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SOME RESULTS FOR ONE CLASS OF DISCONTINUOUS OPERATORS WITH FIXED
POINTS

R. MORALES and E. ROJAS

Abstract. In 1986, L. Nova ([11]) defined a class of operators with fixed points called D(a, b) which includes many
classic operators with fixed points. In this paper we give a compilation about existing results in this class. In addition
we will prove some results for sequences of operators of class D(a, b), and we will give conditions for this operator class
to be closed under sum and composition (or product).

Let A be an arbitrary set and T : A −→ A a map. The fixed point theory consists of finding conditions for
A and/or T such that there is at least one point a ∈ A such that Ta = a. If this point exists it is called fixed
point of T . We consider convenient to indicate some results that have made history in the fixed point theory.
The topological version of this theory was given in 1912 by L. Brouwer (see, [8]) who proved the following result:

Let f : B[a, r] ⊂ Rn −→ B[a, r] be a continuous function,
then there exists z ∈ B[a, r] such that f(z) = z where
B[a, r] is the closed ball with center in a and radius r > 0.

The Brouwer’s Theorem in the one dimensional case is the Cauchy-Bolzano’s Theorem, that states the following:
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Let f : [a, b] −→ [a, b] be a continuous function, then there exists x0 ∈ [a, b] such that:

f(x0) = x0.

The Brouwer’s Theorem was generalized for Banach spaces of infinite dimensional by S. Schauder (see, [8]) in
the following way:

Let (E, ‖.‖) be a Banach space, K ⊂ E a compact and convex subset of E and T : K −→ K a
continuous map. Then there exists z ∈ K such that Tz = z.

The following result corresponds to the metric version of the Schauder’s Theorem.
Let (M,d) be a complete metric space and T : M −→ M a map. Then T has a fixed point in M if
it satisfies any of the following conditions:

C1. (Banach, 1922, see [8]) T is an α-contraction or Banach contraction, this is:

d(Tx, Ty) ≤ α d(x, y) ∀x, y ∈ M, 0 ≤ α < 1.

C2. (Kannan, 1969, 1971, [9, 10]) T satisfies: there is α ∈ [0, 1
2 ) such that

d(Tx, Ty) ≤ α(d(x, Tx) + d(y, Ty)) ∀x, y ∈ M.

C3. (Chatterge, 1972, [2]) T satisfies the following condition: there is α ∈ [0, 1
2 ) such that

d(Tx, Ty) ≤ α(d(x, Ty) + d(y, Tx)) ∀x, y ∈ M.

C4. (Reich, 1971, [14, 15]) T satisfies:

d(Tx, Ty) ≤ a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)
∀x, y ∈ M, 0 ≤ a1 + a2 + a3 < 1.

C5. T satisfies:
d(Tx, Ty) ≤ a1d(x, y) + a2d(x, Ty) + a3d(y, Tx)

∀x, y ∈ M, 0 ≤ a1 + a2 + a3 < 1.
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C6. (Hardy-Rogers, 1973, [6]) ∀x, y ∈ M , T satisfies: there are ai ≥ 0 such that A =
5∑

i=1

ai < 1 and

d(Tx, Ty) ≤ a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + a5d(y, Tx).

In addition, K. Goebel et al [5] extended this result to the case A ≤ 1 for continuous mapping of a nonempty
bounded and convex subset K of a uniformly convex Banach space into itself. And J. Lopez-Gomez [12]
proved that T has a unique fixed point excluding the hypothesis T continuous.

The above conditions are independent among each other in the following sense:
1. All map C1. is a continuous map.
2. There is a function that satisfies the condition C2. but not the condition C1.

T : [0, 1] −→ R Tx =


x

4
, x ∈

[
0,

1
2

)
x

5
, x ∈

[
1
2
, 1

]
.

Then T is discontinuous, and therefore, T is not C1. and it is easy to see that it satisfies C2.
3. There is a function that satisfies C1. but not C2.

