
JJ J I II

Go back

Full Screen

Close

Quit

ON THE HILBERT INEQUALITY

ZHOU YU and GAO MINGZHE

Abstract. In this paper it is shown that the Hilbert inequality for double series can be improved

by introducing a weight function of the form
√

n
n+1

“√
n−1√
n+1

− ln n
π

”
, where n ∈ N . A similar result for

the Hilbert integral inequality is also given. As applications, some sharp results of Hardy-Littlewood’s
theorem and Widder’s theorem are obtained.

1. Introduction

Let {an} and {bn} be two sequences of complex numbers. It is all-round known that the inequality∣∣∣∣∣
∞∑

n=1

∞∑
m=1

amb̄n

m + n

∣∣∣∣∣
2

≤ π2
∞∑

n=1

|an|2
∞∑

n=1

|bn|2(1.1)

is called the Hilbert inequality for double series, where
∞∑

n=1
|an|2 < +∞ and

∞∑
n=1

|bn|2 < +∞, and

that the constant factor π2 in (1.1) is the best possible. The equality in (1.1) holds if and only if
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{an}, or {bn} is a zero-sequence (see [?]). The corresponding integral form of (1.1) is that∣∣∣∣∣∣
∞∫
0

∞∫
0

f(x)g(y)
x + y

dxdy

∣∣∣∣∣∣
2

≤ π2

 ∞∫
0

|f(x)|2 dx

 ∞∫
0

|g (x)|2 dx

(1.2)

where
∞∫
0

|f (x)|2 dx < +∞ and
∞∫
0

|g (x)|2 dx < +∞, and that the constant factor π2 in (1.2) is

also the best possible. The equality in (1.2) holds if and only if f (x) = 0, or g (x) = 0. Recently,
various improvements and extensions of (1.1) and (1.2) appeared in a great deal of papers (see [?]).
The purpose of the present paper is to build the Hilbert inequality with the weights by means of a
monotonic function of the form

√
x

1+
√

x
, thereby new refinements of (1.1) and (1.2) are established,

and then to give some of their important applications.
For convenience, we need the following lemmas.

Lemma 1.1. Let n ∈ N. Then
∞∫
0

dx

(n + x2)(1 + x)
=

1
n + 1

(
π

2
√

n
+

1
2

lnn

)
(1.3)

Proof. Let a, e and f be real numbers. Then∫
dx

(a2 + x2)(e + fx)

=
1

e2 + a2f2

{
f ln |e + fx| − 1

2
ln(a2 + x2) +

e

a
arctan

x

a

}
+ C

where C is an arbitrary constant. This result has been given in the papers (see [3]–[4]). Based on
this indefinite integral it is easy to deduce that the equality (1.3) is true. �
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Lemma 1.2. Let n ∈ N, x ∈ (0,+∞). Define two functions by

f (x) =
(

1
x + n

(n

x

) 1
2
)(

1−
( √

x

1 +
√

x
−

√
n

1 +
√

n

))
g (x) =

(
1

x + n

(n

x

) 1
2
)(

1 +
( √

x

1 +
√

x
−

√
n

1 +
√

n

))
,

then f (x) and g (x) are monotonously decreasing in (0, + ∞), and
∞∫
0

f (x) dx = π − πω (n)(1.4)

∞∫
0

g (x) dx = π + πω (n)(1.5)

where the weight function ω is defined by

ω (n) =
√

n

n + 1

(√
n− 1√
n + 1

− lnn

π

)
(1.6)

Proof. At first, notice that 1−
√

x
1+
√

x
= 1

1+
√

x
, hence we can write f (x) in form f (x) = f1 (x)+

f2 (x), where

f1 (x) =
(

1
(x + n)

√
x

)(
n

1 +
√

n

)
, f2 (x) =

√
n

(x + n) (1 +
√

x)
√

x
.

