UNIFORM APPROXIMATION BY POLYNOMIALS ON REAL NON-DEGENERATE WEIL POLYHEDRON

A. I. PETROSYAN

ABSTRACT. It is proved, that on real non-degenerate polynomial Weil polyhedron G any function, holomorphic in G and continuous on its closure, can be uniformly approximated by polynomials.

1. Introduction

A bounded domain $G \subset \mathbb{C}^n$ is called analytic polyhedron if there are some functions χ_1, \ldots, χ_N holomorphic in neighborhoods V of \overline{G} , such that

(1)
$$G = \{z \in V : |\chi_i(z)| < 1, \quad i = 1, 2, \dots, N\}.$$

The boundary ∂G of G consists of the "edges"

$$\sigma_i = \{ z \in \partial G \colon |\chi_i(\zeta)| = 1 \}$$

intersecting along the k-dimensional "ribs"

$$\sigma_{i_1,\ldots,i_k} = \sigma_{i_1} \cap \cdots \cap \sigma_{i_k}$$
.

An analytic polyhedron is called Weil polyhedron if $N \ge n$, all edges σ_i are (2n-1)-dimensional manifolds and the dimensions of all ribs $\sigma_{i_1,...,i_k}$ $(2 \le k \le n)$ are at most 2n-k. The union of all these n-dimensional ribs is

Received October 27, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30E05, 41A30, 41A10.

Key words and phrases. Holomorphic, polyhedron, approximation, $\overline{\partial}$ -equation.

the distinguished boundary of G. The domain G is called polynomial polyhedron if all determining functions χ_i are polynomials in (1).

The main result of this paper (Theorem 3.1) states that if G is a Weil polyhedron of "general position" in the sense of real analysis (see. Definition 2.1), then any function holomorphic in G and continuous in \overline{G} can be uniformly approximated by functions holomorphic in some neighborhoods of \overline{G} . In the particular case of polynomial polyhedrons, it is proved (Theorem 3.2) that such functions can be approximated by polynomials.

We use some improvement of a method, which is applied in [1] for strictly pseudoconvex domains, and is based on some uniform estimates of solutions of the $\bar{\partial}$ -equation

$$\overline{\partial}u = g,$$

where $g = \sum_{k=1}^{n} g_k d\overline{z}_k$ is a $\overline{\partial}$ -closed in G differential form of (0,1) type.

We use the following uniform estimate which for n=2 is obtained in [2] and for arbitrary n in [3]: in a real non-degenerate Weil polyhedron the equation (2) has a solution $u_0(z)$ such that

$$||u_0||_G \le \gamma ||g||_G,$$

where $\gamma = \gamma(G)$ is a constant independent of g and $\|\cdot\|_G$ is the sup-norm:

$$||u||_G = \sup_{z \in G} u(z), \quad ||g||_G = \sum_{k=1}^n ||g_k||_G.$$

Note that there is no theorem on approximation for arbitrary Weil polyhedrons. By a different method, the author [4] has proved an approximation theorem under the complex non-degeneracy condition (meaning that in the general position of complex analysis sense the appropriate edges intersect in the points of distinguished boundary). The class of real non-degenerate polyhedrons is wide enough to provide approximation of any domain

of holomorphy by real non-degenerate polyhedrons, which is not true in the case, when the polyhedrons are complexly non-degenerate, i. e. if their edges intersect in a general position, (in the complex analysis sense).

2. Local approximation

Definition 2.1. We call a polyhedron (1) real non-degenerate if for any collection i_1, \ldots, i_k the matrix

$$(\operatorname{grad}_{\mathbf{R}} |\chi_{i_1}(z)|, \dots, \operatorname{grad}_{\mathbf{R}} |\chi_{i_k}(z)|)$$

attains its maximal rank in all points $z \in \sigma_{i_1,...,i_k}$.

Here

$$\operatorname{grad}_{\mathbf{R}} f(z) = {}^{t}(D_{1}f(z), \dots, D_{n}f(z), \overline{D}_{1}f(z), \dots, \overline{D}_{n}f(z)),$$

where t before the bracket means transposition and

$$D_k f(z) = \frac{\partial f(z)}{\partial z_k}, \quad \overline{D}_k f(z) = \frac{\partial f(z)}{\partial \overline{z}_k}, \quad k = 1, \dots, n.$$

Geometrically, Definition 2.1 means that the edges $\sigma_{i_1}, \ldots, \sigma_{i_k}$ intersect in a general position (in the real analysis sense).

