ASCOLI'S THEOREM IN ALMOST QUIET QUASI-UNIFORM SPACE

S. GANGULY AND R. SEN

ABSTRACT. In this paper we have generalized Ascoli's theorem on almost quiet quasi-uniform space. We have also discussed some properties of the collection of all δ -continuous functions and the collection of all δ -equicontinuous functions.

1. Introduction

In [1] it is shown that Doitchinov's concept of quietness is sufficient to extend some classical results regarding uniform spaces to the much broader setting of quasi-uniform spaces. In [2] almost quiet quasi-uniform space has been introduced and it has been shown that a topological space is almost quiet quasi uniformizable if and only if it is almost regular.

In this paper, endeavour has been made to generalize Ascoli's theorem in almost quiet quasi-uniform spaces. Throughout this paper, for $\operatorname{int}(\operatorname{cl}(A))$ where $A \subset X$ (where X is a topological space), we shall use the notation

A quasi-uniformity on a set X is a filter \mathcal{U} on $X \times X$ such that (a) each member of \mathcal{U} contains the diagonal of $X \times X$ and (b) if $U \in \mathcal{U}$, then $V_{\circ}V \subset U$ for some $V \in \mathcal{U}$. The pair (X, \mathcal{U}) is called a quasi-uniform space. \mathcal{U}

Received June 29, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C35.

Key words and phrases. Almost quiet quasi-uniform space, δ -equicontinuity, N-R topology, topology of quasi-uniform convergence on N-closed sets.

The second author is thankful to CSIR, India for financial assistance.

generates a topology $\tau(\mathcal{U})$ containing all subsets G of X such that for each $x \in G$, there exists $U \in \mathcal{U}$ such that $U[x] \subset G$.

Definition 1.1. [2] A topological space (X, τ) is said to be almost quiet quasi-uniformizable iff there exists a compatible quasi-uniformity \mathcal{U} with the following properties: for $U \in \mathcal{U}$ and $x \in X$, there exists $V_x \in \mathcal{U}$ for which the following conditions hold: if $\{x_\alpha : \alpha \in A\}$ & $\{y_\beta : \beta \in B\}$ be two nets such that $(x, x_\alpha) \in V_x$ for $\alpha \in A$, $(y_\beta, y) \in V_x$ (for some $y \in X$), for $\beta \in B$, and $(y_\beta, x_\alpha) \to 0$ (i.e., for any $V \in \mathcal{U}$, $\exists \beta_V$ & α_V belonging to B and A respectively such that $(y_\beta, x_\alpha) \in V$ for $\beta \geq \beta_V$ & $\alpha \geq \alpha_V$), then $y \in \overline{U[x]}$, where the closure and the interior of U[x] and $\overline{U[x]}$ respectively are taken under the topology τ ; we call V_x subordinated to U with respect to x.

Definition 1.2. [6] A topological space (X, τ) is almost regular if for every point $x \in X$ and each neighbourhood M of x, there exists an open set U such that $x \in U \subset \overline{U} \subset \overline{M}$, where $\overline{M} = \operatorname{cl}(M)$ and $\overline{M} = \operatorname{int}(\operatorname{cl} M)$.

Definition 1.3. [5] Let X be a topological space. A subset $S \subset X$ is said to be regular open (respectively, regular closed) if int $(\operatorname{cl} S) = S$ (respectively, $\operatorname{cl}(\operatorname{int} S) = S$). A point $x \in S$ is said to be a δ-cluster point of S if $S \cap U \neq \emptyset$, for every regular open set U containing x. The set of all δ-cluster points of S is called the δ-closure of S and is denoted by $[S]_{\delta}$. If $[S]_{\delta} = S$, then S is said to be δ-closed. The complement of a δ-closed set is called a δ-open set.

For every topological space (X, τ) , the collection of all δ -open sets forms a topology for X, which is weaker than τ . This topology τ^* has a base consisting of all regular open sets in (X, τ) .

Definition 1.4. [5] A function $f: X \to Y$ is said to be δ -continuous at a point $x \in X$, if for every regular open neighbourhood V of f(x) in Y, \exists a δ -open neighbourhood U of x such that $f(U) \subseteq V$.

The collection of all δ -continuous functions from X to Y is denoted by D(X,Y).