It is obvious that f1 (x) and f2 (x) are monotonously decreasing in (0, + ∞). Hence f (x) is
monotonously decreasing in (0, +∞ ). Next, notice that 1−

√
n

1+
√

n
= 1

1+
√

n
, we can write g (x) in



JJ J I II

Go back

Full Screen

Close

Quit

form g (x) = g1 (x) + g2 (x), where

g1 (x) =
√

n

(1 +
√

n) (x + n)
√

x
, g2 (x) =

√
n

(x + n) (1 +
√

x)
.

It is obvious that g1 (x) and g2 (x) are monotonously decreasing in (0, + ∞). Hence g (x) is also
monotonously decreasing in (0, + ∞). Further we need only to compute two integrals.

∞∫
0

f (x) dx =

∞∫
0

(
1

x + n

(n

x

) 1
2
)(

1 +
√

n

1 +
√

n
−

√
x

1 +
√

x

)
dx

=
(
1+

√
n

1 +
√

n

)∞∫
0

(
1

x + n

(n

x

) 1
2
)

dx−
∞∫
0

(
1

x + n

(n

x

) 1
2
)( √

x

1 +
√

x

)
dx

=
(

1 +
√

n

1 +
√

n

)
π −

∞∫
0

(
1

x + n

(n

x

) 1
2
)( √

x

1 +
√

x

)
dx

= π −

2
√

n

 ∞∫
0

1
(n + t2)

dt−
∞∫
0

1
(n + t2) (1 + t)

dt

−
√

n π

1 +
√

n


= π −

π − 2
√

n

∞∫
0

1
(n + t2) (1 + t)

dt−
√

n π

1 +
√

n
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By Lemma 1.1, we obtain

∞∫
0

f (x) dx = π −
{

π −
(

π

n + 1
+
√

n lnn

n + 1

)
−

√
n π

1 +
√

n

}
(1.7)

The equality (1.4) follows from (1.7) at once after some simple computations and simplifications.
Similarly, the equality (1.5) can be obtained.

�

2. Main Results

First, we establish a new refinement of (1.1).

Theorem 2.1. Let {an} and {bn} be two sequences of complex numbers. If
∞∑

n=1
|an|2 < +∞

and
∞∑

n=1
|bn|2 < +∞, then

∣∣∣∣∣
∞∑

m=1

∞∑
n=1

amb̄n

m + n

∣∣∣∣∣
4

≤ π4


( ∞∑

n=1

|an|2
)2

−

( ∞∑
n=1

ω (n) |an|2
)2


×


( ∞∑

n=1

|bn|2
)2

−

( ∞∑
n=1

ω (n) |bn|2
)2
(2.1)

where the weight function ω (n) is defined by (1.6).
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Proof. Let c(x) be a real function and satisfy the condition 1− c (n) + c (m) ≥ 0, (n, m ∈ N).
Firstly we suppose that bn = an. Applying Cauchy’s inequality we have

∣∣∣∣∣
∞∑

m=1

∞∑
n=1

amān

m + n

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑

m=1

∞∑
n=1

amān

m + n
(1− c (n) + c (m))

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑

m=1

∞∑
n=1

(
am (1− c(n) + c(m))1/2

(m + n)1/2

(m

n

)1/4
)

×

(
an (1− c(n) + c(m))1/2

(m + n)1/2

( n

m

)1/4
)∣∣∣∣∣

2

≤ J1J2(2.2)

where J1 =
∞∑

m=1

∞∑
n=1

|am|2
m+n

(
m
n

) 1
2 (1− c(n) + c(m))

J2 =
∞∑

m=1

∞∑
n=1

|ān|2
m+n

(
n
m

) 1
2 (1− c(n) + c(m))

We can write the double series J1 in the following form:

J1 =
∞∑

n=1

( ∞∑
m=1

1
m + n

( n

m

) 1
2

(1− c(m) + c(n))