We start by proving the following geometrical property of non-degenerate polyhedrons.

Proposition 2.2. Let G be a real non-degenerate polyhedron (1) and let $N \leq 2n$. Then for any point $\zeta \in \partial G$ there exist a neighborhood B_{ζ} and a vector ν_{ζ} , such that $z + \delta \nu_{\zeta} \in G$ if $z \in \overline{B}_{\zeta} \cap \overline{G}$ for $\delta > 0$ small enough.

Proof. Denote $\varphi_i = |\chi_i| - 1$ and assume that $\zeta \in \partial G$ belongs to the edge $\sigma_{i_1,...,i_k}$, i.e. $\varphi_{i_1}(\zeta) = 0,..., \varphi_{i_k}(\zeta) = 0$ and

(3)
$$\varphi_s(\zeta) < 0, \quad s \neq i_1, \dots, i_k.$$

By $k \leq 2n$ and our assumptions, the vectors $\operatorname{grad}_{\mathbf{R}} \varphi_{i_1}(\zeta), \ldots, \operatorname{grad}_{\mathbf{R}} \varphi_{i_k}(\zeta)$ are linearly independent. Hence there is a point w such that

$$\sum_{m=1}^{n} D_m \varphi_j(\zeta)(w_m - \zeta_m) + \sum_{m=1}^{n} \overline{D}_m \varphi_j(\zeta)(\overline{w}_m - \overline{\zeta}_m) < 0, \quad j = i_1, \dots, i_k.$$

Due to the continuity of $D_m \varphi_j(\zeta)$ and $\overline{D}_m \varphi_j(\zeta)$, there is a neighborhood B_{ζ} , such that for all points $z \in \overline{B}_{\zeta}$ the inequalities

(4)
$$\sum_{m=1}^{n} D_m \varphi_j(z) (w_m - \zeta_m) + \sum_{m=1}^{n} \overline{D}_m \varphi_j(z) (\overline{w}_m - \overline{\zeta}_m) < 0, \quad j = i_1, \dots, i_k.$$

are true. Let $z \in \overline{B}_{\zeta}$, $\delta > 0$. Then

(5)
$$\varphi_j(z + \delta(w - \zeta)) = \varphi_j(z) + 2\delta \operatorname{Re} \sum_{m=1}^n D_m \varphi_j(z) (w_m - \zeta_m) + o(\delta).$$

Denoting $\nu_{\zeta} = w - \zeta$ and taking in account that $\varphi_j(z) \leq 0$ for $z \in \overline{G}$, from (4) and (5) we conclude that there exists some $\delta_0 > 0$ such that for $\delta < \delta_0$

(6)
$$\varphi_j(z+\delta\nu_\zeta)<0, \quad j=i_1,\ldots,i_k, \quad z\in \overline{B}_\zeta\cap \overline{G},$$

By continuity of φ_j , it follows from (3) that one can choose a neighborhood B_{ζ} and a number δ_0 such that for $\delta < \delta_0$

$$\varphi_s(z+\delta\nu_\zeta)<0, \quad s\neq i_1,\ldots,i_k, \quad z\in\overline{B}_\zeta\cap\overline{G}.$$

Hence, by (6) we conclude that $z + \delta \nu_{\zeta} \in G$.

The following lemma relates to local approximation.

Lemma 2.3. There exists a finite covering $\{U_k \colon k = 0, 1, \dots, p\}$ of \overline{G} by open sets, such that for any $\varepsilon > 0$ and any $f \in A(G)$ there are holomorphic in $\overline{U_k} \cap \overline{G}$ functions f_k for which

(7)
$$\sup_{z \in \overline{U}_k \cap \overline{G}} |f(z) - f_k(z)| < \varepsilon.$$

Proof. Let $f \in A(G)$, $\zeta \in \partial G$ and let B_{ζ} be a neighborhood satisfying the conditions of Proposition 2.2. Then the family of open sets $\{B_{\zeta} : \zeta \in \partial G\}$ covers the compact ∂G , and a a finite subcovering $\{B_{\zeta_k}, k = 1, \ldots, p\}$ can be chosen. By Proposition 2.2, the functions $f(z + \delta \nu_{\zeta_k})$ are holomorphic in $\overline{B}_{\zeta_k} \cap \overline{G}$ for any $\delta > 0$ small enough. By uniform continuity of f in \overline{G} ,

$$\sup_{z \in \overline{B}_{\zeta_k} \cap \overline{G}} |f(z + \delta \nu_{\zeta_k}) - f(z)| \to 0 \quad \text{as} \quad \delta \to 0.$$

Now, choosing a small enough $\delta > 0$ and denoting $U_k = B_{\zeta_k}$, $f_k(z) = f(z + \delta \nu_{\zeta_k})$, we get (7) for $k = 1, \ldots, p$. Further, we take a compact subdomain $U_0 \subset G$ such that the system $\{U_k : k = 0, 1, \ldots, p\}$ is an open covering of \overline{G} and put $f_0(z) = f(z)$. Then obviously (7) is true also for k = 0.