Definition 1.5. [2] Let \mathcal{F} be a family of functions from a topological space X to a quasi-uniform space (Y,\mathcal{U}) . Then \mathcal{F} is called δ -equicontinuous at $x \in X$, if for $V \in \mathcal{U}$, there exists a regular open neighbourhood N of x such that $f(N) \subset \overline{V[f(x)]}$, for every $f \in F$.

Definition 1.6. [7] A set $A \subset (X, \tau)$ is said to be N-closed in X or simply N-closed, if for any cover of A by τ -open sets, there exists a finite subcollection the interiors of the closures of which cover A; interiors and closures are of course w.r.t. τ .

A set (X, τ) is said to be nearly compact iff it is N-closed in X.

Definition 1.7. [3] The N-R topology on Y^X denoted by N_{\Re} is generated by the sets of the form $\{T(C,U): C \text{ is N-closed in } X \text{ and } U \text{ is regular open in } Y\}$, where $T(C,U) = \{f \in Y^X : f(C) \subseteq U\}$.

Theorem 1.8. [3] Let $Z \subset Y^X$ be endowed with the N-R topology N_{\Re} . Then T(x,U) is δ -open in (Z,N_{\Re}) , where U is regular open in Y and Y is almost regular.

Definition 1.9. [3] Let $Z \subset Y^X$; if τ is such a topology on Z such that $P: Z \times X \to Y: (f, x) \to f(x)$ is δ -continuous, then we say that τ is δ -admissible.

For a topological space X and a quasi-uniform space (Y,\mathcal{U}) , the quasi-uniformity Q of quasi-uniform convergence on Y^X is defined by the collection $\{L_V: V \in \mathcal{U}\}$ where $L_V = \{(f,g) \in Y^X \times Y^X: (f(x),g(x)) \in V$, for each $x \in X\}$; the topology $\tau(Q)$ generated by Q is called the topology of quasi-uniform convergence. The basic $\tau(Q)$ neighbourhood of an arbitrary $f \in Y^X$ is of the form $L_V[f] = \{g \in Y^X: (f,g) \in L_V\}$.

Another quasi-uniformity on Y^X can be constructed by considering quasi-uniform convergence on each member of a family \wp of subsets of the domain space. Explicitly, if F is a family of functions on a set X to a quasi-uniform space (Y,\mathcal{U}) and \wp is a family of subsets of X, then the quasi-uniformity of quasi-uniform convergence on members of \wp abbreviated as $\mathcal{U}|_{\wp}$ has for a subbase, the family of all sets of the form $\{(f,g):(f(x),g(x))\in V \text{ for all } x\in A; V\in \mathcal{U}, A\in \wp\}$. We denote it by L_V^A .

Lemma 1.10. [3] If $\mathcal{F} \subset Y^X$ be endowed with a topology \wp where the subbase for \wp is $\{T(x,U): x \in X, U \text{ is regular open in } Y\}$, then each T(x,U) is δ -open in \wp if Y is almost regular.

Note 1.11 ([2]). If $W \in \mathcal{U}$ is a regular open surrounding in a uniform space (X,\mathcal{U}) then W[x] is a regular open subset of X.

2. Main Results

Proposition 2.1. [3] Let X be a topological space and let (Y, \mathcal{U}) be an almost quiet quasi-uniform space. If \mathcal{H} is a δ -equicontinuous collection of functions, then its closure $\overline{\mathcal{H}}^{\wp}$ relative to the topology \wp is also δ -equicontinuous.

Lemma 2.2. [4] Let H be an N-closed subset of an almost quiet quasi-uniform space (X, \mathcal{U}) . Then for some regular open set U of X, \exists a surrounding $D \in \mathcal{U}$ such that $D[H] \subset U$.

Theorem 2.3. [5] The image of an N-closed set under a δ -continuous map is N-closed.

Proposition 2.4. Let X be a topological space and let (Y, \mathcal{U}) be an almost quiet quasi-uniform space. Then the topology of quasi-uniform convergence on N-closed sets coincides with the N-R topology on D(X,Y).