)
|an|2.
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Let c (x) =
√

x
1+
√

x
. It is obvious that 1−

√
x

1+
√

x
+

√
n

1+
√

n
≥ 0. It is known from Lemma 1.2 that the

function f (x) is monotonously decreasing. Hence we have

J1 =
∞∑

n=1

( ∞∑
m=1

1
m + n

( n

m

) 1
2
(

1−
√

m

1 +
√

m
+

√
n

1 +
√

n

))
|an|2

≤
∞∑

n=1


∞∫
0

(
1

x + n

(n

x

) 1
2
)(

1−
( √

x

1 +
√

x
−

√
n

1 +
√

n

))
dx

 |an|2

= π
∞∑

n=1

|an|2 − π
∞∑

n=1

ω (n) |an|2

where the weight function ω (n) is defined by (1.6).
Similarly,

J2 ≤
∞∑

n=1


∞∫
0

1
x + n

(n

x

) 1
2
(

1 +
( √

x

1 +
√

x
−

√
n

1 +
√

n

))
dx

 |ān|2

= π
∞∑

n=1

|an|2 + π
∞∑

n=1

ω (n) |an|2.

Whence J1J2 ≤ π2

{( ∞∑
n=1

|an|2
)2

−
( ∞∑

n=1
ω (n) |an|2

)2
}

.



JJ J I II

Go back

Full Screen

Close

Quit

Consequently, we have

∣∣∣∣∣
∞∑

m=1

∞∑
n=1

amān

m + n

∣∣∣∣∣
2

≤ π2


( ∞∑

n=1

|an|2
)2

−

( ∞∑
n=1

ω (n) |an|2
)2
(2.3)

where the weight function ω (n) is defined by (1.6).
If bn 6= an, then we can apply Schwarz’s inequality to estimate the right-hand side of (2.1) as

follows:

∣∣∣∣∣
∞∑

m=1

∞∑
n=1

amb̄n

m + n

∣∣∣∣∣
4

=


∣∣∣∣∣∣

1∫
0

( ∞∑
m=1

amtm−
1
2

)( ∞∑
n=1

b̄ntn−
1
2

)
dt

∣∣∣∣∣∣
2


2

≤

∣∣∣∣∣∣
1∫

0

( ∞∑
m=1

|am| tm−
1
2

)2

dt

1∫
0

( ∞∑
n=1

|bn| tn−
1
2

)2

dt

∣∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑

m=1

∞∑
n=1

amān

m + n

∣∣∣∣∣
2 ∣∣∣∣∣

∞∑
m=1

∞∑
n=1

bmb̄n

m + n

∣∣∣∣∣
2

(2.4)

And then by using the relation (2.3), from (2.4) and the inequality (2.1), we obtain at once. �

Similarly, we can establish a new refinement of (1.2).
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Theorem 2.2. Let f (x) and g (x) be two functions in complex number field. If
∞∫
0

|f(x)|2 dx <

+∞,
∞∫
0

|g(x)|2 dx < +∞, then

∣∣∣∣∣∣
∞∫
0

∞∫
0

f(x)g (x)
x + y

dxdy

∣∣∣∣∣∣
4

≤ π4


 ∞∫

0

|f (x)|2 dx

2

−

 ∞∫
0

ω (x) |f (x)|2 dx

2


×


 ∞∫

0

|g (x)|2 dx

2

−

 ∞∫
0

ω (x) |g (x)|2 dx

2
(2.5)

where the weight function ω is defined by

ω (x) =


0 x = 0√

x

x + 1

(√
x− 1√
x + 1

− lnx

π

)
x > 0

(2.6)

Its proof is similar to that of Theorem 2.1, it is omitted here.
For the convenience of the applications, we list the following result.

