NORMAL GENERATION OF UNITARY GROUPS OF CUNTZ ALGEBRAS BY INVOLUTIONS

Contents

Page 1 of 10

Go Back

Full Screen

Close

A. AL-RAWASHDEH

Abstract

In purely infinite factors, P. de la Harpe proved that a normal subgroup of the unitary group which contains a non-trivial self-adjoint unitary contains all self-adjoint unitaries of the factor. Also he proved the same result in finite continuous factors. In a previous work the author proved a similar result in some types of unital AF-algebras. In this paper we extend the result of de la Harpe, concerning the purely infinite factors to a main example of purely infinite C^{*}-algebras called the Cuntz algebras $\mathcal{O}_{n}(2 \leq n \leq \infty)$ and we prove that $\mathcal{U}\left(\mathcal{O}_{n}\right)$ is normally generated by some non-trivial involution. In particular, in the Cuntz algebra \mathcal{O}_{∞} we prove that $\mathcal{U}\left(\mathcal{O}_{\infty}\right)$ is normally generated by self-adjoint unitary of odd type.

1. INTRODUCTION

Let \mathcal{A} be any unital C^{*}-algebra. The group of unitaries and the set of projections of \mathcal{A} are denoted by $\mathcal{U}(\mathcal{A}), \mathcal{P}(\mathcal{A})$ respectively. The involutions of \mathcal{A} are the set of self-adjoint unitaries ($*$-symmetries). In several types of C^{*}-algebras, we have that the involutions generate all the unitaries. In the case of von Neumann factors, M. Broise in [3]; proved the following main theorem.

Theorem 1.1. [3, Theorem 1] If \mathcal{B} is a factor of type $I I_{1}$ or III, then the set of involutions generates $\mathcal{U}(\mathcal{B})$.

[^0]Also, in the case of simple, purely infinite C^{*}-algebras, M. Leen proved the following result.
Theorem 1.2. [10, Theorem 3.8] If A is a simple, unital purely infinite C^{*}-algebra, then the set of $*$-symmetries of A forms a set of generators for $\mathcal{U}_{0}(A)$, (where $\mathcal{U}_{0}(A)$ denotes the identity component of the unitary group of A).

The Cuntz algebras are interesting examples of simple, unital purely infinite C^{*}-algebras, which was introduced by Cuntz in [5] this C^{*}-algebra is generated by isometries that have orthogonal ranges (for more information see [6, V. 4]). As shown in [5] the unitary group of the Cuntz algebras are connected. Now let us recall these definitions.

Definition 1.3. The Cuntz algebra \mathcal{O}_{n}, where $2 \leq n$, is the universal C^{*}-algebra which is generated by isometries $s_{1}, s_{2}, \ldots, s_{n}$, such that

$$
\begin{equation*}
\sum_{i=1}^{n} s_{i} s_{i}^{*}=1 \tag{1}
\end{equation*}
$$

with $s_{i}^{*} s_{j}=0$, when $i \neq j$. The Cuntz algebra \mathcal{O}_{∞} is generated by infinite number of such isometries.

Remark 1.4. [6, V. 4] Recall that a universal C^{*}-algebra \mathcal{O}_{n} means, whenever $t_{1}, t_{2} \ldots t_{n}$ form another set of isometries satisfying (1), then there is a unique *-homomorphism ρ of \mathcal{O}_{n} onto $C^{*}\left(\left\{t_{1}, t_{2}, \ldots t_{n}\right\}\right)$ such that $\rho\left(s_{i}\right)=t_{i}$, for all $1 \leq i \leq n$.

In this paper, the projection $s_{i} s_{i}^{*}$ is denoted by p_{i}, and these projections are called the standard projections of the Cuntz algebras. The corresponding involution $1-2 p_{i}$ is denoted by u_{i}.

Let us recall the following main results concerning the Cuntz algebras.

Title Page

Contents
Theorem 1.5. [5] The Cuntz algebras $\mathcal{O}_{n}(2 \leq n \leq \infty)$ are simple unital purely infinite C^{*} algebras.