Proof. Let τ denotes the topology of quasi-uniform convergence on N-closed sets and σ denotes the N-R topology on D(X,Y). Consider $T(K,U) \in \sigma$ and let $f \in T(K,U)$, then $f(K) \subset U$. Since f(K) is N-closed and U is regular open in (Y,\mathcal{U}) , by Lemma 2.2 there exists a surrounding $V \in \mathcal{U}$ such that $V[f(K)] \subset U$. Choose

$$L_V^K = \{ (f, g) : (f(x), g(x)) \in V, \ \forall x \in K \}.$$

Then $L_V^K \in \mathcal{U}|_{\infty}$ (where ∞ is the collection of all N-closed sets in X). We show that for any $f \in T(K,U)$, $f \in L_V^K[f] \subset T(K,U)$ showing that $T(K,U) \in \tau$, i.e., $\sigma \subset \tau$: in fact, let $g \in L_V^K[f]$; then $(f,g) \in L_V^K$, i.e., $(f(x),g(x)) \in V$ for all x in K which implies that $g(x) \in V[f(x)]$ for all x in K, i.e., $g(K) \subset V[f(K)] \subset U$. Thus $g \in T(K,U)$.

Now, let $S \in \tau$ and let $f \in S$ where $f \in D(X,Y)$. Then there is a $L_V^K \in \mathcal{U}|_{\infty}$ $(K \in \infty)$ such that $f \in L_V^K[f] \subset S$.

We show that $\bigcap_{i=1} T(K_i, U_i)$, for N-closed sets $K_i \subset X$; $i=1,2,\ldots,n$ and regular open sets U_i , $i=1,2,\ldots,n$ in

Y contains f and is contained in $L_V^K[f]$. Choose a regular open symmetric $W \in \mathcal{U}$ such that $W \circ W \circ W \subset V$, $K \subset X$ being N-closed, f(K) is N-closed in Y and $\{W[f(x)] : x \in K\}$ is a cover of f(K) and has a finite subcover

say,

(1)
$$\{W[f(x_i)] : i = 1, 2, \dots, n\}, \qquad x_i \in K.$$

Obviously, $W[f(x_i)]$ are regular open neighbourhoods of $f(x_i)$, $i=1,2,\ldots,n$ (by Note 1.11); $f:X\to Y$ being δ -continuous, $f^{-1}[W[f(x_i)]]$, $i=1,2,\ldots,n$ are regular open neighbourhoods of x_i in X, $i=1,2,\ldots,n$. Choose, $K_i=K\cap f^{-1}[W[f(x_i)]]$. Then K_i 's are N-closed in X. Now,

$$W \subset W \circ W \circ W$$
 implies $W \circ W \circ W \in \mathcal{U}$.

Choose, $U_i = (W \circ W \circ W)[f(x_i)]$. We show that, for regular open W, $(W \circ W \circ W)[x]$ is regular open. Let $y \in \overline{(W \circ W \circ W)[x]}$ and we show that $\overline{W[x]} \times \overline{W[x]} \subset \overline{W}$. Let $(x,y) \notin \overline{(W \circ W \circ W)}$. Since $\overline{W} \subset \overline{(W \circ W \circ W)}$, $(x,y) \notin \overline{W}$. Then there exists neighbourhoods U_x and U_y of x and y respectively such that

$$(U_x \times U_y) \cap W = \phi.$$

If $t \in U_y$, then $(x,t) \notin W$ implies $t \notin W[x]$, i.e., $U_y \cap W[x] = \phi$, i.e., $y \notin \overline{W[x]}$. Hence, $(x,y) \notin \overline{W[x]} \times \overline{W[x]}$. Thus,

$$\overline{W[x]} \times \overline{W[x]} \subset \overline{W},$$

i.e.,

$$(x, y) \in \operatorname{int}(\overline{W}) = W \subset W \circ W \circ W,$$

i.e.,

$$y \in (W \circ W \circ W)[x].$$

Therefore,

$$\overline{(W \circ W \circ W)[x]} \subset (W \circ W \circ W)[x].$$

Hence, $(W \circ W \circ W)[x]$ is regular open. Thus, U_i 's are regular open in Y for i = 1, 2, ..., n. Let $g \in \bigcap_{i=1}^{n} T(K_i, U_i)$,

let $x \in K$. Then $f(x) \in W[f(x_i)]$ for some $i : 1 \le i \le n$ by (1), i.e., $x \in f^{-1}[W[f(x_i)]]$, i.e., $x \in K_i$.

