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CONGRUENCE KERNELS OF ORTHOIMPLICATION ALGEBRAS

I. CHAJDA, R. HALAŠ and H. LÄNGER

Abstract. Abstracting from certain properties of the implication operation in Boolean algebras leads to so-called
orthoimplication algebras. These are in a natural one-to-one correspondence with families of compatible orthomodular

lattices. It is proved that congruence kernels of orthoimplication algebras are in a natural one-to-one correspondence
with families of compatible p-filters on the corresponding orthomodular lattices. Finally, it is proved that the lattice of
all congruence kernels of an orthoimplication algebra is relatively pseudocomplemented and a simple description of the
relative pseudocomplement is given.

In the literature many attempts were made in order to investigate properties of the implication operation in
generalizations of Boolean algebras. These attempts led to different types of so-called implication algebras (cf.
e. g. [2], [5] and [6]). It is interesting to note that these types of implication algebras are in a natural one-to-one
correspondence with join-semilattices with 1 the principal filters of which are certain generalizations of Boolean
algebras. Hence the question arises if there is a natural one-to-one correspondence between congruence kernels
of these implication algebras on the one side and certain families of congruence kernels of the corresponding
generalizations of Boolean algebras on the other side. We solve this problem for so-called orthoimplication
algebras introduced in [2]. Moreover, we prove that the lattice of congruence kernels of orthoimplication algebras
is relatively pseudocomplemented and we derive a simple description of the relative pseudocomplement.
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In [1] implication algebras were introduced as algebras reflecting properties of the implication operation in
Boolean algebras:

Definition 1. (cf. [2]) An orthoimplication algebra is an algebra (A, ·, 1) of type (2, 0) satisfying

xx = 1, (xy)x = x,

(xy)y = (yx)x, x((yx)z) = xz.

Remark 1. In every orthoimplication algebra it holds 1x = x and x1 = 1 since 1x = (xx)x = x and
x1 = (1x)1 = 1.

First we want to prove some congruence properties of the variety of orthoimplication algebras. For any algebra
B let ConB denote the set of all congruences on B.

Definition 2. Let A be an algebra with 1. A is called weakly regular if Θ,Φ ∈ ConA and [1]Θ = [1]Φ together
imply Θ = Φ. A is called permutable at 1 if [1](Θ ◦Φ) = [1](Φ ◦Θ) for all Θ,Φ ∈ ConA. A is called 3-permutable
if Θ ◦ Φ ◦Θ = Φ ◦Θ ◦ Φ for all Θ,Φ ∈ ConA.

Theorem 1. The variety V of orthoimplication algebras is weakly regular, permutable at 1 and 3-permutable.

Proof. According to [4, Theorem 6.4.3], V is weakly regular if and only if there exist a positive integer n and
binary terms t1, . . . , tn in V such thatt1(x, y) = . . . = tn(x, y) = 1 is equivalent to x = y. Now put n := 2,
t1(x, y) := xy and t2(x, y) := yx. Then t1(x, x) = t2(x, x) = 1. Conversely, if t1(x, y) = t2(x, y) = 1 then
x = 1x = (yx)x = (xy)y = 1y = y. Hence V is weakly regular. According to [4, Theorem 6.6.11], V is permutable
at 1 if and only if there exists a binary term t with t(x, x) = 1 and t(x, 1) = x. Now put t(x, y) := yx. Then
t(x, x) = 1 and t(x, 1) = x and hence V is permutable at 1. Finally, according to [4, Theorem 3.1.18], V is
3-permutable if and only if there exist ternary terms t1, t2 satisfying t1(x, z, z) = x, t1(x, x, z) = t2(x, z, z) and
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t2(x, x, z) = z. Now put t1(x, y, z) := (zy)x and t2(x, y, z) := (xy)z. Then

t1(x, z, z) = (zz)x = 1x = x,

t1(x, x, z) = (zx)x = (xz)z = t2(x, z, z) and
t2(x, x, z) = (xx)z = 1z = z

and hence V is 3-permutable. �

In [2] a natural one-to-one correspondence between orthoimplication algebras and certain families of compatible
orthomodular lattices was established. In order to be able to define these structures we first need the definition
of an orthomodular lattice. (For the theory of orthomodular lattices we refer the reader to the monographs [8],
[3] and [9].)