T : [0, 1] −→ [0, 1] Tx =
x

3
.

It is clear that T is continuous. To see that it is not C2. take y = 0, x = 1/3.
4. There is a function that is neither C1. nor C2. but that is C4.

T : [0, 1] −→ [0, 1] Tx =


7
20

x, x ∈
[
0,

1
2

)
3
10

x, x ∈
[
1
2
, 1

]
.
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It is clear that T is discontinuous, and therefore is not C1. to see that it is not C2. take x = 0, y = 1/4.
5. There is a function that satisfies C2. but that does not satisfy C3.

T : R −→ R Tx = −x

2
To see that T is not C3. take x = 2 and y = −2.

6. There is a function that satisfies C3. but not C2.

T : [0, 1] −→ [0, 1] Tx =


x

2
, x ∈ [0, 1)

0, x = 1.

Take x = 1/2 and y = 0 to see that T is not C2.

In [3], W. R. Derrick and L. Nova defined the following operator classes:
Let (E, ‖.‖) be a Banach space, K ⊂ E closed and T : K −→ K an arbitrary operator that satisfies one of the

following conditions, for a, b ≥ 0 and any x, y ∈ K.

‖(Tx− Ty)− b [(x− Tx) + (y − Ty)] ‖ ≤ a‖x− y‖,(A)

‖(Tx− Ty)− b(x− Tx)‖ ≤ a‖x− y‖+ b‖y − Ty‖,(B)

‖(Tx− Ty)− a(x− y)‖ ≤ [‖x− Tx‖+ ‖y − Ty‖] ,(C)

‖Tx− Ty‖ ≤ a‖x− y‖+ b [‖x− Tx‖+ ‖y − Ty‖] .(D)

We shall say T belongs or is of class A(a, b) (respectively B(a, b), C(a, b), D(a, b)), when T satisfies the condition
(A) (respectively (B), (C), (D)).

Let’s note that a mapping satisfying any of the above conditions is a contraction map (C1.) when b = 0 and
0 < a < 1. In addition a map C(0, b) is a Kannan’s map; this is, (C2.).
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Kannan proved that T has a unique fixed point if 0 < b < 1
2 , he proved the uniqueness of fixed points with

b = 1
2 in uniformly convex spaces under certain restrictions.

Let’s see the similarities and contrast these four classes. One similarity is that if T has a fixed point, it is
unique whenever 0 ≤ a < 1. Observe, using the triangle inequality, that any map of class A(a, b), B(a, b) or
C(a, b) is of class D(a, b).

Moreover, we can notice that no continuity conditions have ever been put on T , therefore, these classes do not
exclude discontinuous operators.

In particular, class D(1, 1) contains all operators from E onto itself, since

‖Tx− Ty‖ ≤ ‖Tx− x‖+ ‖x− y‖+ ‖y − Ty‖.

Which is a trivial application of the triangle inequality. Since the three first classes are included in the fourth
class, of the above, we will restrict our attention on class D(a, b).

The following example due to L. Nova [11] show that this class in not empty.

Example 1. Let’s consider the following discontinuous operator.

Tx =


γx, 0 ≤ x <

1
2
,

ρx,
1
2
≤ x ≤ 1,

with 0 < γ, ρ < 1, γ 6= ρ.
Let’s remember that class D(a, b) satisfies:

‖Tx− Ty‖ ≤ a‖x− y‖+ b [‖x− Tx‖+ ‖y − Ty‖] .
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Let’s see that T ∈ D(0, µ/(1− µ)) where µ = max{γ, ρ}.
∀x ∈ [0, 1/2) we have that

Txi = γxi =⇒ xi − Txi = −xiγ + xi

=⇒ xi − Txi = xi(1− γ)

=⇒ γ

1− γ
(xi − Txi) = γxi.

From which follows

|Tx1 − Tx2| ≤ γ(x1 + x2) =
γ

1− γ
{|x1 − Tx1|+ |x2 − Tx2|}

≤ µ

1− µ
{|x1 − Tx1|+ |x2 − Tx2|} .