$$g \in T(K_i, U_i) \Rightarrow g(K_i) \subset U_i \Rightarrow g(x) \in U_i$$

 $\Rightarrow g(x) \in (W \circ W \circ W)[f(x_i)]$

$$(2) \Rightarrow (f(x_i), g(x)) \in W \circ W \circ W.$$

Also,

(3)
$$f(x) \in W[f(x_i)] \Rightarrow (f(x_i), f(x)) \in W.$$

By (2) and (3),

$$(f(x), g(x)) \in W \circ W \circ W \circ W \subset V.$$

Since x is any point of K, $(f(x), g(x)) \in V$ for all

$$x \in K \Rightarrow (f,g) \in L_V^K \Rightarrow g \in L_V^K[f] \Rightarrow \bigcap_{i=1}^n T(K_i, U_i) \subset L_V^K[f].$$

We now show that $f \in T(K_i, U_i)$ for each i = 1, 2, ..., n, i.e., $f(K_i) \subset U_i$ for each i = 1, 2, ..., n. Now, $f(K_i) \subset W[f(x_i)], i = 1, 2, ..., n$ implies

$$f(K_i) \subset (W \circ W \circ W)[f(x_i)] = U_i, \qquad i = 1, 2, \dots, n.$$

Hence

$$f \in T(K_i, U_i), \quad \text{for } i = 1, 2, \dots, n.$$

Thus the proposition is proved.

Lemma 2.5. Each jointly δ -continuous topology on N-closed sets is larger than the N-R topology.

Proof. Suppose that a topology τ for $Z \subset Y^X$ is jointly δ -continuous on N-closed sets, U is a regular open subset of Y, K is an N-closed subset of X and P is the map such that P(f,x) = f(x). It must be shown that T(K,U) is open to show that $\tau \supset N_{\Re}$.

The set $V = (Z \times K) \cap P^{-1}(U)$ is regular open in $Z \times K$ because $P|_{Z \times K}$ is δ -continuous for any N-closed $K \subset X$. If $f \in T(K, U)$, then

$$f(K) \subset U$$
, i.e., $\{f\} \times K \subset P^{-1}(U)$ i.e., $\{f\} \times K \subset V$.

Now $\{f\}$ is N-closed in Z and K is so in X. Cover $\{f\} \times K$ by basis elements $U \times W$ lying in V. The space $\{f\} \times K$ is N-closed, since it is δ -homeomorphic to K. Therefore we can choose finitely many U_i , W_i , i = 1, 2, ..., n such that

$$\{f\} \times K \subset \dot{\overline{U_i}} \times \dot{\overline{W_i}}.$$

Then int $(\operatorname{cl}(U_i))$, $i = 1, 2, \ldots, n$ are open sets. Let $N = \bigcap_{i=1}^n \overline{U_i}$. Thus N is open and contains f. We assert that

the sets $\dot{\overline{U_i}} \times \dot{\overline{W_i}}$, which were chosen to cover $\{f\} \times K$ actually cover $N \times K$. Let $(g,y) \in N \times K$. Consider $(f,y) \in \{f\} \times K$. Then $(f,y) \in \dot{\overline{U_i}} \times \dot{\overline{W_i}}$ for some i, i.e., $y \in \dot{\overline{W_i}}$. Because $g \in N$, $g \in \dot{\overline{U_i}}$, for each $i=1,2,\ldots,n$. Therefore, $(g,y) \in \dot{\overline{U_i}} \times \dot{\overline{W_i}}$. Since all the sets $\dot{\overline{U_i}} \times \dot{\overline{W_i}}$ lie in V and cover $N \times K$, $N \times K \subset V$. Hence there exists a τ -neighbourhood N of f such that $N \times K \subset P^{-1}(U)$. For each $f \in N$, $f(K) \subset U$, i.e., $N \subset T(K,U)$. Thus

$$f\in N\subset T(K,U)$$

gives T(K, U) is open in τ and hence $\tau \supset N_{\Re}$.

Proposition 2.6. Let X be a topological space and (Y, \mathcal{U}) be an almost quiet quasi-uniform space. If F is a δ -equicontinuous collection of functions, then the N-R topology coincides with the topology \wp .