3. Global approximation

Recalling that a function is said to be holomorphic in a compact set K if it is holomorphic in some neighborhood of K, we prove

Theorem 3.1. Let G be a real non-degenerate Weil polyhedron (1) and let $N \leq 2n$. Then any function $f \in A(G)$ can be uniformly approximated in \overline{G} by functions holomorphic in \overline{G} .

Proof. Let $\varepsilon > 0$, let $f \in A(G)$ and let $\{U_k : k = 0, 1, \dots, p\}$ that of Lemma 2.3. Then by Lemma 2.3, there are functions f_k holomorphic in $\overline{U}_k \cap \overline{G}$, such that

(8)
$$||f_k - f||_{U_k \cap G} < \varepsilon, \quad k = 0, 1, \dots, p.$$

Let $\{e_k(z), k = 0, 1, ..., p\}$ be a partition of unity, i.e. a system of infinitely differentiable, nonnegative, finite functions such that

- (a) Supp $e_k \subset U_k$, $k = 0, 1, \ldots, p$,
- (b) $\sum_{k=0}^{p} g_k(z) \equiv 1$ in some neighborhood of \overline{G} .

Choose some number $\eta(\varepsilon) > 0$ small enough to provide the holomorphy of f_k in the sets

$$V_k = U_k \cap G^{\varepsilon}, \quad k = 0, 1, \dots, p,$$

where

$$G^{\varepsilon} = \{ z \in V : |\chi_i(z)| < 1 + \eta(\varepsilon), \quad i = 1, 2, \dots, N \}.$$

Obviously

(9)
$$||f_k - f_i||_{U_k \cap U_i \cap G} \le ||f_k - f||_{U_k \cap G} + ||f_i - f||_{U_i \cap G} < 2\varepsilon, \ i, k = 0, 1, \dots, p,$$

and, if necessary, taking smaller $\eta(\varepsilon)>0,$ by continuity we can get

(10)
$$||f_k - f_i||_{V_k \cap V_i} < 3\varepsilon, \quad k, i = 0, 1, \dots, p.$$

Now consider the functions

(11)
$$h_{ik}(z) = \begin{cases} [f_i(z) - f_k(z)]e_k(z) & \text{if } z \in V_i \cap V_k; \\ 0 & \text{if } z \in V_i \setminus V_k, \end{cases}$$
$$h_i(z) = \sum_{k=0}^p h_{ik}(z).$$

The support of $g_k(z)$ belongs to the set B_k (by the assumption (a)), and the set $V_i^{\varepsilon} \cap \partial V_k^{\varepsilon}$ does not intersect with that support. Therefore, the functions h_{ik}^{ε} and h_i^{ε} are infinitely differentiable in V_i^{ε} , and by (10)

(12)
$$|h_i(z)| \le \sum_{k=0}^p |f_i(z) - f_k(z)| e_k(z) < 3\varepsilon \sum_{k=0}^p g_k(z) = 3\varepsilon.$$

for all $z \in V_i^{\varepsilon} \cap \overline{G^{\varepsilon}}$. Further, for $z \in V_i \cap V_j$

$$h_i(z) - h_j(z) = \sum_{k=0}^p [f_i(z) - f_k(z)] e_k(z) - \sum_{k=0}^p [f_j(z) - f_k(z)] e_k(z)$$
$$= \sum_{k=0}^p [f_i(z) - f_j(z)] e_k(z) = f_i(z) - f_j(z),$$

i. e.

$$f_i(z) - h_i(z) = f_i(z) - h_i(z), \quad i, j = 0, 1, \dots, p.$$

This means that the function

(13)
$$\psi(z) = f_i(z) - h_i(z) \quad z \in V_i,$$

is globally given in G^{ε} and moreover, $h \in C^{\infty}(G^{\varepsilon})$. Using the inequalities (12) and (8), from (13) we obtain

$$|\psi(z) - f(z)| \le |h_i(z)| + |f_i(z) - f(z)| < 4\varepsilon, \quad z \in U_i \cap \overline{G}.$$

