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ON THE CLASS OF ALL RECIPROCAL BASES
FOR INTEGERS

T. ŠALÁT† and J. TOMANOVÁ

Abstract. In this paper the structure of the class of all reciprocal bases of N is investigated from metric and topological
point of view. For this purpose the method of dyadic values of infinite subsets of N will be applied.

A set A ⊆ N is called the reciprocal basis for integers (of N), shortly R-basis, provided that for each s ∈ N
there exist a1 < a2 < · · · < ak from A such that s =

∑k
j=1

1
aj

(cf. [1], [2], [8]). It is well-known that the set
of all positive integers is an R-basis. It is proved in [1] that every arithmetic progression is an R-basis. In the
same paper a construction of R-bases of zero density based on the fact that for every integer a ∈ N the sequence
Sa = {a, 2a, 3a, . . . } is an R-basis is given. Obviously this concept is closely related to the concept of egyptian
fractions.

Note, that if A ⊆ N is a reciprocal basis of N then
∑

a∈A a−1 = ∞ and consequently A is infinite.
Denote by Br the class of all reciprocal bases of N and by U the class of all infinite subsets of N. Then

Br ⊆ U .(1)

We will use the concept of dyadic values of sets A ∈ U for the study of “the magnitude” of Br in U .
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If A = {a1 < a2 < · · · < ak < · · · } ∈ U , then we put ρ(A) =
∑∞

k=1 2−ak =
∑∞

k=1 εk2−k, where (εk)∞1 is the
characteristic function of the set A (i.e. εk = 1 if k ∈ A and εk = 0 if k ∈ N \A). In this way we get an injective
mapping ρ of U onto the interval (0, 1]. If S ⊆ U , then we set ρ(S) = {ρ(A) : A ∈ S}. The magnitude of the set
ρ(S) ⊆ (0, 1] enables us to judge the magnitude of the class S (cf. [4, p. 17]).

The magnitude of ρ(S) can be investigated from the metric point of view (Lebesgue measure, Hausdorff
dimension) and also from the topological point of view (Baire’s categories).

We recall the following fact about dyadic expansions of real numbers. Each x ∈ (0, 1] can be uniquely expressed
in the form x =

∑∞
k=1 εk(x)2−k, where εk(x) = 0 or 1 and for an infinitely many k’s we have εk(x) = 1.

If m ∈ N is fixed then the whole interval (0, 1] can be written in the form (0, 1] = ∪2m−1
j=0 ( j

2m , j+1
2m ] = ∪2m−1

j=0 i
(j)
m .

To every interval i
(j)
m (0 ≤ j ≤ 2m − 1) corresponds a sequence ε0

1, ε
0
2, . . . , ε

0
m of numbers 0, 1 in such a manner

that if x =
∑∞

k=1 εk(x)2−k ∈ i
(j)
m , then εk(x) = ε0

k (k = 1, 2, . . . ,m). We say shortly that the interval i
(j)
m and the

sequence ε0
1, ε

0
2, . . . , ε

0
m are associated.

1. Topological properties of the set ρ(Br)

We will show that from the topological point of view the class Br is a very large subclass of U (see (1)).
Let s ∈ N. Denote by H(m, s) the union of all intervals i

(j)
m (m fixed) with the following property: The interval

i
(j)
m is associated with a sequence ε0

1, ε
0
2, . . . , ε

0
m such that for a suitable set M , M ⊆ {k ≤ m : ε0

k = 1} we have
s =

∑
k∈M

1
k .

It is a well-known fact that (every) integer s can be represented as a sum of reciprocal values of some distinct
integers (cf. [1]). So for s there exists an m such that H(m, s) 6= ∅. Put H(s) = ∪∞m=1H(m, s). Hence H(s) 6= ∅.

The following auxiliary result will be used in what follows.
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Lemma 1.1. We have

(2) ρ(Br) =
∞⋂

s=1

H(s) =
∞⋂

s=1

∞⋃
m=1

H(m, s).