Definition 3. An orthomodular lattice is an algebra (L,∨,∧,′ , 0, 1) of type (2, 2, 1, 0, 0) such that (L,∨,∧, 0, 1)
is a bounded lattice and

x ∨ x′ = 1, x ∧ x′ = 0,

(x ∨ y)′ = x′ ∧ y′, (x ∧ y)′ = x′ ∨ y′,

(x′)′ = x, x ≤ y implies y = x ∨ (y ∧ x′).

The third and fourth condition are the well-known De Morgan laws and the last condition is the so-called
orthomodular law.

Now we are able to define the order-theoretical counterpart of orthoimplication algebras introduced in [2]:

Definition 4. (cf. [2]) A semi-orthomodular lattice is a partial algebra (A,∨, (x;x ∈ A), 1) such that (A,∨, 1)
is a join-semilattice with 1, for each x ∈ A, x is a unary operation on [x, 1] such that ([x, 1],∨,∧,x , x, 1) is an
orthomodular lattice and the compatibility condition

zy = zx ∨ y for all x, y, z ∈ A with x ≤ y ≤ z(CC)
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is satisfied.

Remark 2. It should be remarked that for a ∈ A the meet-operation ∧a in the orthomodular lattice
([a, 1],∨,∧a,a , a, 1) does not depend on a in the following sense:

If a, b, x, y ∈ A and a, b ≤ x, y then x ∧a y = x ∧b y.

This can be seen as follows: First assume a ≤ b. Then x∧b y is a lower bound of x and y in ([b, 1],≤) and hence
also in ([a, 1],≤). If c is an arbitrary lower bound of x and y in ([a, 1],≤) then x and y are upper bounds of b and
c and hence b ∨ c ≤ x and b ∨ c ≤ y. This shows that b ∨ c is a lower bound of x and y in ([b, 1],≤) and hence
b ∨ c ≤ x ∧b y which implies c ≤ x ∧b y. This proves x ∧b y = x ∧a y. If now a, b, x, y ∈ A and a, b ≤ x, y then
x ∧a y = x ∧a∨b y = x ∧b y. Obviously, x ∧ y exists in (A,≤) if and only if x and y have a common lower bound.

Remark 3. According to the De Morgan laws x ∧ y = (xa ∨ ya)a holds for all a ∈ A and x, y ∈ [a, 1].

The natural one-to-one correspondence between orthoimplication algebras and semi-orthomodular lattices can
be formulated as follows (for other types of implication algebras and their corresponding order-theoretical coun-
terparts cf. e. g. [1] and [5]):

Theorem 2 (cf. [2]). For every fixed set A the formulas

x ∨ y = (xy)y, xy = xy,

respectively

xy = (x ∨ y)y

induce mutually inverse bijections between the set of all orthoimplication algebras over A and the set of all semi-
orthomodular lattices over A.

In what follows, let A = (A, ·, 1) be an arbitrary, but fixed orthoimplication algebra and S = (A,∨, (x;x ∈ A), 1)
its corresponding semi-orthomodular lattice.

For semi-orthomodular lattices we need a certain notion corresponding to the notion of a congruence.
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Definition 5. A compatible congruence family on S is a family (Θx;x ∈ A) of congruences Θx on ([x, 1],∨,∧,x ,
x, 1) such that Θy = Θx∩[y, 1]2 for all x, y ∈ A with x ≤ y. Let CCF(S) denote the set of all compatible congruence
families on S. On CCF(S) we define a binary relation ≤ by

(Θx;x ∈ A) ≤ (Φx;x ∈ A) if Θx ⊆ Φx for all x ∈ A.

Remark 4. (CCF(S),≤) is a complete lattice.

Now we can formulate the natural one-to-one correspondence between congruences on A and compatible
congruence families on S:

Theorem 3. The formulas
Θx = Θ ∩ [x, 1]2

and
Θ = {(x, y) ∈ A2 | (x, x ∨ y) ∈ Θx and (x ∨ y, y) ∈ Θy}

induce mutually inverse isomorphisms between (ConA,⊆) and (CCF(S),≤).