In the same way, the inequality is true if xi ∈ [1/2, 1]. Now, if x1 < 1
2 ≤ x2 we have that:

γ

1− γ
(x1 − Tx1) = γx1,

ρ

1− ρ
(x2 − Tx2) = ρx2

and

|Tx1 − Tx2| ≤ γx1 + ρx2 ≤
µ

1− µ
{|x1 − Tx1|+ |x2 − Tx2|} .

1. It is clear that this map T has a fixed point.
2. The contraction map is an asymptotically regular operator for any point, this is, ‖Tn−1x− Tnx‖ −→ 0 as

n −→∞.
In fact:

γ

1− γ

(
Tnx− Tn+1x

)
= γTnx ≤ µn+1x.
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Since
Tx = γx or Tx = ρx
T 2x = T (Tγx) = γ2x or T 2x = ρ2x
T 3x = T 2(Tx) = γ3x or T 3x = ρ3x
...

...
Tnx = T (Tn−1x) = γnx or Tnx = ρnx.

Taking µ = max{γ, ρ}, in general we have that

γTnx ≤ µn+1x.

So, for n sufficiently large, x ∈ [0, 1] and 0 < µ < 1, we have that T is asymptotically regular.
3. Finally we must see that the sequence xn = Tnx converges to a unique fixed point; in fact, it is clear that
{xn − Tnx}n −→ 0.

1. Some Known Results for D(a, b)

In this section we will show some results for class D(a, b). Let’s observe that some results are consequences of the
result of the value of a, while others depend only on b. First we analyze the properties of the values of a.

Lemma 1 (1989, [4]). Let T : X −→ X be of class D(a, b) with 0 ≤ a < 1. Then T has at the most one fixed
point.

Lemma 2 (1989, [4]). Let T : K −→ K be of class D(a, b), 0 ≤ a < 1, and suppose infk ‖x− Tx‖ = 0. Then
there exists a convergent sequence {xn} of points in K such that

‖xn − Txn‖ −→ 0 as n −→∞.

Now we will show three consequences of the condition 0 ≤ b < 1.

Lemma 3 (1989, [4]). Let T : K −→ K be of class D(a, b), 0 ≤ b < 1.
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(i) If {xn} converges to a fixed point of T , then ‖xn − Txn‖ −→ 0 as n −→∞.
(ii) If {xn} converges and ‖xn − Txn‖ −→ 0 as n −→∞, then T has a fixed point.
(iii) If T has a fixed point at p, then T is continuous at p.

Lemma 4 (1986, [11]). If T ∈ D(a, b), and a + 2b < 1, then

inf
x∈K

‖x− Tx‖ = 0.

Theorem 5 (1989, [4]). Let T : K −→ K be of class D(a, b) with 0 ≤ a, b < 1. If infx∈K ‖x− Tx‖ = 0, then
T has a unique fixed point in K.

Theorem 6 (1989, [4]). Let T : X −→ X, T ∈ D(a, b), with a, b ≥ 0, where a + 2b < 1. Then
(i) T has a unique fixed point p ∈ X.
(ii) ‖Tx− p‖ < ‖x− p‖, ∀x ∈ X, x 6= p.

L. Nova and W. Derryck give examples where they show that every one of the conditions in the results above
are necessary (see [3, 4, 11]).

Remark 1. From Lemmas 1, 2, 3 (ii) and 4 we can obtain the following adaptation for T ∈ D(a, b) of Theorem
2.1 given in [13] with c = 0 where 0 ≤ c < 1.

Let K be a closed subset of a Banach space X, and let T ∈ D(a, b) with a, b ≥ 0 where a + 2b < 1. Then for
any x ∈ K, lim

n→∞
Tnx exists and this limit is the unique fixed point of T .

2. Main Results

In this section we will give some results for operators of class D(a, b).