Proof. 1) Let x ∈ ρ(Br). We show that x belongs to the right-hand side of (2).
Since x ∈ ρ(Br), we have x = ρ(A), where A = {a1 < a2 < · · · < ak < · · · } ⊆ N, A being an R-basis. Hence

there are numbers aj1 < aj2 < · · · < ajt
from A such that s = 1

aj1
+ · · ·+ 1

ajt
. Put m = ajt

∈ N. The sequences
ε0
1, ε

0
2, . . . , ε

0
m of 0’s and 1’s satisfying the conditions ε0

aji
= 1 (i = 1, 2, . . . , t) are associated with some intervals

i
(l)
m (m fixed) and these intervals are subsets of the set H(m, s). Hence x belongs to H(s). This is true for an

arbitrary s ∈ N, therefore x belongs to the right-hand side of (2).
2) Let x =

∑∞
j=1 εj2−j belong to the right-hand side of (2). Put A={j :εj =1}. Then x = ρ(A). We will show

that x belongs to ρ(Br). For this it suffices to show that A ∈ Br.
Let v ∈ N. We show that v can be expressed as a sum of reciprocal values of a finite number of distinct

elements of A.
Since x ∈ H(v), there is an m ∈ N such that x ∈ H(m, v). By the definition of the set H(m, v) there exists an

interval i
(l)
m (l ∈ {0, 1, . . . , 2m − 1}) such that x ∈ i

(l)
m and i

(l)
m is associated with a sequence ε0

1, ε
0
2, . . . , ε

0
m of 0’s

and 1’s such that for a set M ⊆ {k ≤ m : ε0
k = 1} we have

v =
∑
k∈M

1
k

.(3)

For the dyadic expansion x =
∑∞

j=1 εj2−j we have εj = ε0
j (j = 1, 2, . . . ,m) and so the set M consists of some

k’s, k ≤ m such that εk = 1. Hence these k’s belong to the set A and the number v can be expressed by (3) as
a sum of reciprocal values of some distinct elements of A. Since v is an arbitrary positive integer, we see that
A ∈ Br. �
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Let S ⊆ U . Denote by cS the class U \ S (complement of S in U). Hence cBr = U \ Br. The class cBr is the
class of all infinite sets A ⊆ N that are not R-bases. Hence for each A ∈ cBr there exists at least one s ∈ N such
that s cannot be expressed as a finite sum of reciprocal values of distinct elements of A.

In what follows the interval (0, 1] will be considered as a metric space with the Euclidean metric.

Theorem 1.1. The set ρ(Br) is an Fσδ-set in (0, 1].

Proof. We use Lemma 1.1. Recall that the set H(m, s) is a union of a finite number of intervals i
(l)
m (m fixed).

Therefore H(m, s) is an Fσ-set in (0, 1]. Then the right-hand side of (2) is an Fσδ-set in (0, 1]. The same holds
for ρ(Br). �

Remark. By the definition of cBr and injectivity of the mapping ρ : U → (0, 1] we get

ρ(cBr) = (0, 1] \ ρ(Br).(4)

From this and from Theorem 1.1 follows that the set ρ(cBr) is a Gδσ-set in (0, 1].

We have shown that the both sets ρ(Br), ρ(cBr) belong to the second Borel class. We will determine their
Baire’s categories.

Theorem 1.2. The set ρ(Br) is a residual set in (0, 1].

Proof. It suffices to prove that the set ρ(cBr) is a dense set of the first Baire category in (0, 1]. The density
of the set ρ(cBr) follows from the fact that the set ρ(K), K being the class of all A ⊆ N with

∑
a∈A a−1 < ∞, is

dense in (0, 1] (cf. [6, Theorem 3]). We have K ⊆ cBr so that ρ(K) ⊆ ρ(cBr) and the density of ρ(cBr) follows.
We prove that the set ρ(cBr) is a set of the first category in (0, 1].
By (4) and (2) we get

ρ(cBr) = (0, 1] \
∞⋂

s=1

∞⋃
m=1

H(m, s) =
∞⋃

s=1

∞⋂
m=1

cH(m, s).(5)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

(Where cH(m, s) = (0, 1] \H(m, s).)
In virtue of (5) it suffices to prove that each of the sets ∩∞m=1cH(m, s)(s = 1, 2, . . . ) is nowhere dense in (0, 1].
Fix s ∈ N. On account of the well-known criterion of nowheredensity of a set in metric space (cf. [3, p. 37]) it

suffices to show that the following statement holds:
Every non-empty interval I ⊂ (0, 1] contains an interval J ⊆ I such that J ∩ cH(m

′
, s) = ∅ for an m

′ ∈ N.
Let I ⊂ (0, 1] be an interval. Choose the numbers m, d, m ∈ N, 0 ≤ d ≤ 2m − 1 in such a way that i

(d)
m ⊂ I.