Proof. Let a, b, c, d ∈ A. If Θ ∈ ConA and Θx := Θ∩ [x, 1]2 for all x ∈ A, then in the case b, c ≥ a the relations

b ∨ c = (bc)c, b ∧ c = (((ba)(ca))(ca))a,

ba = ba

imply that Θa ∈ Con([a, 1],∨,∧,a , a, 1). Clearly, b ≥ a implies also

Θb = Θ ∩ [b, 1]2 = Θ ∩ ([a, 1]2 ∩ [b, 1]2) = (Θ ∩ [a, 1]2) ∩ [b, 1]2 = Θa ∩ [b, 1]2

proving (Θx;x ∈ A) ∈ CCF(S). Moreover, as a ∨ b = (ab)b, the following three assertions are equivalent:

(a, a ∨ b) ∈ Θa, (a ∨ b, b) ∈ Θb, (a, a ∨ b), (a ∨ b, b) ∈ Θ,

(a, b) ∈ Θ.
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Conversely, assume (Θx;x ∈ A) ∈ CCF(S) and define

Θ := {(x, y) ∈ A2 | (x, x ∨ y) ∈ Θx and (x ∨ y, y) ∈ Θy}.

Then Θ is reflexive and symmetric.
Further, notice that

a, b ≤ c, d and (c, d) ∈ Θa imply (c, d) ∈ Θb.(1)

Indeed, we have
(c, d) ∈ Θa ∩ [a ∨ b, 1]2 = Θa∨b = Θb ∩ [a ∨ b, 1]2 ⊆ Θb.

Now, in order to prove that Θ is transitive, take any (a, b), (b, c) ∈ Θ. Then

a ∨ b ∨ c = (a ∨ b) ∨ (b ∨ c) Θb (a ∨ b) ∨ b = a ∨ b.

Since b, a ≤ a ∨ b ∨ c, a ∨ b, using (1) we obtain

a ∨ b ∨ c Θa a ∨ b.

This implies
a ∨ c = a ∨ (a ∨ c) Θa (a ∨ b) ∨ (a ∨ c) = a ∨ b ∨ c Θa a ∨ b Θa a,

i. e. (a, a ∨ c) ∈ Θa. Now
a ∨ b ∨ c = (a ∨ b) ∨ (b ∨ c) Θb b ∨ (b ∨ c) = b ∨ c.

Since b, c ≤ a ∨ b ∨ c, b ∨ c, using (1) we obtain

a ∨ b ∨ c Θc b ∨ c.

This implies
a ∨ c = (a ∨ c) ∨ c Θc (a ∨ c) ∨ (b ∨ c) = a ∨ b ∨ c Θc b ∨ c Θc c,
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i. e. (a ∨ c, c) ∈ Θc. Therefore, we obtain (a, c) ∈ Θ proving that Θ is transitive. Next we show that Θ is a right
congruence on A. Assume (a, b) ∈ Θ. Then

a ∨ b ∨ c = (a ∨ b) ∨ (a ∨ c) Θa a ∨ (a ∨ c) = a ∨ c

and hence a ∨ b ∨ c Θc a ∨ c. Moreover,

a ∨ b ∨ c = (a ∨ b) ∨ (b ∨ c) Θb b ∨ (b ∨ c) = b ∨ c

and hence a ∨ b ∨ c Θc b ∨ c. Together we obtain

a ∨ c Θc a ∨ b ∨ c Θc b ∨ c

and therefore
ac = (a ∨ c)c Θc (b ∨ c)c = bc.

Now
ac ∨ bc Θc bc ∨ bc = bc implies ac ∨ bc Θbc bc

and
ac ∨ bc Θc ac ∨ ac = ac implies ac ∨ bc Θac ac.

Together these relations show (ac, bc) ∈ Θ proving that Θ is a right congruence on A. From this it follows that
(a, b) ∈ Θ implies (a ∨ c, b ∨ c) ∈ Θ since (ac, bc) ∈ Θ and hence (a ∨ c, b ∨ c) = ((ac)c, (bc)c) ∈ Θ.
Next we show that Θ is a left congruence on A. Assume (a, b) ∈ Θ. Then