Consequently,

$$\|\psi - f\|_G < 4\varepsilon.$$

Considering the differential form $g = \overline{\partial} \psi$ in the domain G^{ε} , we see that obviously $\overline{\partial} g = 0$. Besides, using (11) and taking in account that f_i is holomorphic in V_i , we get

(15)
$$g = \overline{\partial}\psi(z) = \overline{\partial}h_i(z) = \sum_{k=0}^p \overline{\partial}h_{ik}(z) = \sum_{k=0}^p (f_i(z) - f_k(z))\overline{\partial}e_k(z)$$

for $z \in V_i \cap \overline{G^{\varepsilon}}$. In addition, denoting $\gamma_0 = \gamma_0(G) = \max_{0 \le k \le p} \|\overline{\partial} e_k\|_{U_k}$, by (15) and (10) we obtain

(16)
$$||g||_{G^{\varepsilon}} \leq \sum_{k=0}^{p} ||f_i - f_k||_{G^{\varepsilon}} ||\overline{\partial} e_k||_{U_k} \leq 3\gamma_0 \varepsilon.$$

Now, let u_0 be a solution of the equation

$$\overline{\partial}u = a$$

in the domain G^{ε} , satisfying the uniform estimate

(17)
$$||u_0||_{G^{\varepsilon}} \le \gamma(G^{\varepsilon})||g||_{G^{\varepsilon}}.$$

Then it follows from the proof of the estimate (17) in [2, 3] that the constants $\gamma(G^{\varepsilon})$ are bounded, i.e.

(18)
$$\gamma(G^{\varepsilon}) \le \gamma = \gamma(G).$$

Besides, (17), (16) and (18) imply

(19)
$$||u_0||_{G^{\varepsilon}} \le 3\gamma_0 \gamma \varepsilon.$$

Further, the function $F(z) = \psi(z) - u_0(z)$ is holomorphic in the domain G^{ε} since $\overline{\partial}\psi - \overline{\partial}u_0 = g - \overline{\partial}u_0 = 0$. Besides, by (14) and (19)

where the constant γ_1 depends only on G.

A stronger assertion than Theorem 3.1 is true for polynomial polyhedrons. Before proving that assertion, recall that a compact set K is said to be polynomially convex if for any point $\zeta \notin K$ there is a polynomial P_{ζ} such that $|P_{\zeta}(\zeta)| > \max_{z \in K} |P_{\zeta}(z)|$. Besides, Oka-Weil's theorem (see., e.g. [5]), states that any function holomorphic in a neighborhood of a polynomially convex compact set K can be uniformly approximated on K by polynomials.

Theorem 3.2. Let G be a real non-degenerate polynomial polyhedron (1) and let $N \leq 2n$. Then any function $f \in A(G)$ can be uniformly approximated on \overline{G} by polynomials.

Proof. Let $\zeta \notin \overline{G}$. By the definition of the polyhedron G, $|\chi_i(\zeta)| > 1$ for some i, which means that \overline{G} is polynomially convex compact set. It suffices to see that the desired assertion follows from Theorem 3.1 and Oka-Weil's theorem.

- 1. Lieb J., Ein Approximationssatz auf streng pseudoconvexen Gebieten, Math. Ann. 184(1) (1969), 56–60.
- Petrosyan A. I., Henkin G. M., Solution with the uniform estimate of the ∂-equation in a real non-degenerate Weil polyhedron (Russian), Izv. Akad. Nauk Arm. SSR Ser. Mat. 13(5-6) (1978), 428-441.
- Sergeev A. G., Henkin G. M., Uniform estimates for solutions of the ∂-equation in pseudoconvex polyhedra, Math. USSR-Sb. 40 (1981), 469–507.
- 4. Petrosyan A. I., Uniform approximation of functions by polynomials on Weil polyhedra, Math. USSR Izv. 34(6) (1970), 1250-1271.
- 5. Gunning R., Rossi H., Analytic Functions of Several Complex Variables, Prentice-Hall, Inc. 1965.
- $A.\ I.\ Petrosyan,\ Faculty\ of\ Mathematics,\ Yerevan\ State\ University,\ 1\ Aleck\ Manoogian\ street,\ 375049\ Yerevan,\ Armenia,\ e-mail:\ albpet@xter.net$