Using the fact that $K_{1}\left(\mathcal{O}_{n}\right) \cong 0$ (see [4, 3.8]) and $K_{1}(A) \simeq \mathcal{U}(A) / \mathcal{U}(A)_{0}$ (see [4, p. 188], M. Leen's result (Theorem 1.2) shows that the set of $*$-symmetries of $\mathcal{O}_{n}(2 \leq n \leq \infty)$ generates the unitary group $\mathcal{U}\left(\mathcal{O}_{n}\right)$.

Definition 1.6. A group G is normally generated by an element x if the only normal subgroup of G containing x is G itself.

If $u=1-2 p$ is an involution in a factor \mathcal{B}, then P. de la Harpe defined the notion of the type of u to be the pair (x, y), where $x=D(1-p)$ and $y=D(p)$, as D denotes a normalized dimension function on \mathcal{B}, see [7]. He proved that any normal subgroup \mathcal{N} of $\mathcal{U}(\mathcal{B})$, which is not contained in the circle \mathbb{S}^{1}, contains a non-trivial involution, and then contains all the involutions of \mathcal{B} (see [8, Proposition 2]). Afterwards, P. de la Harpe used Broise's result (Theorem 1.1), and he proved the following theorem.

Theorem 1.7. [8] If \mathcal{B} is a factor of type $I I_{1}$ or III and \mathcal{N} is any normal subgroup of $\mathcal{U}(\mathcal{B})$, which is not contained in the circle \mathbb{S}^{1}, then $\mathcal{N}=\mathcal{U}(\mathcal{B})$.

If v is an involution of $\mathcal{O}_{n}(2 \leq n \leq \infty)$, then as introduced in [1], we define the type of v to be the element $[p]$ in $K_{0}\left(\mathcal{O}_{n}\right)$, where $v=1-2 p$. Since the $K_{0}\left(\mathcal{O}_{n}\right)$ is a cyclic group, the type of v is an integer. In Section 2, we show that a normal subgroup \mathcal{N} of $\mathcal{U}\left(\mathcal{O}_{n}\right), n<\infty$ contains all the involutions if

1. \mathcal{N} contains an involution of the type 1 (i.e. [1]), or
2. \mathcal{N} contains a non-trivial involution and $n-1$ is a prime number, or
3. \mathcal{N} contains a non-trivial involution such that its type and $n-1$ are relatively prime. Then using M. Leen's result in Theorem 1.2, we prove that $\mathcal{U}\left(\mathcal{O}_{n}\right)$ is normally generated by a non-trivial involution.

In Section 3, we show that if \mathcal{N} contains an involution of odd type, then \mathcal{N} contains all the involutions of \mathcal{O}_{∞}. Consequently, we use M. Leen's result in order to prove that $\mathcal{U}\left(\mathcal{O}_{n}\right)$ is normally generated by an involution of odd type.

Now, let us recall main results concerning purely infinite C^{*}-algebras, that might be used throughout this paper.

Proposition 1.8. [4, 1.5] In any C^{*}-algebra A, the following hold:
(i) If p, q are infinite projections and $p q=0$, then $p+q$ is an infinite projection.
(ii) If p is an infinite projection, and $p^{\prime} \sim p$, then p^{\prime} is an infinite projection.
(iii) If p and q are infinite projections, then there exists an infinite projection p^{\prime} such that $p \sim p^{\prime}$ and $p^{\prime}<q$, moreover $q-p^{\prime}$ is an infinite projection.

Theorem 1.9. $[2,6.11 .9]$ Two infinite projections in a simple unital C^{*}-algebra are equivalent if and only if they have the same K_{0}-class. Two non-trivial projections with the same K_{0}-class in a purely infinite C^{*}-algebra are unitarily equivalent.

$$
\text { 2. The } \mathcal{O}_{n}(2 \leq n<\infty) \text { CASE }
$$

We prove the following result which is valid for the Cuntz algebras $\mathcal{O}_{n}(2 \leq n \leq \infty)$. The proof is similar to [1, Lemma 2.2], in the case of the UHF-algebras. For completeness we have.

Lemma 2.1. Let u and v be two involutions of $\mathcal{O}_{n}(2 \leq n \leq \infty)$. Then u is conjugate to v if and only if they have the same type.