a ∨ b ∨ c = (a ∨ b) ∨ (a ∨ c) Θa a ∨ (a ∨ c) = a ∨ c

and hence
(a ∨ b ∨ c)a Θa (a ∨ c)a

which implies
(a ∨ b ∨ c)a Θ(a∨b∨c)a (a ∨ c)a.
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Thus
(a ∨ b ∨ c)a ∨ (a ∨ c)a = (a ∨ c)a Θ(a∨b∨c)a (a ∨ b ∨ c)a

and
(a ∨ b ∨ c)a ∨ (a ∨ c)a = (a ∨ c)a Θ(a∨c)a (a ∨ c)a

showing ((a ∨ b ∨ c)a, (a ∨ c)a) ∈ Θ. Analogously, we obtain ((a ∨ b ∨ c)b, (b ∨ c)b) ∈ Θ. Using (CC) we get

ca = (c ∨ a)a = (a ∨ c)a Θ (a ∨ b ∨ c)a = (a ∨ b ∨ c)a ∨ a Θ (a ∨ b ∨ c)a ∨ b

= ((a ∨ b ∨ c)a ∨ a) ∨ b = (a ∨ b ∨ c)a ∨ (a ∨ b) = (a ∨ b ∨ c)a∨b

= (a ∨ b ∨ c)b ∨ (a ∨ b) = (a ∨ b ∨ c)b ∨ (b ∨ a) = ((a ∨ b ∨ c)b ∨ b) ∨ a

= (a ∨ b ∨ c)b ∨ a Θ (a ∨ b ∨ c)b ∨ b = (a ∨ b ∨ c)b Θ (b ∨ c)b = (c ∨ b)b

= cb.

As Θ is transitive, the above relations imply (ca, cb) ∈ Θ, proving that Θ is a left congruence on A.
Hence Θ ∈ ConA. Moreover, the following are equivalent:

(b, c) ∈ Θ ∩ [a, 1]2, b, c ≥ a, (b, b ∨ c) ∈ Θb, (b ∨ c, c) ∈ Θc,

(b, b ∨ c), (b ∨ c, c) ∈ Θa, (b, c) ∈ Θa.

This fact shows that the mappings induced by the formulas stated in the theorem are mutually inverse bijec-
tions between ConA and CCF(S). It is obvious, that in fact they are isomorphisms between (ConA,⊆) and
(CCF(S),≤). �

Corollary 1. Every congruence on A is uniquely determined by its restrictions to the intervals [x, 1], x ∈ A.

The following lemma explains how the congruences on an orthoimplication algebra are determined by their
kernels.
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Lemma 1. Θ = {(x, y) ∈ A2 |xy, yx ∈ [1]Θ} for all Θ ∈ ConA.

Proof. If (a, b) ∈ Θ then ab, ba ∈ [aa]Θ = [1]Θ and if, conversely, a, b ∈ A and ab, ba ∈ [1]Θ then
a = 1a Θ (ba)a = (ab)b Θ 1b = b and hence (a, b) ∈ Θ. �

Now we introduce the notion of a congruence kernel of an orthoimplication algebra.

Definition 6. A subset F of A is called a congruence kernel of A if there exists a congruence Θ on A with
[1]Θ = F . Let CK(A) denote the set of all congruence kernels of A.

The natural one-to-one correspondence between congruences on orthoimplication algebras and their kernels is
established by the following

Theorem 4. The formulas
F = [1]Θ

and
Θ = {(x, y) ∈ A2 |xy, yx ∈ F}

induce mutually inverse isomorphisms between (ConA,⊆) and (CK(A),⊆).

Proof. It is an immediate consequence of Lemma 1. �

Remark 5. (CK(A),⊆) is a complete lattice.

As far as follows let L = (L,∨,∧,′ , 0, 1) be an arbitrary, but fixed orthomodular lattice.
Congruence kernels of orthomodular lattices are called p-filters. This is the content of

Definition 7 (cf. [8]). A subset F of L is called a p-filter of L if there exists a congruence Θ on L with
[1]Θ = F . Let F(L) denote the set of all p-filters of L.

Remark 6. (F(L),⊆) is a complete lattice.
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The following one-to-one correspondence between congruences and p-filters of orthomodular lattices (general-
izing the corresponding one for Boolean algebras) is well-known:

Theorem 5 (cf. [8]). The formulas
F = [1]Θ

and
Θ = {(x, y) ∈ L2 | (x ∧ y) ∨ (x′ ∧ y′) ∈ F}

induce mutually inverse isomorphisms between (ConL,⊆) and (F(L),⊆).