Theorem 7. Let {Tn}n be a sequence of maps of class D(a, b) defined in a Banach space X or some closed
subset K ⊂ X into itself, such that {Tn}n converges uniformly to T . Then T ∈ D(a, b), 0 ≤ a, b < 1, moreover
the fixed point of T is the limit of the fixed point of Tn.
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Proof. Let T = lim
n→∞

Tn uniformly,

‖Tx− Ty‖ = ‖Tx− Tnx + Tnx + Tny − Tny + Ty‖
≤ ‖Tnx− Tny‖+ ‖Tnx− Tx‖+ ‖Ty − Tny‖
≤ a‖x− y‖+ b [‖x− Tnx‖+ ‖y − Tny‖] + ‖Tnx− Tx‖

+‖Ty − Tny‖.

For each n.
For n →∞

‖Tx− Ty‖ ≤ a‖x− y‖+ b [‖x− Tx‖+ ‖y − Ty‖]
where we have that T ∈ D(a, b).
Now, let’s see that the fixed point of T is the limit of the fixed point of {Tn}n.
Let xn = Tnxn and xm = Tmxm, m 6= n. The fixed points are unique because 0 ≤ a, b < 1; thus

‖xn − xm‖ = ‖Tnxn − Tmxm‖ < ε. Therefore {xn}n is a Cauchy sequence.

From which exists x̂ such that xn → x̂; let’s see that T x̂ = x̂.
Since ‖xn − x̂‖ → 0 then ‖Tnxn − x̂‖ → 0. So, as a consequence of Lemma 3 we have that Tn is continuous at
xn, thus

lim
n→∞

‖Tnxn − x̂‖ → 0 ⇒ ‖ lim
n→∞

Tnxn − x̂‖ → 0.

Which implies
‖Tn( lim

n→∞
xn)− x̂‖ → 0 ⇒ lim

n→∞
‖Tnx̂− x̂‖ → 0

and we conclude that ‖T x̂− x̂‖ = 0; therefore, T x̂ = x̂. �

Remark 2. If in the previous theorem we change the hypothesis 0 ≤ a, b < 1 by 0 ≤ a + 2b < 1, then from
Lemma 4 and Theorem 5 we can to assure that the fixed point to T is in K.
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An interesting question is: If T, S ∈ D(a, b). Is TS of class D(a, b)?
Let’s see the following example.

Example 2. Let’s define T : [0, 1] −→ [0, 1] as follows

Tx =


x

4
, 0 ≤ x <

1
2

x

8
,

1
2
≤ x ≤ 1.

From example (1) we have T ∈ D(0, 1
3 ), however

T 2x = T (Tx) =


x

16
, 0 ≤ x <

1
2

x

64
,

1
2
≤ x ≤ 1.

But, as a consequence of example (1) we have T 2 ∈ D(0, 1
15 ).

The above example shows that D(a, b) is not closed under composition, however we will show that under
certain conditions we can give any positive answer to the previous question.

Definition 1 (see, [7]). A norm ‖ · ‖ on a Banach space is called strictly convex if whenever ‖x‖ = ‖y‖ = 1
and ‖x + y‖ = 2 then necessarily x = y.

A Banach space X is said to be strictly convex if its norm is strictly convex.

The importance of the previous definition in the next results is that we can assure ‖x + y‖ = ‖x‖ + ‖y‖ if
x = λy, for any scalar λ.

Theorem 8. Let X be a strictly convex Banach space, and let S, T : X −→ X. If the following conditions hold
(i) T ∈ D(a, b), b ≥ 1
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(ii) x− Tx = r(Tx− STx), for any scalar r and every x ∈ X

then ST ∈ D(a, b).

Proof. Let x, y ∈ X and S, T : X −→ X

‖STx− STy‖ = ‖STx− Tx− STy + Ty + Tx− Ty‖
≤ ‖Tx− Ty‖+ ‖STx− Tx‖+ ‖STy − Ty‖
≤ a‖x− y‖+ b

[
‖x− Tx‖+ ‖y − Ty‖

]
+ ‖STx− Tx‖

+‖STy − Ty‖
≤ a‖x− y‖+ b

[
‖x− Tx‖+ ‖y − Ty‖

]
+ b[‖STx− Tx‖

+‖STy − Ty‖].

