∞ = {1− adist(x, ∂K)}+ and u1 = χK(x). What happens for nonconvex K? In that
case the family of functionals Ep(u) is monotone increasing in p. Therefore it is only natural to study the limits
of these functionals: Fortunately there is the theory of Γ convergence available, see [4]. To apply it, the different
functionals Ep must be redefined on a common domain of definition. From a priori estimates on the support of
up one knows that it fits into a sufficiently large ball B. This justifies the choice of Xq and Y in the following
subsections.

1.1. The case p →∞

For some q > n set Xq = {v ∈ W 1,q
0 (B); v ≡ 1 on K} and define Ep as

Ep(u) =

{ ∫
B

{
1
p

(
|∇u|

a

)p

+ p−1
p χ{u>0}

}
dx if u ∈ W 1,p

0 (B) ∩Xq,

+∞ if u ∈ Xq \W 1,p
0 (B).

(1.4)

Then the proof of the first statement in the following is fairly straightforward.

Theorem 1.1. As p →∞, the functionals Ep Γ-converge on Xq to

E∞(u) :=
∫
B

{
I[0,a](|∇u(x)|) + χ{u>0}(x)

}
dx(1.5)
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and, after possibly passing to a subsequence, up converges uniformly to a minimizer U∞ of the limit functional E∞.
Moreover, U∞ satisfies the differential equation ∆∞u = ∇uD2u∇u = 0 in the viscosity sense in {U∞ > 0} \K.

Here IB(y) is the indicator function of B, which vanishes in B and equals +∞ off B. Therefore minimizers
of E∞ try to minimize the volume of their support under the side constraint |∇u| ≤ a. One possible minimizer
is u∞ = {1− adist(x, ∂K)}+, but in general u∞ 6= U∞. Let us demonstrate this with an example where K is
the union of two disjoint disks at distance d ∈ ( 1

a , 2
a ) apart from each other.
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Then the proof of the first statement in the following is fairly straightforward.
Theorem 1.1. As p→∞, the functionals Ep Γ-converge on Xq to

E∞(u) :=

∫

B

{
I[0,a](|∇u(x)|) + χ{u>0}(x)

}
dx(1.5)

and, after possibly passing to a subsequence, up converges uniformly to a minimizer
U∞ of the limit functional E∞. Moreover, U∞ satisfies the differential equation
∆∞u = ∇uD2u∇u = 0 in the viscosity sense in {U∞ > 0} \K.

Here IB(y) is the indicator function of B, which vanishes in B and equals +∞ off
B. Therefore minimizers of E∞ try to minimize the volume of their support under
the side constraint |∇u| ≤ a. One possible minimizer is u∞ = {1− a dist(x, ∂K)}+,
but in general u∞ 6= U∞. Let us demonstrate this with an example where K is the
union of two disjoint disks at distance d ∈ ( 1

a ,
2
a ) apart from each other. In this case

Fig. 1.1. Graph of the function U∞(x).

u∞ is the minimum of two cones, but U∞ is infinity-harmonic and (due to a recent
result of Savin [14]) must be of class C1 in {U∞ > 0}\K. One can think of the shape
that is depicted in Figure 1.1 as the lower part of two merging sandpiles. In general,
dry sandpiles have constant slope, but when they merge, they behave differently.

1.2. The case p → 1. This time we set Y = {v ∈ L1(B); v ≡ 1 on K} and
define Ep as

Ep(u) =

{∫
B

{
1
p

(
|∇u|
a

)p
+ p−1

p χ{u>0}
}
dx if u ∈ W 1,p

0 (B) ∩ Y,
+∞ if u ∈ Y \W 1,p

0 (B).
(1.6)

Theorem 1.2. As p→ 1, the functionals Ep Γ-converge on Y to

E1(u) :=

{
1
a

∫
B |Du|dx if u ∈ BV (B) ∩ Y,

+∞ if u ∈ Y \BV (B).
(1.7)

and, after possibly passing to a subsequence, up converges in L1 to a minimizer U1 of
the limit functional E1.