For describing congruence kernels of orthoimplication algebras by p-filters of the corresponding orthomodular
lattices we need the following concept:

Definition 8. A compatible filter family on S is a family (Fx;x ∈ A) of p-filters Fx of ([x, 1],∨,∧,x , x, 1) such
that Fy = Fx ∩ [y, 1] for all x, y ∈ A with x ≤ y. Let CFF(S) denote the set of all compatible filter families on
S. On CFF(S) we define a binary relation ≤ by

(Fx;x ∈ A) ≤ (Gx;x ∈ A) if Fx ⊆ Gx for all x ∈ A.

Remark 7. (CCF(S),≤) is a complete lattice.

In the proof of the next theorem we need the following easy property of congruence kernels of orthoimplication
algebras:

Lemma 2. If F ∈ CK(A), a ∈ F , b ∈ A and a ≤ b then b ∈ F .

Proof. If Θ ∈ ConA with [1]Θ = F then b = a ∨ b ∈ [1 ∨ b]Θ = [1]Θ = F . �

We are now able to formulate and prove the natural one-to-one correspondence between congruence kernels of
orthoimplication algebras and compatible filter families on the corresponding semi-orthomodular lattice.
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Theorem 6. The formulas
Fx = F ∩ [x, 1]

and
F =

⋃
x∈A

Fx

induce mutually inverse isomorphisms between (CK(A),⊆) and (CFF(S),≤).

Proof. Let a, b, c, d ∈ A. If F ∈ CK(A) and Fx := F ∩ [x, 1] for all x ∈ A then there exists a congruence Θ on
A with [1]Θ = F , and Θ ∩ [a, 1]2 ∈ Con([a, 1],∨,∧,a , a, 1), according to Theorem 3. Now, since

Fa = F ∩ [a, 1] = [1]Θ ∩ [a, 1] = [1](Θ ∩ [a, 1]2) ∈ F(([a, 1],∨,∧,a , a, 1)),

in the case a ≤ b we obtain

Fb = F ∩ [b, 1] = F ∩ ([a, 1] ∩ [b, 1]) = (F ∩ [a, 1]) ∩ [b, 1] = Fa ∩ [b, 1]

proving (Fx;x ∈ A) ∈ CFF(S). Moreover,⋃
x∈A

Fx =
⋃

x∈A

(F ∩ [x, 1]) = F ∩
⋃

x∈A

[x, 1] = F ∩A = F.

Conversely, assume (Fx;x ∈ A) ∈ CFF(S) and set F :=
⋃

x∈A

Fx. Then for every x ∈ A there exists a congruence

Θx on ([x, 1],∨,∧,x , x, 1) with [1]Θx = Fx. Assume a ≤ b. Then Fb = Fa ∩ [b, 1] ⊆ Fa and hence Θb ⊆ Θa

according to Theorem 5 and therefore Θb ⊆ Θa ∩ [b, 1]2. Conversely, (c, d) ∈ Θa ∩ [b, 1]2 implies c, d ≥ b and
(c ∧ d) ∨ (ca ∧ da) ∈ [1]Θa = Fa. Using (CC) we obtain

(c ∧ d) ∨ (cb ∧ db) = (c ∧ d) ∨ ((ca ∨ b) ∧ (da ∨ b)) ∈ Fa ∩ [b, 1] = Fb = [1]Θb

according to Lemma 2 whence (c, d) ∈ Θb. Therefore Θb = Θa ∩ [b, 1]2 and (Θx;x ∈ A) ∈ CCF(S). Put

Θ := {(x, y) ∈ A2 | (x, x ∨ y) ∈ Θx and (x ∨ y, y) ∈ Θy}.
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According to Theorem 3, Θ ∈ ConA and Θ ∩ [x, 1]2 = Θx for all x ∈ A. Now

F =
⋃

x∈A

Fx =
⋃

x∈A

([1]Θx) =
⋃

x∈A

([1](Θ ∩ [x, 1]2)) = [1]Θ ∈ CK(A).