Corollary 2.3. Let f (x) be a function in complex number field. If
∫∞
0
|f(x)|2 dx < + ∞, then∣∣∣∣∣∣

∞∫
0

∞∫
0

f(x)f (y)
x + y

dxdy

∣∣∣∣2 ≤ π2


 ∞∫

0

|f(x)|2dx

2

−

 ∞∫
0

ω(x) |f(x)|2 dx

2
(2.7)

where the weight function ω is defined by (2.6).
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3. Applications

As applications, we shall give some new refinements of Hardy-Littlewood’s theorem and Widder’s
theorem.

Let f (x) ∈ L2 (0, 1) and f (x) 6= 0 for all x. Define a sequence {an} by an =
∫ 1

0
xnf(x)dx,

n = 0, 1, 2, . . .. Hardy-Littlewood ([1]) proved that

∞∑
n=0

a2
n < π

1∫
0

f2(x)dx,(3.1)

where π is the best constant that the inequality (3.1) keeps valid.

Theorem 3.1. Let f (x) ∈ L2 (0, 1) and f (x) 6= 0 for all x. Define a sequence {an} by
an =

∫ 1

0
xn−1/2f(x)dx n = 1, 2, . . . . Then

( ∞∑
n=1

a2
n

)2

≤ π


( ∞∑

n=1

a2
n

)2

−

( ∞∑
n=1

ω (n) a2
n

)2


1
2 1∫

0

f2 (x) dx(3.2)

where ω(n) is defined by (1.6).

Proof. By our assumptions, we may write a2
n in the form

a2
n =

1∫
0

anxn−1/2f(x)dx.
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Applying Cauchy-Schwarz’s inequality we estimate the right hand side of (3.2) as follows( ∞∑
n=1

a2
n

)2

=

 ∞∑
n=1

1∫
0

anxn−1/2f(x)dx

2

=


1∫

0

( ∞∑
n=1

anxn−1/2

)
f(x)dx


2

≤
1∫

0

( ∞∑
n=1

anxn−1/2

)2

dx

1∫
0

f2(x)dx

=

1∫
0

∞∑
m=1

∞∑
n=1

amanxm+n−1dx

1∫
0

f2(x)dx

=

( ∞∑
m=

∞∑
n=1

aman

m + n

) 1∫
0

f2(x)dx(3.3)

It is known from (2.3) and (3.3) that the inequality (3.2) is valid. Therefore the theorem is
proved. �

Let an ≥ 0 (n = 0, 1, 2, . . . .), A(x) =
∞∑

n=0
anxn, A∗(x) =

∞∑
n=0

anxn

n! . Then

1∫
0

A2(x)dx ≤ π

∞∫
0

(
e−x A∗(x)

)2 dx(3.4)

This is Widder’s theorem (see [1]).
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Theorem 3.2. With the assumptions as the above-mentioned, it yields 1∫
0

A2 (x) dx

2

≤ π2


 ∞∫

0

(
e−x A∗ (x)

)2 dx

2

−

 ∞∫
0

ω (x)
(
e−x A∗ (x)

)2 dx

2
(3.5)

where ω (x) is defined by (2.6).

Proof. At first we have the following relation:
∞∫
0

e−t A∗(tx)dt =

∞∫
0

e−t
∞∑

n=0

an (xt)n

n!
dt

=
∞∑

n=0

anxn

n!

∞∫
0

tn e−t dt =
∞∑

n=0

anxn = A(x)

Let tx = s. Then we have
1∫

0

A2(x)dx =

1∫
0


∞∫
0

e−t A∗ (tx) dt


2

dx =

i∫
0

 ∞∫
0

e−
s
x A∗ (s) ds

2

1
x2

dx

=

∞∫
1

 ∞∫
0

e−sy A∗(s)ds

2

dy =

∞∫
0

 ∞∫
0

e−s(u+1) A∗ (s) ds

2

du

=

∞∫
0

 ∞∫
0

e−su f (s) ds

2

du =

∞∫
0

∞∫
0

f (s) f (t)
s + t

dsdt(3.6)
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where f (x) = e−x A∗ (x). By Corollary 2.3, the inequality (3.5) follows from (3.6) at once. �
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