Proof. If u and v are conjugate involutions of $\mathcal{O}_{n}(2 \leq n \leq \infty)$, then as in [1, Lemma 2.2], there exists a unitary w in $\mathcal{U}\left(\mathcal{O}_{n}\right)$ such that $u=w v w^{*}$. But $u=1-2 e$ and $v=1-2 f$ for some projections

Conversely, assume that the involutions u and v have the same type. Then $u=1-2 p$ and $v=1-2 q$, for some $p, q \in \mathcal{P}\left(\mathcal{O}_{n}\right)$ with $[p]=[q]$ in $K_{0}\left(\mathcal{O}_{n}\right)$ group. Then by Theorem 1.9, the projections p and q are unitarily equivalent, and therefore $u=w v w^{*}$ for some $w \in \mathcal{U}\left(\mathcal{O}_{n}\right)$.

Proposition 2.2. In $\mathcal{O}_{n}(2 \leq n \leq \infty)$, the involution $u_{i}(i=1, \ldots n)$ has type 1 .
Proof. As $u_{i}=1-2 p_{i}$, the type of u_{i} is $\left[p_{i}\right]$. By definition $p_{i}=s_{i} s_{i}^{*}$ and $s_{i}^{*} s_{i}=1$; therefore by Theorem 1.9, we have $\left[p_{i}\right]=[1]$.

The following result is based on $[4,3.7,3.8]$; that is $K_{0}\left(\mathcal{O}_{n}\right) \simeq \mathbb{Z}_{n-1}$.
Proposition 2.3. If $0 \leq k \leq n-2 ; n<\infty$, then there exists an involution in \mathcal{O}_{n} of type k (in fact, of type $k[1]$).

Proof. Let $p_{1}, p_{2}, \ldots p_{n}$ be the standard projections of \mathcal{O}_{n}, and $v_{k}=1-2\left(p_{1}+p_{2}+\cdots p_{k}\right)$; for $0 \leq k \leq n-2$. Then v_{k} is an involution in \mathcal{O}_{n} of type equal to k.

Lemma 2.4. If \mathcal{N} is a normal subgroup of $\mathcal{U}\left(\mathcal{O}_{n}\right)(n<\infty)$, which contains an involution of the type $1([\mathbf{1}])$, then \mathcal{N} contains an involution of any given type.

Proof. As \mathcal{N} is a normal subgroup of $\mathcal{U}\left(\mathcal{O}_{n}\right)$, and it contains an involution of the type 1 , then by Lemma $2.1, \mathcal{N}$ contains $u_{i}(i=1, \ldots n)$. Then $u_{1} u_{2}=\left(1-2 p_{1}\right)\left(1-2 p_{2}\right)=1-2\left(p_{1}+p_{2}\right)$, which is an involution of type 2 , contained in \mathcal{N}. Also $u_{1} u_{2} u_{3}$ is an involution in \mathcal{N} of type 3. Keep going we have $u_{1} u_{2} \ldots u_{k}=1-2\left(p_{1}+p_{2}+\cdots+p_{k}\right)$ is an involution in \mathcal{N} of type $k(1 \leq k \leq n-2)$, hence \mathcal{N} contains an involution of any given type, which proves the required.

Lemma 2.5. Let \mathcal{N} be a normal subgroup of $\mathcal{U}\left(\mathcal{O}_{n}\right)$, and suppose that $n-1$ is a prime number. If \mathcal{N} contains a non-trivial involution of \mathcal{O}_{n}, then \mathcal{N} contains the involution u_{1}.