Moreover,

F ∩ [a, 1] = (
⋃

x∈A

Fx) ∩ [a, 1] =
⋃

x∈A

(Fx ∩ [a, 1]) =
⋃

x∈A

((Fx ∩ [x, 1]) ∩ [a, 1])

=
⋃

x∈A

(Fx ∩ ([x, 1] ∩ [a, 1])) =
⋃

x∈A

(Fx ∩ [a ∨ x, 1]) =
⋃

x∈A

Fa∨x

=
⋃

x∈A

(Fa ∩ [a ∨ x, 1]) = Fa ∩
⋃

x∈A

[a ∨ x, 1] = Fa ∩ [a, 1]

= Fa.

The rest of the proof is clear. �

From Theorem 6 we deduce the following nice characterization of congruence kernels of orthoimplication
algebras:

Corollary 2. A subset F of A is a congruence kernel of A if and only if F ∩ [x, 1] ∈ F(([x, 1],∨,∧,x , x, 1))
for all x ∈ A. If the latter holds then (F ∩ [x, 1];x ∈ A) ∈ CCF(S) and according to Theorem 6 there exists a
G ∈ CK(A) with G ∩ [x, 1] = F ∩ [x, 1] for all x ∈ A and hence

F = F ∩A = F ∩
⋃

x∈A

[x, 1] =
⋃

x∈A

(F ∩ [x, 1]) =
⋃

x∈A

(G ∩ [x, 1])

= G ∩
⋃

x∈A

[x, 1] = G ∩A = G ∈ CK(A).
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Finally, we want to show that the lattice of congruence kernels of an orthoimplication algebra is relatively
pseudocomplemented. First we recall the notion of a relative pseudicomplement in a meet-semilattice:

Definition 9. Let (S,∧) be a meet-semilattice and a, b ∈ S. An element c of S is called the relative pseudo-
complement of a with respect to b if c is the greatest element x of S satisfying a ∧ x ≤ b.

In the lattice of p-filters of an orthomodular lattice there exists a nice description of relative pseudocomplements:

Theorem 7. (cf. [3] and [8]) (F(L),⊆) is relatively pseudocomplemented. If F,G ∈ F(L) then 〈F,G〉 := {x ∈
L |x ∨ y ∈ G for all y ∈ F} is the relative pseudocomplement of F with respect to G in (F(L),⊆).

Using this description and the connection between congruence kernels of orthoimplication algebras and p-filters
of the corresponding orthomodular lattices we obtain a nice and simple description of the relative pseudocomple-
ment in the lattice of all congruence kernels of an orthoimplication algebra:

Theorem 8. (CK(A),⊆) is relatively pseudocomplemented. If F,G ∈ CK(A) then 〈F,G〉 := {x ∈ A | (xy)y ∈
G for all y ∈ F} is the relative pseudocomplement of F with respect to G in (CK(A),⊆).

Proof. Let a, b ∈ A. If b ∈ 〈F,G〉 ∩ [a, 1] then for every y ∈ F ∩ [a, 1] we get b ∨ y = (by)y ∈ G ∩ [a, 1], and
hence b ∈ 〈F ∩ [a, 1], G ∩ [a, 1]〉. If, conversely, b ∈ 〈F ∩ [a, 1], G ∩ [a, 1]〉 then b ∈ [a, 1] and b ∨ y ∈ F ∩ [a, 1] for
all y ∈ F according to Lemma 2 and hence

(by)y = b ∨ y = b ∨ (b ∨ y) ∈ G ∩ [a, 1] ⊆ G

showing b ∈ 〈F,G〉 ∩ [a, 1]. Hence

〈F,G〉 ∩ [a, 1] = 〈F ∩ [a, 1], G ∩ [a, 1]〉 ∈ F(([a, 1],∨,∧,a , a, 1)).

According to Corollary 2, 〈F,G〉 ∈ CK(A). If a ∈ F ∩ 〈F,G〉 then a ∈ F and (ay)y ∈ G for all y ∈ F
and hence a = (aa)a ∈ G proving F ∩ 〈F,G〉 ⊆ G. Conversely, if a ∈ H ∈ CK(A) and F ∩ H ⊆ G then
(ay)y = a ∨ y ∈ F ∩H ⊆ G for all y ∈ F according to Lemma 2 and hence a ∈ 〈F,G〉 showing H ⊆ 〈F,G〉. This
completes the proof of the theorem. �
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