Proof. We consider $P: F \times X \to Y: (f,x) \to f(x)$. We show that if F has the topology \wp , then P is δ -continuous. Let $W \in \mathcal{U}$ be regular open. Choose $V \in \mathcal{U}$ such that $V \circ V \subset U$. Consider the set

(4)
$$T = \{h : h(x) \in V[f(x)]\}.$$

By Lemma 1.10 T is a neighbourhood of f in (F, \wp) . F being δ -equicontinuous, there exists a regular open neighbourhood U of x such that

(5)
$$f^*(U) \subset V[f^*(x)] \quad \text{for all } f^* \in F.$$

Consider the neighbourhood $T \times U$ of (f,x) and let $(g,y) \in T \times U$. Then $g(x) \in V[f(x)]$ by (4) and $g(y) \in V[g(x)]$ by (5). Hence, $(f(x),g(x)) \in V$ and $(g(x),g(y)) \in V$ giving $(f(x),g(y)) \in V \circ V \subset W$, i.e., $g(y) \in W[f(x)]$, i.e., $P(g,y) \in W[f(x)]$, i.e.,

$$P(T \times U) \subset W[f(x)].$$

Hence P is δ -continuous and thus joint δ -continuity of \wp follows. Now each jointly δ -continuous topology is larger than the N-R topology and the N-R topology coincides with the topology of quasi-uniform convergence on N-closed sets since $F \subset D(X,Y)$.

Now we show that $\tau_{\wp} \subset N_{\Re}$. For each $x \in X$, $\{x\}$ is N-closed in X and thus

$$\begin{split} \{T(x,U): x \in X, U \text{ is regular open in } Y\} \\ &\subset \{T(C,U): C \text{ is N-closed in } X \text{ and } U \text{ is regular open in } Y\} \end{split}$$

and thus $\tau_{\wp} \subset N_{\Re}$ in $Z \subset Y^X$. Thus we can conclude that if F is a δ -equicontinuous collection of functions, then the N-R topology coincides with the topology \wp .

3. ASCOLI'S THEOREM IN ALMOST QUIET QUASI-UNIFORM SPACE

In this section we generalize Ascoli's theorem in almost quiet quasi-uniform space.

Theorem 3.1. Let X be a nearly compact topological space and (Y, \mathcal{U}) be an almost quiet quasi-uniform T_2 space. Let τ_N denote the topology of quasi-uniform convergence on N-closed sets. Then a subset $H \subset D(X,Y)$ is τ_N -compact iff

- (a) H is τ_N -closed.
- (b) $\overline{\Pi_x(H)}$ is compact for each $x \in X$ and
- (c) H is δ -equicontinuous.

Proof. Since H is δ-equicontinuous by Proposition 2.1, its τ_{\wp} closure \overline{H}^{\wp} is also δ-equicontinuous. But \overline{H}^{\wp} is a τ_{\wp} -closed subset of the τ_{\wp} -compact product set $\Pi\{\overline{\Pi}_x(\overline{H}):x\in X\}$ and thus \overline{H}^{\wp} is itself τ_{\wp} -compact. Using Proposition 2.4 and Proposition 2.6 above we conclude that \overline{H}^{\wp} is τ_N -compact. Now, the τ_N -closed subset H of the τ_N -compact subset \overline{H}^{\wp} is also τ_N -compact. Hence H is τ_N -compact.

Conversely, let $H \subset D(X,Y)$ be τ_N -compact. Since Y is T_2 , we first show that $(D(X,Y),\tau_N)$ is also so. Let $f,g \in D(X,Y)$ be such that $f \neq g$. Then $\exists \ x \in X$ such that $f(x) \neq g(x)$. Since Y is T_2 , there exists disjoint open neighbourhoods U and V such that $f(x) \in U$, $g(x) \in V$. Hence, $f(x) \in U = \operatorname{int} U \subset \operatorname{int}(\overline{U}) = \dot{\overline{U}}$. Now,

$$U \cap V = \phi \Rightarrow \overline{U} \cap V = \phi \Rightarrow \dot{\overline{U}} \cap V = \phi \Rightarrow V \subseteq Y \setminus \dot{\overline{U}},$$

i.e.,

$$V = \operatorname{int} V \subseteq \operatorname{int} (Y \setminus \dot{\overline{U}}) = M.$$

Then M is regular open and $g(x) \in M$ with $\overline{U} \cap M = \phi$. Now, $\{x\}$ is N-closed in X and $f \in L_{\overline{U}}^{\{x\}}$, $g \in L_M^{\{x\}}$ with $L_{\overline{U}}^{\{x\}} \cap L_M^{\{x\}} = \phi$. Hence $(D(X,Y),\tau_N)$ is T_2 . If H is τ_N -compact, then H is τ_N -closed and $\Pi_x(H)$ is compact for each $x \in X$ and hence closed in Y. Thus $\overline{\Pi_x(H)}$ is compact in Y for each $x \in X$.