From condition (ii) and the fact that X is a strictly convex Banach space, we have ‖x − Tx‖ + ‖STx − Tx‖ =
‖x− STx‖ for all x ∈ X. So

‖STx− STy‖ ≤ a‖x− y‖+ b
[
‖x− STy‖+ ‖y − STy‖].

Therefore, ST ∈ D(a, b). �

By Theorem 8 and mathematical induction for n ≥ 2, n ∈ N, we obtain the following theorem.

Theorem 9. Let X be a strictly convex Banach space, and let T1, . . . , Tn : X −→ X such that the following
conditions hold

(i) Tn ∈ D(a, b), b ≥ 1,
(ii) x− Tnx = r(Tnx− T1 · · ·Tnx) for any scalar r and every x ∈ X.

Then T1 · · ·Tn ∈ D(a, b).

Proposition 10. Let X be a strictly convex Banach space, and let S, T : X −→ X such that
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(i) T ∈ D(a, b), b ≤ 1.
(ii) x− Tx = r(Tx− STx), for any scalar r and every x ∈ X.

Then, ST ∈ D(a, 1).

Proof. Let x, y ∈ X and S, T : X −→ X

‖STx− STy‖ = ‖STx− Tx− STy + Ty + Tx− Ty‖
≤ ‖Tx− Ty‖+ ‖STx− Tx‖+ ‖STy − Ty‖
≤ a‖x− y‖+ b

[
‖x− Tx‖+ ‖y − Ty‖

]
+ ‖STx− Tx‖

+‖STy − Ty‖
≤ a‖x− y‖+ ‖x− Tx‖+ ‖y − Ty‖+ ‖STx− Tx‖

+‖STy − Ty‖.

Condition (ii) and the fact that X is a strictly convex Banach space, allow ‖x−Tx‖+ ‖STx−Tx‖ = ‖x−STx‖
for every x ∈ X. So

‖STx− STy‖ ≤ a‖x− y‖+ ‖x− STy‖+ ‖y − STy‖.
Hence, ST ∈ D(a, 1). �

By Proposition 10 and mathematical induction for n ≥ 2, n ∈ N, we obtain the following theorem.

Theorem 11. Let X be a strictly convex Banach space, and let T1, . . . , Tn : X −→ X. If the following
conditions hold

(i) Tn ∈ D(a, b), b ≤ 1,
(ii) x− Tnx = r(Tnx− T1 · · ·Tnx) for any scalar r and every x ∈ X.

then, T1 · · ·Tn ∈ D(a, 1).
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Remark 3. (i) From Theorem 6 (i) let’s note that the uniqueness of the fixed point can’t be sure in
Theorems 8 and 9 because b > 1. And for Proposition 10 and Theorem 11, T (Ti) can has a unique fixed
point, however ST (T1, . . . , Tn) no necessarily has a unique fixed point.

(ii) Let’s note that the operation given in Theorems 8, 9, 11, and Proposition 10 does not indicate composition
of operators. Thus in the case of product of operators defined in a strictly convex Banach algebra these
results are valid.
Moreover, it is not necessary that the operators T, S (or T1, . . . , Tn) be D(a, b), it’s enough that one of
these operators belongs to D(a, b).

Another interesting question is: Let S, T : X −→ X S, T ∈ D(a, b), is S + T of class D(a, b)? The following
example shows that in general this is not true.

Example 3. Let X = [−1, 1] and let’s define the next maps of X into X of class D(a, b) with 0 < a, b < 1
and a + 2b < 1.