Proof. Suppose that $v \in \mathcal{N}$ such that $v=1-2 p$ and v is of type k, i.e. $[p]=k$. If $k=n-1$, then $[p]=0 \in K_{0}\left(\mathcal{O}_{n}\right)$, by Proposition 1.8 (ii) we must have $p=0$ and then $v=1$ which gives a contradiction as v is non-trivial. Therefore we consider $1 \leq k \leq n-2$. We may assume that $p<1$, since if $p=1$, then $v=-1$ which is an involution of type one, and this ends the proof. As $n-1$ is a prime, there exist integers s and t such that $s k+t(n-1)=1$, then $s k=1$ in \mathbb{Z}_{n-1}. By Proposition 1.8 (iii), we can find mutually orthogonal projections $q_{1}, q_{2}, \ldots q_{s}$, with $\left[q_{i}\right]=[p], i=1, \ldots s$. Let $v_{i}=1-2 q_{i}, i=1, \ldots s$. Then for every i, v_{i} there is an involution of the type k, which belongs to \mathcal{N} as it is conjugate to v. Therefore

$$
v_{1} v_{2} \ldots v_{s}=1-2\left(q_{1}+q_{2}+\cdots+q_{s}\right)
$$

is an involution in \mathcal{N}, and the type of $v_{1} v_{2} \ldots v_{s}$ is $s k=1 \in \mathbb{Z}_{n-1}$.
By imitating the same proof in the previous result, we can rewrite Lemma 2.5 as follows:
Lemma 2.6. Let \mathcal{N} be a normal subgroup of $\mathcal{U}\left(\mathcal{O}_{n}\right)$. If \mathcal{N} contains an involution of type k such that k and $n-1$ are relatively primes, then \mathcal{N} contains an involution of type 1.

Therefore, we have the following theorem.
Theorem 2.1. A non-trivial involution u normally generates the group $\mathcal{U}\left(\mathcal{O}_{n}\right)$ if either
(1) $n-1$ is a prime number, or
(2) the type of u is relatively prime to $n-1$.

Proof. If \mathcal{N} is a normal subgroup of $\mathcal{U}\left(\mathcal{O}_{n}\right)$ that contains a non-trivial involution with hypothesis of either (1) or (2), then by either Lemma 2.5 or Lemma $2.6, \mathcal{N}$ contains an involution of type 1 , therefore by Lemma $2.4, \mathcal{N}$ contains an involution of any given type, then by Lemma 2.1 it contains all involutions, hence by Leen's result $\mathcal{N}=\mathcal{U}\left(\mathcal{O}_{n}\right)$.

In this section, we discuss the case of the Cuntz algebra \mathcal{O}_{∞}. We may ask, if a normal subgroup of

```
Contents
``` \(\mathcal{U}\left(\mathcal{O}_{\infty}\right)\) contains a non-trivial involution \(u_{0}\), then does it contain all the involutions of \(\mathcal{O}_{\infty}\) ? Hence by using Leen's result in Theorem \(1.2, \mathcal{O}_{\infty}\) is normally generated by a non-trivial involution \(u_{0}\). We give a positive answer to the question under some conditions on the non-trivial involution \(u_{0}\).

Recall that the Cuntz algebra \(\mathcal{O}_{\infty}\) is the universal unital \(C^{*}\)-algebra generated by an infinite sequence of isometries \(s_{1}, s_{2}, s_{3}, \ldots\) with mutually orthogonal projections \(p_{j}=s_{j} s_{j}^{*}\). The involution \(1-2 p_{j}\) is denoted by \(u_{j}(1 \leq j \leq \infty)\).

Now let us recall the following main results concerning \(\mathcal{O}_{\infty}\).
Theorem 3.1. [4, 3.11]
(i) \(K_{0}\left(\mathcal{O}_{\infty}\right) \cong \mathbb{Z}\).
(ii) \(K_{1}\left(\mathcal{O}_{\infty}\right) \cong 0\).

Theorem 3.2. \([4,3.12]\) In \(\mathcal{O}_{\infty}\), every projection is equivalent to a projection either of the form \(\sum_{i=1}^{k} s_{i} s_{i}^{*}(1 \leq k<\infty)\) or \(1-\sum_{i=1}^{k} s_{i} s_{i}^{*}(1 \leq k<\infty)\).

In \(\mathcal{O}_{\infty}\), the type of an involution \(v\) is \(n[1]\), for some \(n \in \mathbb{Z}\), and we write that \(v\) has the type \(n \in \mathbb{Z}\). Recall that Lemma 2.1 is also valid for \(\mathcal{O}_{\infty}\).