Now if $Z \subset Y^X$ and $P \subset X$, then $Z|_P = \{f|_P : f \in Z\}$. Let \mathcal{C} denote the collection of all N-closed sets in X and let $P \in \mathcal{C}$. We show that $H|_P$ is δ -equicontinuous on P. Let $x_0 \in P$ and $W \in \mathcal{U}$ be regular open. Choose

regular open symmetric $V \in \mathcal{U}$ such that $V \circ V \circ V \subset W$. Then $\{L_V^P[f] : f \in H\}$ is a cover of H by neighbourhoods of members of H in the topology of quasi-uniform convergence on N-closed sets and by the given condition of

 τ_N -compactness, there exists f_i , $i=1,2,\ldots,n$ (belonging to H) such that $H\subset\bigcup_{i=1}L_V^P[f_i]$. Let $f\in H$. Then

(6)
$$f \in L_V^P[f_i] \qquad \text{for some } i.$$

Since each $f_i|_P$ is δ -continuous at x_0 , there is a regular open neighbourhood U_i of x_0 in P such that $f_i|_P(U_i) \subset V[f_i(x_0)]$, i.e.

(7)
$$x \in U_i \Rightarrow (f_i(x_0), f_i(x)) \in V.$$

Let $U = \bigcap_{i=1}^n U_i$. Obviously U is a regular open neighbourhood of x_0 in P. We show that $f|_P(U) \subset W(f(x_0))$ for

all $f \in H$. Let $f \in H$. By (6), $f \in L_V^P[f_i]$ for some i, i.e., $(f_i(x), f(x)) \in V$, for all $x \in P$ and hence

(8)
$$(f_i(x_0), f(x_0)) \in V \quad [\text{since } x_0 \in P].$$

Again

(9)
$$x \in U \Rightarrow x \in P \Rightarrow (f_i(x), f(x)) \in V.$$

From (7), (8) and (9) we get, $x \in U \Rightarrow (f(x_0), f(x)) \in V \circ V \circ V \subset W$ for each $f \in H \Rightarrow f(x) \in W[f(x_0)]$ for all $f \in H$, i.e.,

$$f(U) \subset W[f(x_0)]$$
 for all $f \in H$,

i.e.,

$$f|_P(U) \subset W[f(x_0)]$$
 for each $f \in H$.

Since X is nearly compact, X is N-closed in X. Hence $f(U) \subset W[f(x_0)]$ for all $f \in H$, i.e., H is δ -equicontinuous.

- 1. Doitchinov D., A concept of completeness of quasi-uniform space, Topology and its Applications, 38 (1991), 205–217.
- 2. Ganguly S., Dutta K. and Chattopadhyay G. D., A note on δ -even continuity and δ -equicontinuity accepted for publication in Atti del Seminario Matematico e Fisico dell "Universita di Modena e Reggio Emilia".
- 3. Ganguly S. and Dutta K., Further study of N-R topology on function space, Bull. Cal. Math. Soc., 94 (6) (2002), 487-494.
- 4. Ganguly S., Dutta K. and Sen R., A note on quasi-uniformity and quasi-uniform convergence on function space, accepted for publication in Carpathian Journal of Mathematics.
- 5. Noiri T., On δ-continuous function, J. Korean Math. Soc., 16 (1980), 161–166.
- 6. Singal M. K. and Arya S. P., On almost regular spaces, Glasnik Matematički, 6(4) (1969), 702–710.
- 7. Singal M. K. and Mathur A., On nearly compact spaces, Boll. Un. Mat. Ital., 6(4), (1968), 63-73.
- S. Ganguly, Department of Pure Mathematics, University of Calcutta 35, Ballygunge Circular Road, Kolkata-700019, India, e-mail: gangulys04@yahoo.co.in
- R. Sen, Department of Pure Mathematics, University of Calcutta 35, Ballygunge Circular Road, Kolkata-700019, India, e-mail: ritu_sen29@yahoo.co.in