S(x) =
|x|
2

and T (x) = −x

2
,

hence

(S + T )(x) =

{
−x, if x ∈ [−1, 0)

0, if x ∈ [0, 1].
Let’s see that (S + T ) /∈ D(a, b). This is, let’s prove that (S + T ) does not satisfy

‖Tx− Ty‖ ≤ a‖x− y‖+ b [‖x− Tx‖+ ‖y − Ty‖] .(1)

Let x ∈ (0, 1] and y = 0, and suppose that (1) is satisfied

| − x− 0| ≤ a|x− 0|+ b[| − x− x|+ |0− 0|] = a|x|+ b|2x|
= a|x|+ 2b|x| = |x|(a + 2b) < |x|.

Which is false, thus (S + T ) /∈ D(a, b).
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Therefore D(a, b) is not closed under the sum.

However we prove the following.

Theorem 12. Let X be a strictly convex Banach space, and let S, T : BX −→ BX , where BX is the open unit
ball of X. If the following conditions hold

(i) S, T ∈ D(a, b)
(ii) x− Tx = r(x− Sx) for any scalar r and every x ∈ BX

then S + T ∈ D(a, b) for a + b sufficiently small.

Proof. Let x, y ∈ BX .

‖Tx− Ty‖ ≤ a‖x− y‖+ b
[
‖x− Tx‖+ ‖y − Ty‖

]
‖Sx− Sy‖ ≤ a‖x− y‖+ b

[
‖x− Sx‖+ ‖y − Sy‖

]
.

Then,

‖Tx− Ty‖+ ‖Sx− Sy‖ ≤ 2a‖x− y‖+ b[‖x− Tx‖+ ‖y − Ty‖+ ‖x− Sx‖
+‖y − Sy‖]

‖Tx− Ty + Sx− Sy‖ ≤ 2a‖x− y‖+ b[‖x− Tx‖+ ‖y − Ty‖+ ‖x− Sx‖
+‖y − Sy‖]

‖(S + T )x− (S + T )y‖ ≤ 2a‖x− y‖+ b[‖x− Tx‖+ ‖y − Ty‖+ ‖x− Sx‖
+‖y − Sy‖].

Condition (ii) and the fact that X is a strictly convex Banach space, imply

‖x− Tx‖+ ‖x− Sx‖ = ‖2x− (T + S)x‖.
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From which,

‖(S + T )x− (S + T )y‖
≤ 2a‖x− y‖+ b

[
‖2x− Tx− Sx‖+ ‖2y − Ty − Sy‖

]
= 2a‖x− y‖+ b

[
‖2x− (T + S)x‖+ ‖2y − (S + T )y‖

]
≤ 2a‖x− y‖+ b

[
‖x− (S + T )x‖+ ‖x‖+ ‖y − (S + T )y‖+ ‖y‖

]
= 2a‖x− y‖+ b

[
‖x− (S + T )x‖+ ‖y − (S + T )y‖

]
+ b(‖x‖+ ‖y‖)

= a‖x− y‖+ b
[
‖x− (S + T )x‖+ ‖y − (S + T )y‖

]
+ a‖x− y‖+ b(‖x‖+ ‖y‖)

≤ a‖x− y‖+ b
[
‖x− (S + T )x‖+ ‖y − (S + T )y‖

]
+ (a + b)‖x‖+ (a + b)‖y‖

< a‖x− y‖+ b
[
‖x− (S + T )x‖+ ‖y − (S + T )y‖

]
+ 2(a + b).

Since a + b can be as small as we please, and using fact that for each a, b ∈ R, a < b + ε for all ε > 0, then a ≤ b.
(See [1]). We have

‖(S + T )x− (S + T )y‖ ≤ a‖x− y‖+ b
[
‖x− (S + T )x‖+ ‖y − (S + T )y‖].