Now we start by proving the following lemma, which is similar to Lemma 2.4 in the case of \(\mathcal{O}_{n}\), where \(n\) is a finite number.

Lemma 3.3. If \(\mathcal{N}\) is a normal subgroup of \(\mathcal{U}\left(\mathcal{O}_{\infty}\right)\), which contains an involution of the type 1 , then \(\mathcal{N}\) contains an involution of any given type.

Proof. As \(\mathcal{N}\) contains an involution of type 1, and \(\mathcal{N}\) is a normal subgroup of \(\mathcal{U}\left(\mathcal{O}_{\infty}\right)\), we have that \(N\) contains all the involutions \(u_{i} i=1,2, \ldots\). Then \(u_{1} u_{2}\) is an involution in \(\mathcal{N}\) of type 2 indeed,
if \(k \in \mathbb{Z}^{+}\), then \(u_{1} u_{2} \ldots u_{k}=1-2\left(p_{1}+p_{2}+\cdots+p_{k}\right)\) is an involution in \(\mathcal{N}\) of type \(k\). Also, \(\mathcal{N}\) contains an involution of type 0 , as \(1 \in \mathcal{N}\).

Now it is enough to prove that \(\mathcal{N}\) contains an involution of any negative type. Recall that if \(p\) is a projection of \(\mathcal{O}_{\infty}\), then by Theorem 3.2, either \(p\) is equivalent to \(\sum_{i=1}^{k} s_{i} s_{i}^{*}\), hence \([p]=k[1]\) or \(p\) is equivalent to \(1-\sum_{i=1}^{k} s_{i} s_{i}^{*}\), hence \([p]=(1-k)[1]\), for some \(k \in \mathbb{Z}^{+}\). As \(\mathcal{N}\) contains involutions of type 1 , then the involution -1 belongs to \(\mathcal{N}\). Hence for each \(k \in \mathbb{Z}^{+},-u_{1} u_{2} \ldots u_{k} \in \mathcal{N}\), and
\[
\begin{aligned}
-u_{1} u_{2} \ldots u_{k} & =-\left(1-2\left(p_{1}+p_{2}+\cdots+p_{k}\right)\right) \\
& =-1+2\left(p_{1}+p_{2}+\cdots+p_{k}\right) \\
& =1-2\left(1-\left(p_{1}+p_{2}+\cdots+p_{k}\right)\right)
\end{aligned}
\]
therefore, \(-u_{1} u_{2} \ldots u_{k}\) is an involution of type \(1-k\) and the lemma has been checked.

Page 8 of 10

Go Back

Full Screen

\section*{Close}

Therefore, we have the following main result
Theorem 3.4. Any involution of type 1 normally generates the group \(\mathcal{U}\left(\mathcal{O}_{\infty}\right)\).
Proof. Suppose that \(\mathcal{N}\) is a normal subgroup of \(\mathcal{U}\left(\mathcal{O}_{\infty}\right)\) that contains an involution of the type 1. By using Lemma 3.3, we have that \(\mathcal{N}\) contains an involution of any given type, therefore by Lemma 2.1, \(\mathcal{N}\) contains all the involutions, hence by Leen's result in Theorem 1.2, \(\mathcal{N}=\mathcal{U}\left(\mathcal{O}_{\infty}\right)\).

Let us now prove our main result.
Theorem 3.5. Any involution of odd type normally generates the group \(\mathcal{U}\left(\mathcal{O}_{\infty}\right)\).
Proof. Case 1: Suppose that \(\mathcal{N}\) contains an involution of type \(2 k+1\), for some positive integer

Therefore, we have that
\[
v u=\left(1-2 \sum_{i=1}^{2 k+1} p_{i}\right)\left(1-2 \sum_{i=2}^{2 k+2} p_{i}\right)=1-2\left(p_{1}+p_{2 k+2}\right)
\]
which is an involution in \(\mathcal{N}\) of type 2 , hence \(\mathcal{N}\) contains all involutions of the type 2 . Then
\[
\left(1-2\left(p_{1}+p_{2}\right)\right)\left(1-2\left(p_{3}+p_{4}\right)\right) \ldots\left(1-2\left(p_{2 k-1}+p_{2 k}\right)\right)=1-2 \sum_{i=1}^{2 k} p_{i} \in \mathcal{N}
\]