How can one identify minimizers u1 of E1? Because of the coarea formula

E1(u) =
1

a

∫ 1

t=0

Per{u > t; Rn} dt,(1.8)

Figure 1.1. Graph of the function U∞(x).

In this case u∞ is the minimum of two cones, but U∞ is infinity-harmonic and (due to a recent result of Savin
[15]) must be of class C1 in {U∞ > 0} \K. One can think of the shape that is depicted in Figure 1.1 as the lower
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part of two merging sandpiles. In general, dry sandpiles have constant slope, but when they merge, they behave
differently.

1.2. The case p → 1

This time we set Y = {v ∈ L1(B); v ≡ 1 on K} and define Ep as

Ep(u) =

{ ∫
B

{
1
p

(
|∇u|

a

)p

+ p−1
p χ{u>0}

}
dx if u ∈ W 1,p

0 (B) ∩ Y,

+∞ if u ∈ Y \W 1,p
0 (B).

(1.6)

Theorem 1.2. As p → 1, the functionals Ep Γ-converge on Y to

E1(u) :=
{

1
a

∫
B
|Du|dx if u ∈ BV (B) ∩ Y,

+∞ if u ∈ Y \BV (B).(1.7)

and, after possibly passing to a subsequence, up converges in L1 to a minimizer U1 of the limit functional E1.

How can one identify minimizers u1 of E1? Because of the coarea formula

E1(u) =
1
a

1∫
t=0

Per{u > t; Rn} dt,(1.8)

so that minimizers of E1 try to minimize the perimeter of their support and of almost all of its level sets under
the side constraint that these level sets contain K. For convex sets K this is achieved by u1(x) = χK(x). But in
general the perimeter minimizers are not unique. As an example for nonuniqueness consider the case that K is
the union of two disks of radius one, with their centers exactly d apart. Then the circumference of the two disks
is 4π, while the circumference of their convex hull C, a stadium shaped domain, is 2π +2d. (In three dimensions,
when K consists of two balls, one can construct a similar example using catenoids instead of line segments as
minimial surfaces that wrap around K.) For d < π the stadium has less perimeter than K, so that U1(x) = χC(x)
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is the only minimizer of E1. For d > π the two disks that make up K have smaller perimeter than their convex
hull, so that U1(x) = χK(x). But for d = π both the boundaries of K and C have equal length, and so both
u1(x) = χK(x) and v1 = χC(x) (and even convex combinations thereof) are minimizers of E1, but at present we
are unable to identify the L1-limit U1 in this special case of Theorem 1.2. Since up is p-harmonic, one might hope
that U1 is 1-harmonic and satisfies

div
(

Du

|Du|

)
= 0 = κ({u = t}) in Ω \K.(1.9)

At present, a proof of this does not seem to be easy. Notice that now up converges only in L1 to U1, whereas in
Section 1.1 up converges in Xq and thus uniformly (to U∞). And stability theorems for viscosity solutions are
usually of the type: If up solves Fp(Du,D2u) = 0 and Fp(q, X) converges to F1(q, X) and up converges uniformly
to u1, then u1 solves F1(Du, D2u) = 0. Here the apparent lack of uniform convergence poses an obstacle to the
proof. In addition, the precise meaning of (1.9) is not clear in points where Du = 0. The interested reader might
consult [11] for suitable interpretations of (1.9).

Let me stress the point that finding the support of U1 or the minimal surface that wraps around K is an
interesting geometric variational problem in itself. Once the support of U1 is known, however, it can be shown as
in [10] that U1 is locally a function of least gradient, in the sense that for all C ⊂⊂ (Ω \K) and all v ∈ BV (C)
with v = U1 on ∂C

‖U1‖BV (C) ≤ ‖v‖BV (C).

Therefore, for nonconvex K the question of uniqueness and identifiability of limp→1 up(x) remains in general
an open problem.

2. Symmetry result

In the second half of my lecture I present a new and more geometric proof of the following result:
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Theorem 2.1. If the overdetermined elliptic boundary value problem

−div(A(|∇u|)∇u) = 1 in Ω(2.1)

u = 0, and |∇u| = a on ∂Ω(2.2)

has a solution in a simply connected bounded domain of class C2,α, then Ω is a ball.