Hence S + T ∈ D(a, b). �

Proposition 13. Let X be a strictly convex Banach space, and suppose that the series
∑∞

i=1 Ti, where Ti :
BX −→ BX , for each i ∈ N, converges. If the following conditions hold

(i) Ti ∈ D(a, b) for each i ∈ N
(ii) x−Tix = r(x−Tjx) for each i 6= j, and moreover x−Tix = r(x−

∑n
i=1 Tix) for all i = 1, . . . n, and each

value of n > 1, r scalar and every x ∈ BX

then,
∑∞

i=1 Ti ∈ D(a, b) for a + b sufficiently small.
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Proof. Let x, y ∈ BX and Ti as in the hypothesis. For n > 1 fixed we take (a + b) = 1
(n−1)2n+1 ; so

‖
n∑

i=1

(Tix− Tiy)‖ ≤
n∑

i=1

‖Tix− Tiy‖ ≤ na‖x− y‖+ b
[ n∑

i=1

(
‖x− Tix‖+ ‖y − Tiy‖

)]
.

The above is deduced from assuming that each Ti ∈ D(a, b) and from the sum of these operators n times.
Again, from condition (ii), from the fact that X is a strictly convex Banach space, and applying the reasoning

of the previous Theorem we obtain
n∑

i=1

‖x− Tix‖ = ‖nx−
n∑

i=1

Tix‖.

Hence,

‖
n∑

i=1

(Tix− Tiy)‖ ≤ na‖x− y‖+ b
[
‖nx−

n∑
i=1

Tix‖+ ‖ny −
n∑

i=1

Tiy‖
]

≤ na‖x− y‖+ b[‖x−
n∑

i=1

Tix‖+ (n− 1)‖x‖+ ‖y −
n∑

i=1

Tiy‖

+(n− 1)‖y‖]

≤ na‖x− y‖+ b
[
‖x−

n∑
i=1

Tix‖+ ‖y −
n∑

i=1

Tiy‖
]

+ 2b(n− 1)

≤ a‖x− y‖+ b
[
‖x−

n∑
i=1

Tix‖+ ‖y −
n∑

i=1

Tiy‖
]

+ 2b(n− 1)

+2a(n− 1)
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= a‖x− y‖+ b
[
‖x−

n∑
i=1

Tix‖+ ‖y −
n∑

i=1

Tiy‖
]

+
1
2n

.

Taking limit n →∞ we obtain the result. �

The conclusion of the above proposition can be obtained changing the property of the Banach space X and
one condition.

Definition 2 (see, [7]). A Banach space X is called k-strictly convex iff for any k + 1 elements x0, x1, . . . , xk

of X, the relation
‖x0 + x1 + · · ·+ xk‖ = ‖x0‖+ ‖x1‖+ · · ·+ ‖xk‖

implies that x0, x1, . . . , xk are linearly dependent.
If k = 1 this definition gives the class of strictly convex spaces.

Theorem 14. Let X be a k-strictly convex Banach space and suppose that the series
∑∞

i=1 Ti, where Ti :
BX −→ BX , for each i ∈ N, converges. If the following conditions hold

(i) Ti ∈ D(a, b)
(ii) x− Tix : i = 1, . . . k + 1 are linearly dependent

then,
∞∑

i=1

Ti ∈ D(a, b) for a + b sufficiently small.

Proof. The proof follows as the previous proposition.
From condition (ii) and the fact that X is a k-strictly convex Banach space we have

k∑
i=1

‖x− Tix‖ = ‖kx−
k∑

i=1

Tix‖.

The rest of the proof is analogue to the previous proposition. �
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Remark 4. Let’s note that the uniqueness of the fixed point is ensured from Lemma 1 and Theorem 6.

The authors would like to express him gratitude to the referee for suggestions that allowed to improve some proofs
and lead to a better presentation of this paper.
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13. Rashwan R. A., On the Existence of Fixed Points for Some Discontiuos Operators, Math. Japonica. 35(1) (1990), 97–104.

14. Reich S., Kannan’s Fixed Point Theorems, Boll. Union. Math. Ital. 4 (1971), 121–128.
15. , Remarks on Fixed Points, Rend. Accad. Naz. di lincei 52 (1972), 689–697.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
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