We show that there is a subinterval i
(t)
m+v of i

(d)
m such that

i
(t)
m+v ∩ cH(m + v, s) = ∅.(6)

holds.
If i

(d)
m ⊆ H(m, s) then we put v = 0 and t = d.

Let i
(d)
m ⊆ H(m, s) does not hold. Since the set {m+1,m+2, . . . ,m+k, . . . } is an R-basis (cf. [2]) there exist

nk (k = 1, 2, . . . , j), m + 1 ≤ n1 < n2 < · · · < nj , such that

s =
j∑

k=1

1
nk

.(7)

Put nj = m + v (i.e. v = nj −m) and ε0
k = 1 for k = m + 1,m + 2, . . . ,m + v. Let the interval i

(d)
m be associated

with the sequence ε0
1, ε

0
2, . . . , ε

0
m of 0’s and 1’s. Construct the interval i

(t)
m+v which is associated with the sequence

ε0
1, ε

0
2, . . . , ε

0
m, ε0

m+1, . . . , ε
0
m+v of numbers 0, 1. Then i

(t)
m+v ⊆ i

(d)
m and from (7) we get (6). �

2. Metric properties of the set ρ(Br)

We have seen that the set ρ(Br) belongs to the second Borel class (Theorem 1.1). So it is Lebesgue measurable
and it would be desirable to determine λ(ρ(Br)) – the Lebesgue measure of ρ(Br). Unfortunately we are not able
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to do this and therefore it remains as an open problem. It is interesting that we can determine the Hausdorff
dimension (cf. [5]) of the set ρ(Br). But unfortunately from this result we cannot derive the magnitude of
λ(ρ(Br)).

Theorem 2.1. We have dim ρ(Br)) = 1.

Proof. It is well-known that there exists a set A ∈ Br with d(A) = 0 (cf. [2]), where d(A) denotes the
asymptotic density of A, i.e. d(A) = limn→∞

A(n)
n , A(n) = |A ∩ {1, 2, . . . , n}|.

Obviously every set D ⊇ A, D ⊆ N belongs again to Br. Denote by S(A) the set {D ⊆ N : A ⊆ D}. Then we
have S(A) ⊆ Br and so

dim ρ(S(A)) ≤ dim ρ(Br).(8)

In virtue of (8) it suffices to show that

dim ρ(S(A)) = 1.(9)

We will prove it using the following result which is an easy consequence of [7, Theorem 2.7]:
(S) Let M be a set of positive integers and (ε0

j ), j ∈ M be a fixed sequence of 0’s and 1’s. Denote by
Z = Z(M, (ε0

j ), j ∈ M) the set of all x =
∑∞

j=1 εj(x)2−j ∈ (0, 1] for which εj(x) = ε0
j if j ∈ M and εj(x) = 0 or

1 if j ∈ N \M . Then

dim(Z) = lim inf
n→∞

log
∏

j≤n, j∈N\M
2

n log 2

= lim inf
n→∞

N \M (n)
n

= 1− d(M),

(10)

where d(M) = lim sup
n→∞

M(n)
n .
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Put in (S) (see (10)): M = A, ε0
j = 1 for j ∈ A. Then Z(M, (ε0

j ), j ∈ M) = ρ(S(A)) and from (10) we obtain
ρ(S(A)) = 1− d(A) = 1− d(A) = 1. Hence (9) holds. �

Remark. There are infinite sets A ⊆ N with
∑

a∈A a−1 = ∞ and zero asymptotic density that do not belong
to Br. If A = {a1 < a2 < · · · < ak < · · · } ⊆ N, gcd(ai, aj) = 1 for i 6= j, then the set A does not belong to
Br, because it is easy to show that the number 1 cannot be expressed in the form 1 = 1

ai1
+ 1

ai2
+ · · · + 1

aim
,

i1 < i2 < · · · < im. Taking the set of all prime numbers for A we get a set of zero density with
∑

a∈A a−1 = ∞
which does not belong to Br.
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