For classical solutions of strongly elliptic equations on sufficiently smooth domains this is a celebrated result
of Serrin [17]. To prove it, Serrin introduced the PDE community to Alexandrov’s moving plane method, and
the proof applied to even more general equations with classical solutions. For A(|∇u|) ≡ 1 Weinberger provided
a much simpler proof, and there have been several attempts ([8], [5] and [2]) to extend Weinberger’s approach or
Serrin’s result to more general equations. In [6] F. Gazzola, I. Fragalá and I were able to provide a fairly simple
and geometric proof that applies to degenerate equations such as

−∆pu = 1 in Ω,(2.3)

for which A(|∇u|) = |∇u|p−2. However, we will have to pay a price in form of an additional starshapedness
assumption on Ω if n ≥ 3. In what follows, I will outline the proof only for this equation in the range p ∈ (1,∞),
because then the individual steps will not be obscured by technicalities. For the benefit of the reader, however, I
should at least list the general assumptions on A that were made in [6]:

A ∈ C1(0,+∞), lim
t→0+

tA(t) = 0 and (tA(t)
)′

> 0 for t > 0.

As explained in [6], these assumptions are less stringent than the ones in any of [8], [5] and [2]. Here is the sketch
of proof for the special case A(t) = tp−2 with p ∈ (1,∞).

Step 1: An integration of the differential equation gives a relation between perimeter and volume of Ω:

ap−1|∂Ω| = |Ω|.(2.4)
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Step 2: The function P (x) := 2(p−1)
p |∇u(x)|p + 2

nu(x) attains its maximum over Ω on ∂Ω. This is shown by a
Bernstein type argument.

Step 3: The fact that Pν(x) ≥ 0 on ∂Ω follows from Step 2 and translates into a mean curvature bound on ∂Ω:

H(x) ≤ 1
n

a1−p .(2.5)

Step 4: Minkowski’s identity, estimate (2.5) and integration by parts gives (for Ω starshaped with respect to
x0)

|∂Ω| =
∫

∂Ω

H(x)(x− x0, ν) ds ≤ 1
n

a1−p

∫
Ω

div(x− x0) dx ≤ a1−p|Ω|.(2.6)

Step 5: (2.6) and (2.4) imply equality in (2.5) everywhere on ∂Ω. So H = const. and ∂Ω has constant mean
curvature. But then by [1] Ω is necessarily a ball.1

Now I want to explain a few steps in more detail and point out how to get rid of the starshapedness assumption
for plane domains, i.e. if n = 2. (This was the physically relevant case for which the symmetry of Ω was first
conjectured.)

For Step 2 one wants to use a differential inequality for P , but this would u require to be of class C3, while
in fact solutions of (2.3) are in general not more regular than C1,α. This technicality is overcome by a suitable
regularization and approximation argument.

How does one get the curvature bound in Step 3? Observe that

P =
2(p− 1)

p
|uν |p +

2
n

u(x)

1Meanwhile (2006) the starshapedness assumption in Step 4 of the proof of Theorem 2.1 could be removed, see [7]
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so that a combination of

Pν = 2(p− 1)|uν |p−2uνuνν +
2
n

uν =
[
(p− 1)|uν |p−2uνν +

1
n

]
2uν ≥ 0 on ∂Ω

and

−∆pu = −(p− 1)|uν |p−2uνν − (n− 1)H|uν |p−2uν = 1 on ∂Ω,

lead to the bound (2.5) on H.
What if Ω is not starshaped? Then for n = 2 the curvature bound implies that Ω contains a disc D of radius

2 ap−1. This simple geometric fact does not seem to be so well-known, although it is recorded (without proof)
for instance in [3] Section 30.4.1, and the proofs in [16] and [9] are not so easily available. Therefore I take the
liberty of providing a more analytical proof here.

Lemma 2.2. If Ω ⊂ R2 is a plane domain with boundary of class C2, and if the boundary has curvature
κ ≤ K, then Ω contains a disk of radius 1/K.
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and

−∆pu = −(p− 1)|uν |p−2uνν − (n− 1)H |uν |p−2uν = 1 on ∂Ω,

lead to the bound (2.5) on H .
What if Ω is not starshaped? Then for n = 2 the curvature bound implies that

Ω contains a disc D of radius 2 ap−1. This simple geometric fact does not seem to
be so well-known, although it is recorded (without proof) for instance in [3] Section
30.4.1, and the proofs in [15] and [8] are not so easily available. Therefore I take the
liberty of providing a more analytical proof here.