Therefore \(\mathcal{N}\) contains the involution
\[
\left(1-2 \sum_{i=1}^{2 k+1} p_{i}\right)\left(1-2 \sum_{i=1}^{2 k} p_{i}\right)=1-2 p_{2 k+1}
\]
which is of the type 1 , hence by Theorem 3.4, we have the desired.
Case 2: Suppose that \(\mathcal{N}\) contains an involution \(v\) of the type \(-k\), where \(k \in \mathbb{Z}^{+}\), which is odd. Then by normality of \(\mathcal{N}\) and Lemma 2.1, the involution \(w_{1}=1-2\left(1-\left(p_{1}+p_{2}+\cdots p_{k+1}\right)\right)\) belongs to \(\mathcal{N}\), as its type is \(-k\). In fact, \(w_{1}=-u_{1} u_{2} \ldots u_{k} u_{k+1}\). Similarly, the involution \(w_{2}=\) \(1-2\left(1-\left(p_{2}+p_{3}+\cdots p_{k+2}\right)\right)\) belongs to \(\mathcal{N}\) and \(w_{2}=-u_{2} u_{3} \ldots u_{k+2}\). Therefore, the involution \(w_{1} w_{2}=u_{1} u_{k+2} \in \mathcal{N}\), hence \(\mathcal{N}\) contains all involutions of type 2 , by using Lemma 2.1. As \(k+1\) is an even integer, we get \(w_{3}=\left(u_{1} u_{2}\right)\left(u_{3} u_{4}\right) \ldots\left(u_{k} u_{k+1}\right) \in \mathcal{N}\). Therefore we have that \(w_{1} w_{3}=-1 \in \mathcal{N}\), which is an involution of type 1 , hence by Theorem 3.4, the proof is completed.

Finally, we conclude by noting that similar arguments show that a normal subgroup of \(\mathcal{U}\left(\mathcal{O}_{n}\right)\) which contains a non-trivial involution (of any type) necessarily contains all the involutions of even type.

\section*{Contents \\ ```
Contents
```}

\section*{Go Back}
1. Al-Rawashdeh A., On Normal Subgroups of Unitary Groups of Some Unital AF-Algebras, Sarajevo Journal of Mathematics, \(\mathbf{3}(16)\), (2007), 233-240.
\(\square\)
2. Blackadar B., K-Theory for Operator Algebras, Second Edition, MSRI Publications, 5, Cambridge University Press, Cambridge 1998.
3. Broise M., Commutateurs Dans le Groupe Unitaire d'un Facteur, J. Math. Pures et appl., 46 (1967), \(299-312\).
4. Cuntz J., K-Theory for Certain C*-Algebras, Ann. of Math., 113 (1981), 181-197.
5. , Simple \(C^{*}\)-Algebras Generated by Isometries, Comm. Math. Phys., 57 (1977), 173-185.
6. Davidson K. R., C* Algebras by Example, Fields Institute Monographs, 6, Amer. Math. Soc., Providencs, RI 1996.
7. Dixmier J., Les algébres d'opérateurs dans l'espace hilbertien (algébres de von Neumann), Sécond Édition, Gauthier-Villars 1969.
8. de la Harpe P., Simplicity of the Projective Unitary Groups Defined by Simple Factors, Comment. Math. Helv., 54 (1979), 334-345.
9. de la Harpe P. and Jones V. F. R, An Introduction to \(C^{*}\)-Algebras, Université de Genève, 1995.
10. Leen M., Factorization in the Invertible Group of a \(C^{*}\)-Algebra, Canad. J. Math., 49(6) (1997), \(1188-1205\).
A. Al-Rawashdeh, Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan, e-mail: rahmed72@just.edu.jo

\section*{Full Screen}

\section*{Close}```


[^0]:    Received June 11, 2006; revised January 13, 2008.
    2000 Mathematics Subject Classification. Primary 46L05; 46L80.
    Key words and phrases. Cuntz algebras; involutions; K-Theory.