Lemma 2.2. If Ω ⊂ R2 is a plane domain with boundary of class C2, and if the
boundary has curvature κ ≤ K, then Ω contains a disk of radius 1/K.

∂Ω

P

Q

C

Γ

Fig. 2.1. An impossible situation

The proof is illustrated by Figure 2.1. Suppose the Lemma is false. Then there
is a point P ∈ ∂Ω at which a circle with radius 1/K touches ∂Ω tangentially and
another one, Q ∈ ∂Ω, where it intersects ∂Ω transversally. I denote the circular arc
(in clockwise direction) from P to Q by C, and the corresponding part of ∂Ω by Γ.
Then DΓ :=

∫
Γ κ dθ denotes the angular difference of tangents to ∂Ω in Q and P ,

while DC :=
∫
C
K dθ denotes the angular difference of tangents to C in Q and P .

Clearly Γ has to bend more than C to reach Q, and therefore

DC < DΓ.(2.7)

So the range of θ over which Γ can be parametrized is larger than for C, and the
chain of inequalities DΓ =

∫
Γ κ dθ ≤

∫
ΓK dθ <

∫
C K dθ = DC contradicts (2.7).

This proves the Lemma.
With this Lemma at hand, we can now follow a “method of moving disks” D of

suitable radius 2ap−1. The radial solution v of

−∆pv = 1 in D,(2.8)

v = 0 on ∂D,(2.9)

happens to satisfy |∇v| = a. By moving discs (rather than moving planes) and
comparison arguments similar to the ones in [16] one can then show that Ω = D.

What did Weinberger do (for general n)? For p = 2 and n ≥ 3 he did not need a
starshapedness assumption on Ω. From Step 2 he concluded that either P is constant,
and then u is (fairly easily shown to be) radial, or

P (x) <
2(p− 1)

p
ap in Ω.(2.10)

Figure 2.1. An impossible situation.
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The proof is illustrated by Figure 2.1. Suppose the Lemma is false. Then there is a point P ∈ ∂Ω at which a
circle with radius 1/K touches ∂Ω tangentially and another one, Q ∈ ∂Ω, where it intersects ∂Ω transversally. I
denote the circular arc (in clockwise direction) from P to Q by C, and the corresponding part of ∂Ω by Γ. Then
DΓ :=

∫
Γ

κ dθ denotes the angular difference of tangents to ∂Ω in Q and P , while DC :=
∫
C

K dθ denotes the

angular difference of tangents to C in Q and P . Clearly Γ has to bend more than C to reach Q, and therefore

DC < DΓ.(2.7)

So the range of θ over which Γ can be parametrized is larger than for C, and the chain of inequalities DΓ =∫
Γ

κ dθ ≤
∫
Γ

K dθ <
∫

C
K dθ = DC contradicts (2.7). This proves the Lemma.

With this Lemma at hand, we can now follow a “method of moving disks” D of suitable radius 2ap−1. The
radial solution v of

−∆pv = 1 in D,(2.8)

v = 0 on ∂D,(2.9)

happens to satisfy |∇v| = a. By moving discs (rather than moving planes) and comparison arguments similar to
the ones in [17] one can then show that Ω = D.

What did Weinberger do (for general n)? For p = 2 and n ≥ 3 he did not need a starshapedness assumption
on Ω. From Step 2 he concluded that either P is constant, and then u is (fairly easily shown to be) radial, or

P (x) <
2(p− 1)

p
ap in Ω.(2.10)

In the second case, an integration of (2.10) over Ω gives a relation between
∫
|∇u|p,

∫
u and |Ω|, while testing

the PDE with u gives another relation of this nature, namely
∫
|∇u|p =

∫
u. This and a relation between |Ω| and∫

u (that seems to work only for p = 2) led Weinberger to a contradiction.
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